Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = geocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 6848 KiB  
Review
Potential Reuse of Ladle Furnace Slag as Cementitious Material: A Literature Review of Generation, Characterization, and Processing Methods
by Noureddine Ouffa, Mostafa Benzaazoua, Romain Trauchessec, Tikou Belem, Yassine Taha and Cécile Diliberto
Minerals 2024, 14(12), 1204; https://doi.org/10.3390/min14121204 - 26 Nov 2024
Cited by 6 | Viewed by 2380
Abstract
Ladle furnace slag (LFS), a by-product of steel refining, shows a promising reuse pathway as an alternative additive or substitute for Portland cement due to its high alkalinity and similar chemical composition to clinkers. However, LFS is often stored in large, open surface [...] Read more.
Ladle furnace slag (LFS), a by-product of steel refining, shows a promising reuse pathway as an alternative additive or substitute for Portland cement due to its high alkalinity and similar chemical composition to clinkers. However, LFS is often stored in large, open surface areas, leading to many environmental issues. To tackle waste management challenges, LFS can be recycled as supplementary cementitious material (SCM) in many cementitious composites. However, LFS contains some mineral phases that hinder its reactivity (dicalcium silicate (γ-C2S)) and pose long-term durability issues in the cured cemented final product (free lime (f-CaO) and free magnesia (f-MgO)). Therefore, LFS needs to be adequately treated to enhance its reactivity and ensure long-term durability in the structures of the cementitious materials. This literature review assesses possible LFS treatments to enhance its suitability for valorization. Traditional reviews are often multidisciplinary and explore all types of iron and steel slags, sometimes including the recycling of LFS in the steel industry. As the reuse of industrial by-products requires a knowledge of their characteristics, this paper focuses first on LFS characterization, then on the obstacles to its use, and finally compiles an exhaustive inventory of previously investigated treatments. The main parameters for treatment evaluation are the mineralogical composition of treated LFS and the unconfined compressive strength (UCS) of the final geo-composite in the short and long term. This review indicates that the treatment of LFS using rapid air/water quenching at the end-of-refining process is most appropriate, allowing a nearly amorphous slag to be obtained, which is therefore suitable for use as a SCM. Moreover, the open-air watering treatment leads to an optimal content of treated LFS. Recycling LFS in this manner can reduce OPC consumption, solve the problem of limited availability of blast furnace slag (GGBFS) by partially replacing this material, conserve natural resources, and reduce the carbon footprint of cementitious material operations. Full article
(This article belongs to the Special Issue Metallurgy Waste Used for Backfilling Materials)
Show Figures

Figure 1

19 pages, 19869 KiB  
Article
Tensile and Tearing Properties of a Geocomposite Mechanically Damaged by Repeated Loading and Abrasion
by José Ricardo Carneiro, Filipe Almeida, Filipa Carvalho and Maria de Lurdes Lopes
Materials 2023, 16(21), 7047; https://doi.org/10.3390/ma16217047 - 5 Nov 2023
Cited by 4 | Viewed by 1791
Abstract
The behaviour of geosynthetics can be affected by many agents, both in the short and long term. Mechanical damage caused by repeated loading or abrasion are examples of agents that may induce undesirable changes in the properties of geosynthetics. The research conducted in [...] Read more.
The behaviour of geosynthetics can be affected by many agents, both in the short and long term. Mechanical damage caused by repeated loading or abrasion are examples of agents that may induce undesirable changes in the properties of geosynthetics. The research conducted in this work complemented previous studies and consisted of submitting a geocomposite, isolated and successively, to two degradation tests: mechanical damage under repeated loading and abrasion. The geocomposite (a nonwoven geotextile reinforced with polyethylene terephthalate filaments) was tested on both sides (with or without filaments) and directions (machine and cross-machine). The impact of the degradation tests on the geocomposite was quantified by monitoring changes in its tensile and tearing behaviour. The results showed that, in most cases, the degradation tests caused the deterioration of the tensile and tearing behaviour of the geocomposite, affecting its reinforcement function. The decline in tensile strength correlated reasonably well with the decline in tearing strength. Changing the side and direction tested influenced, in some cases (those involving abrasion), the degradation experienced by the geocomposite. The reduction factors (referring to tensile and tearing strength) for the combined effect of the degradation agents tended to be lower when determined by using the common method (compared to those resulting directly from the successive exposure to both agents). Full article
Show Figures

Figure 1

17 pages, 3884 KiB  
Article
Size-Independent Flexure Test Technique for the Mechanical Properties of Geocomposites Reinforced by Unidirectional Fibers
by Hung Tran Doan, Dora Kroisova and Oleg Bortnovsky
Ceramics 2023, 6(4), 2053-2069; https://doi.org/10.3390/ceramics6040126 - 17 Oct 2023
Cited by 1 | Viewed by 1817
Abstract
In assessing the bending attributes for geopolymer composites augmented with uni-directional fibers, methodologies aligned with the established American and European standards yield quantifiable values for flexural strength, denoted as σm*, and its corresponding elasticity modulus, E*. Notably, these values exhibit [...] Read more.
In assessing the bending attributes for geopolymer composites augmented with uni-directional fibers, methodologies aligned with the established American and European standards yield quantifiable values for flexural strength, denoted as σm*, and its corresponding elasticity modulus, E*. Notably, these values exhibit a pronounced dependency on the size of the testing parameters. Specifically, within a judicious range of support span L relative to specimen height H, spanning a ratio of 10 to 40, these metrics can vary by a factor between 2 and 4. By conducting evaluations across an extensive array of H/L ratios and adhering to the protocols set for comparable composites with a plastic matrix, it becomes feasible to determine the definitive flexural elastic modulus E and shear modulus G, both of which can be viewed as size-neutral material traits. A parallel methodology can be employed to deduce size-agnostic values for flexural strength, σm. The established linear relationship between the inverse practical value E* (1/E*) and the squared ratio (H/L)2 is acknowledged. However, a congruent 1/σm* relationship has been recently corroborated experimentally, aligning primarily with Tarnopolsky’s theoretical propositions. The parameter T, defined as the inverse gradient of 1/σm* about (H/L)2, is integral to these findings. Furthermore, the significance of the loading displacement rate is underscored, necessitating a tailored consideration for different scenarios. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers)
Show Figures

Figure 1

15 pages, 6102 KiB  
Article
Valorisation of Tuff and Brick Wastes by Alkali Activation for Historical Building Remediation
by Ilaria Capasso, Gigliola D’Angelo, Marina Fumo, Mercedes del Rio Merino, Domenico Caputo and Barbara Liguori
Materials 2023, 16(20), 6619; https://doi.org/10.3390/ma16206619 - 10 Oct 2023
Cited by 4 | Viewed by 1314
Abstract
Nowadays, the preservation and restoration of a historical building needs to be faced in accordance with a novel sensibility regarding the environment in order to preserve the building for future generations. In this context, the scientific community is focusing on novel and sustainable [...] Read more.
Nowadays, the preservation and restoration of a historical building needs to be faced in accordance with a novel sensibility regarding the environment in order to preserve the building for future generations. In this context, the scientific community is focusing on novel and sustainable materials and techniques that allow for durability and mechanical performance as well as compatibility with the existing heritage. Alkali-activated materials represent a great challenge to the production of new materials, starting from the existing ones, with the goal of reducing consumption, emission of greenhouse gases and environmental impact. This study deals with the valorisation of waste materials coming from demolition and construction activities in the manufacture of geocomposites suitable for the restoration and conservation of historical heritage. In particular, waste from tuff sawing and brick grinding were used as raw materials, and then the geopolymeric samples produced were characterized based on a physical-chemical and mechanical point of view in order to investigate their performance and evaluate their suitability as materials for a historical building’s recovery. The results showed that brick waste-based geocomposites were more compact than the tuff-based ones, as shown by the higher-density values and the lower values of open porosity and water absorption and as further confirmed by the trend of the mechanical performance. Moreover, experimental data showed that the physical and mechanical properties of both bricks and tuff waste-based geocomposites, even with different waste content, are compatible with existing building materials as well as traditional repairing products. Full article
(This article belongs to the Special Issue Structural and Functional Performance of Geopolymer Materials)
Show Figures

Graphical abstract

21 pages, 10031 KiB  
Article
Construction of Geosynthetic–Reinforced Pavements and Evaluation of Their Impacts
by Danrong Wang, Sheng-Lin Wang, Susan Tighe, Sam Bhat and Shunde Yin
Appl. Sci. 2023, 13(18), 10327; https://doi.org/10.3390/app131810327 - 15 Sep 2023
Cited by 6 | Viewed by 2696
Abstract
Geosynthetic materials (i.e., geogrids, geotextiles and other geocomposites) act as an interlayer system and are widely used in construction applications. In pavement structures, geosynthetic layers provide potential benefits such as reinforcement, reflective cracking mitigation, increased fatigue life, and improved drainage and filtering. However, [...] Read more.
Geosynthetic materials (i.e., geogrids, geotextiles and other geocomposites) act as an interlayer system and are widely used in construction applications. In pavement structures, geosynthetic layers provide potential benefits such as reinforcement, reflective cracking mitigation, increased fatigue life, and improved drainage and filtering. However, few studies have addressed the installation and construction practices of geosynthetics in pavements. Furthermore, the study of geosynthetics and their contribution during construction are limited. In this paper, a full-scale field study was conducted and three trial sections were constructed; two types of geosynthetics, a fibreglass geogrid and a geogrid composite, were installed in the asphalt binder course and at the interface between the subgrade and base layer, respectively, to be compared with a control section without geosynthetic reinforcement. Trial sections were instrumented to monitor the pressure applied on the subgrade, the strain in the base lift of the asphalt binder course, the temperature, and the moisture within the pavement structure during construction. In addition, post-construction field testing was performed to measure the stiffness of the pavements after construction. The results indicated that geosynthetic-reinforced pavements can maintain pavement resilience during construction and significantly mitigate the disturbances caused by construction activities. The geogrid embedded in the asphalt layer was demonstrated to reduce the pressure at the subgrade caused by paving equipment by 70% compared with the control section, while simultaneously reducing the longitudinal and transverse strain at the bottom of the asphalt layer by 54% and 99%. Observations from the geogrid composite test section also demonstrate the potential to minimize the impacts of future freeze–thaw at the subgrade due to the improved drainage and indirect insulation effect. Full article
Show Figures

Figure 1

17 pages, 4149 KiB  
Article
Sustainable Innovation: Turning Waste into Soil Additives
by Daria Marczak, Krzysztof Lejcuś, Iwona Lejcuś and Jakub Misiewicz
Materials 2023, 16(7), 2900; https://doi.org/10.3390/ma16072900 - 6 Apr 2023
Cited by 9 | Viewed by 2899
Abstract
In recent years, a dynamic increase in environmental pollution with textile waste has been observed. Natural textile waste has great potential for environmental applications. This work identifies potential ways of sustainably managing natural textile waste, which is problematic waste from sheep farming or [...] Read more.
In recent years, a dynamic increase in environmental pollution with textile waste has been observed. Natural textile waste has great potential for environmental applications. This work identifies potential ways of sustainably managing natural textile waste, which is problematic waste from sheep farming or the cultivation of fibrous plants. On the basis of textile waste, an innovative technology was developed to support water saving and plant vegetation- biodegradable water-absorbing geocomposites (BioWAGs). The major objective of this study was to determine BioWAG effectiveness under field conditions. The paper analyses the effect of BioWAGs on the increments in fresh and dry matter, the development of the root system, and the relative water content (RWC) of selected grass species. The conducted research confirmed the high efficiency of the developed technology. The BioWAGs increased the fresh mass of grass shoots by 230-420% and the root system by 130-200% compared with the control group. The study proved that BioWAGs are a highly effective technology that supports plant vegetation and saves water. Thanks to the reuse of waste materials, the developed technology is compatible with the assumptions of the circular economy and the goals of sustainable development. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

23 pages, 5242 KiB  
Article
Incorporating the Benefits of Geosynthetic into MEPDG
by Murad Abu-Farsakh, Mehdi Zadehmohamad and George Z. Voyiadjis
Infrastructures 2023, 8(2), 35; https://doi.org/10.3390/infrastructures8020035 - 16 Feb 2023
Cited by 6 | Viewed by 2890
Abstract
One of the most effective ways to increase the longevity of pavement structures is through the integration of geosynthetic reinforcement. Geosynthetics are synthetic materials such as geotextiles, geogrids, or geocomposites that are added to the interface between the subgrade and the base layer [...] Read more.
One of the most effective ways to increase the longevity of pavement structures is through the integration of geosynthetic reinforcement. Geosynthetics are synthetic materials such as geotextiles, geogrids, or geocomposites that are added to the interface between the subgrade and the base layer of a pavement structure. To evaluate the effect of various parameters on the structural benefits of geosynthetic reinforcement on the pavement structure of low-volume traffic flexible pavements, a finite element (FE) study was performed using the ABAQUS program. These parameters included the geosynthetic type, geosynthetic tensile stiffness, subgrade stiffness, and base thickness. The FE rutting curves for the 100 cycles were calibrated using the mechanistic–empirical (M-E) transfer functions, which were then used to calculate the long-term rutting curves. The traffic benefit ratio (TBR) was initially calculated based on the calibrated rutting curves for each pavement layer. The calculated TBRs were then used as an input in AASHTOWare to compute the base effective resilient modulus (MR-eff) and the factor of base course reduction (BCR). The results showed that adding one layer of geosynthetics enhanced the rutting performance of pavement structures significantly (up to 8.9 in TBR, 322% in MR-eff, and 64% in BCR). Geogrids showed higher benefits than geotextiles due to the interlocking between base aggregates and geogrid aperture. The values of TBR, MR-eff, and BCR increase with the increasing tensile stiffness of the geosynthetics and the rutting target and with the decreasing subgrade stiffness. The results also demonstrated peak values of TBR, MR-eff, and BCR for a base thickness of 25.4 cm. Full article
Show Figures

Figure 1

11 pages, 1994 KiB  
Article
An Experimental Study on Strengthening Recycled Aggregates Considering Dry Mixing before Slurry Coating
by Xiaomeng Li, Liujun Fan and Shupeng Chai
Coatings 2022, 12(11), 1702; https://doi.org/10.3390/coatings12111702 - 8 Nov 2022
Cited by 2 | Viewed by 2128
Abstract
The strengthening of recycled aggregates is a critical issue, as the low strength of recycled aggregates is the main reason that limits their widespread use. The slurry coating method can strengthen the recycled aggregates by repairing the aggregate surface, but it is hard [...] Read more.
The strengthening of recycled aggregates is a critical issue, as the low strength of recycled aggregates is the main reason that limits their widespread use. The slurry coating method can strengthen the recycled aggregates by repairing the aggregate surface, but it is hard to improve the internal strength due to the existence of pores and cracks. In this study, a new methodology considering dry mixing with fines to fill and bond the internal pores and cracks before slurry coating is proposed. Twelve strengthened samples considering different combinations of dry-mixing fines and coating solutions were prepared, and the basic physical and mechanical properties were compared, including the water-absorption rate, crushing value, and apparent density with unstrengthened aggregates. The results indicate that the proposed methodology can change the water-absorption rate significantly and improve the crushing resistance and apparent density of the recycled aggregates. A high correlation between the apparent density and the crushing value was also observed. Furthermore, the strengthening mechanism of dry mixing was also investigated by scanning electron microscopy. The micromorphology of the strengthened aggregates indicates that internal pores and cracks can be filled by dry mixing fines and then bonded together after hydration. Full article
Show Figures

Figure 1

13 pages, 1239 KiB  
Article
Selection of Landfill Cover Materials Based on Data Envelopment Analysis (DEA)—A Case Study on Four Typical Covering Materials
by Yibo Zhang, Yan Liu, Xuefeng Min, Qifan Jiang and Weizhou Su
Sustainability 2022, 14(17), 10888; https://doi.org/10.3390/su141710888 - 31 Aug 2022
Cited by 5 | Viewed by 2447
Abstract
Against the background of sustainable development, landfill covers can consist of a range of materials, from clay to geocomposite and polymer composites. Given engineering and environmental requirements, we analyzed the performance and sustainability of four sanitary landfill cover materials, namely clay, HDPE, PVC, [...] Read more.
Against the background of sustainable development, landfill covers can consist of a range of materials, from clay to geocomposite and polymer composites. Given engineering and environmental requirements, we analyzed the performance and sustainability of four sanitary landfill cover materials, namely clay, HDPE, PVC, and GCL. Within the principles of environmentally sustainable design, we constructed a material selection index based on the performance as well as the economic and environmental impacts of the materials. In addition, using a data envelopment analysis (DEA) model with an analytic hierarchical process (AHP) preference cone, we developed a C2WH model to evaluate the performance of the selected materials. Through the calculation, we found that the comprehensive indexes of the four covering materials were E1 = 0.2600, E2 = 0.5757, E3 = 0.7815, and E4 = 1.0000, respectively. Our results indicated that the investigated materials could be ranked according to performance as follows: GCL > PVC > HDPE > clay. Thus, our results showed that GCL, with the highest efficiency value, was the optimal cover of the investigated materials. The multiobjective decision model developed in our study can be used as a technical reference and offers support for the selection of eco-friendly landfill cover materials. Full article
(This article belongs to the Special Issue Green Design: A Nexus between Waste and Materials)
22 pages, 3848 KiB  
Article
Effects of Electrodes Layout and Filler Scale on Percolation Threshold and Piezoresistivity Performances of a Cementitious-Based Geocomposite
by Mohammadmahdi Abedi, Raul Fangueiro and António Gomes Correia
Nanomaterials 2022, 12(10), 1734; https://doi.org/10.3390/nano12101734 - 19 May 2022
Cited by 17 | Viewed by 2668
Abstract
An extensive experimental study was conducted to investigate the co-effects of surface area and distance between electrodes as well as filler scales on the percolation threshold of piezoresistive cement-stabilised sand. In this route, the electrical resistivity of numerous specimens of different sizes and [...] Read more.
An extensive experimental study was conducted to investigate the co-effects of surface area and distance between electrodes as well as filler scales on the percolation threshold of piezoresistive cement-stabilised sand. In this route, the electrical resistivity of numerous specimens of different sizes and composed of different content of carbon-based conductive fillers was measured, including carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and carbon fibres (CFs) with different aspect ratios. In addition, the numerical relations between the electrical percolation threshold and matrix dimensions were expressed for different conductive fillers. Furthermore, the electrical percolation threshold of two large-scale specimens with different shapes (a 10 × 10 × 85 cm3 beam, and a 15 cm size cube) were predicted through numerical relations, and their piezoresistivity performances were investigated under compression cyclic loading (cube) and flexural cyclic loading (beam). The mechanical properties of the specimens were also evaluated. The results showed that the changes in the length, width, and thickness of the matrix surrounded between electrodes had a significant effect on the electrical percolation threshold. However, the effects of length changes on the percolation threshold were greater than the width and thickness changes. Generally, increasing the aspect ratio of the conductive fillers caused a reduction in the electrical percolation threshold of the cementitious geocomposite. The appropriate piezoresistivity response of the large-scale specimens composed of filler content equal to their percolation threshold (obtained by the numerical relation presented in this study) showed the adequacy of the results in terms of threshold dosage prediction and self-sensing geocomposite design. The results of this study addressed a crucial factor for the design of self-sensing composites and pave the way for the development of field-applicable, smart, cementitious geocomposite. Full article
(This article belongs to the Topic Application of Graphene-Based Materials)
Show Figures

Graphical abstract

12 pages, 3391 KiB  
Article
Geosynthetic Interface Friction at Low Normal Stress: Two Approaches with Increasing Shear Loading
by Paolo Pavanello, Paolo Carrubba and Nicola Moraci
Appl. Sci. 2022, 12(3), 1065; https://doi.org/10.3390/app12031065 - 20 Jan 2022
Cited by 7 | Viewed by 2297
Abstract
The evaluation of geosynthetic interface friction is a key parameter for the stability of coupled geosynthetics, as in landfill capping liner. At the present time, few types of tests are suitable for measuring the interface friction at low normal stress: one of these [...] Read more.
The evaluation of geosynthetic interface friction is a key parameter for the stability of coupled geosynthetics, as in landfill capping liner. At the present time, few types of tests are suitable for measuring the interface friction at low normal stress: one of these is the inclined plane, usually carried out under a vertical stress of 5 kPa. This type of test is not without critical aspects, mainly due to the nonuniform normal stress state induced by the inclination of the plane, but, on the other hand, the most widespread direct shear test generally cannot be performed at such low values of normal stress. After a short discussion on the pros and cons of these two types of test, the paper presents a comparison of the interface friction angles obtained, for three interfaces, by means of an inclined plane and an unconventional direct shear apparatus, under the same low normal stress. The peculiarity of this latter device is of ensuring a gradual increase of the mobilized strength, in a way similar to what occurs during the inclined plane test. The good correspondence of the results of the two types of tests confirmed the validity of both the test approaches. Full article
(This article belongs to the Special Issue Advances in Geosynthetics)
Show Figures

Figure 1

30 pages, 3880 KiB  
Article
The Assessment of Water Retention Efficiency of Different Soil Amendments in Comparison to Water Absorbing Geocomposite
by Michał Śpitalniak, Adam Bogacz and Zofia Zięba
Materials 2021, 14(21), 6658; https://doi.org/10.3390/ma14216658 - 4 Nov 2021
Cited by 16 | Viewed by 4643
Abstract
Soil amendments are substances added to the soil for moisture increment or physicochemical soil process enhancement. This study aimed to assess the water conservation efficiency of available organic soil amendments like bentonite, attapulgite, biochar and inorganics like superabsorbent polymer, and nonwoven geotextile in [...] Read more.
Soil amendments are substances added to the soil for moisture increment or physicochemical soil process enhancement. This study aimed to assess the water conservation efficiency of available organic soil amendments like bentonite, attapulgite, biochar and inorganics like superabsorbent polymer, and nonwoven geotextile in relation to the newly developed water absorbing geocomposite (WAG) and its biodegradable version (bioWAG). Soil amendments were mixed with loamy sand soil, placed in 7.5 dm3 pots, then watered and dried in controlled laboratory conditions during 22-day long drying cycles (pot experiment). Soil moisture was recorded in three locations, and matric potential was recorded in one location during the drying process. The conducted research has confirmed that the addition of any examined soil amendment in the amount of 0.7% increased soil moisture, compared to control, depending on measurement depth in the soil profile and evaporation stage. The application of WAG as a soil amendment resulted in higher soil moisture in the centre and bottom layers, by 5.4 percent point (p.p.) and 6.4 p.p. on day 4 and by 4.5 p.p. and 8.8 p.p. on day 7, respectively, relative to the control samples. Additionally, an experiment in a pressure plate extractor was conducted to ensure the reliability of the obtained results. Soil density and porosity were also recorded. Samples containing WAG had water holding capacity at a value of −10 kPa higher than samples with biochar, attapulgite, bentonite, bioWAG and control by 3.6, 2.1, 5.7, 1 and 4.5 percentage points, respectively. Only samples containing superabsorbent polymers and samples with nonwoven geotextiles had water holding capacity at a value of −10 kPa higher than WAG, by 14.3 and 0.1 percentage points, respectively. Significant changes were noted in samples amended with superabsorbent polymers resulting in a 90% soil sample porosity and bulk density decrease from 1.70 g∙cm−3 to 1.14 g∙cm−3. It was thus concluded that the water absorbing geocomposite is an advanced and most efficient solution for water retention in soil. Full article
(This article belongs to the Special Issue Recent Advances in Soil as an Engineering Material)
Show Figures

Graphical abstract

11 pages, 5072 KiB  
Article
Performance Comparison of Geodrain Drainage and Gravel Drainage Layers Embedded in a Horizontal Plane
by Mariusz Cholewa and Karol Plesiński
Materials 2021, 14(21), 6321; https://doi.org/10.3390/ma14216321 - 22 Oct 2021
Cited by 3 | Viewed by 2414
Abstract
Drainage materials are widely used, among other uses, in the construction of landfills. Regulations require a drainage layer in the base and a covering for the landfill. The implementation of a gravel drain requires a lot of material and financial outlays. New geocomposite [...] Read more.
Drainage materials are widely used, among other uses, in the construction of landfills. Regulations require a drainage layer in the base and a covering for the landfill. The implementation of a gravel drain requires a lot of material and financial outlays. New geocomposite materials are an alternative, and facilitate construction. The aim of the research was to compare the drainage properties of the Pozidrain 7S250D/NW8 geocomposite and gravel drainage. The model test was performed on a specially prepared test stand. The research was carried out for model #1, in which the gravel drainage was built. Model #2 had a drainage geocomposite built into it. The test results show the values of the volumetric flow rate for geodrains, with a maximum value of 40 dm3·min−1. For the gravel layer, values of up to 140 dm3·min−1 were recorded. Another parameter recorded during the damming of water by the embankment was the speed of water suction by the geosynthetic and gravel drainage; the values were 0.067 and 0.024 m3·s−1, respectively. The efficiency of water drainage through the geocomposite was sufficient. It is possible to use the slopes of the landfill for drainage, which will reduce material and financial outlays. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Figure 1

19 pages, 6284 KiB  
Article
Influence of Geocomposite Properties on the Crack Propagation and Interlayer Bonding of Asphalt Pavements
by Sara Spadoni, Lorenzo Paolo Ingrassia, Giulio Paoloni, Amedeo Virgili and Francesco Canestrari
Materials 2021, 14(18), 5310; https://doi.org/10.3390/ma14185310 - 15 Sep 2021
Cited by 15 | Viewed by 2953
Abstract
The application of geocomposites as reinforcement in asphalt pavements is a promising solution for the maintenance/rehabilitation of existing pavements and for the construction of new pavements, whose effectiveness strongly depends on the physical and mechanical properties of the geocomposite. This study aims at [...] Read more.
The application of geocomposites as reinforcement in asphalt pavements is a promising solution for the maintenance/rehabilitation of existing pavements and for the construction of new pavements, whose effectiveness strongly depends on the physical and mechanical properties of the geocomposite. This study aims at assessing the influence of four different geocomposites, obtained by combining a reinforcing geosynthetic with a bituminous membrane, on the crack propagation and interlayer bonding of asphalt pavements. First, a laboratory investigation was carried out on double-layered asphalt specimens. The crack propagation resistance under static and dynamic loads was investigated through three-point bending tests (carried out on specimens with and without notch) and reflective cracking tests respectively, whereas the interlayer shear strength was evaluated through Leutner tests. Then, a trial section was constructed along an Italian motorway and a Falling Weight Deflectometer (FWD) testing campaign was carried out. The laboratory investigation highlighted that—as compared to the unreinforced system—the geocomposites increased the crack propagation energy in the layer above the reinforcement from five to ten times, indicating that they can significantly extend the service life of the pavement by delaying bottom-up and reflective cracking. However, they also worsened the interlayer bonding between the asphalt layers (de-bonding effect). The field investigation indicated that all geocomposites decreased the stiffness of the asphalt layers with respect to the unreinforced pavement as a consequence of the de-bonding effect, thus corroborating the laboratory results. Based on the results obtained, it is desirable that the geocomposite possess a high energy dissipation capability and an upper coating ensuring good adhesion between the asphalt layers. The monitoring of the existing trial section in the future will provide useful data on the long-term field performance of reinforced pavements subjected to actual motorway traffic. Full article
Show Figures

Figure 1

23 pages, 8426 KiB  
Article
Fatigue Performance of Double-Layered Asphalt Concrete Beams Reinforced with New Type of Geocomposites
by Piotr Jaskula, Dawid Rys, Marcin Stienss, Cezary Szydlowski, Michał Golos and Jacek Kawalec
Materials 2021, 14(9), 2190; https://doi.org/10.3390/ma14092190 - 24 Apr 2021
Cited by 8 | Viewed by 3139
Abstract
The reinforcement of asphalt layers with geosynthetics has been used for several decades, but proper evaluation of the influence of these materials on pavement fatigue life is still a challenging task. The presented study investigates a novel approach to the reinforcement of asphalt [...] Read more.
The reinforcement of asphalt layers with geosynthetics has been used for several decades, but proper evaluation of the influence of these materials on pavement fatigue life is still a challenging task. The presented study investigates a novel approach to the reinforcement of asphalt layers using a new type of geogrid composite, in which square or hexagonal polypropylene stiff monolithic paving grid with integral junctions is bonded to polypropylene non-woven paving fabric. The laboratory fatigue tests were performed on large asphalt concrete beams reinforced with the new type of geocomposite. Unreinforced samples were used as reference. Test results were analysed in several aspects, including the standardised approach based on stiffness reduction, but also using energy dissipation. The effect of reinforcement on pavement fatigue life was also estimated. Based on the obtained final results of fatigue life calculations, it can be concluded that the evaluated geogrid composites have an evident positive effect on pavement performance and have a significant potential to extend the overall pavement life, especially in the case of hexagonal grid. Full article
Show Figures

Figure 1

Back to TopTop