Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,036)

Search Parameters:
Keywords = gene search

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1684 KiB  
Article
Data Mining and Biochemical Profiling Reveal Novel Biomarker Candidates in Alzheimer’s Disease
by Annamaria Vernone, Ilaria Stura, Caterina Guiot, Federico D’Agata and Francesca Silvagno
Int. J. Mol. Sci. 2025, 26(15), 7536; https://doi.org/10.3390/ijms26157536 (registering DOI) - 4 Aug 2025
Abstract
The search for the biomarkers of Alzheimer’s disease (AD) may prove essential in the diagnosis and prognosis of the pathology, and the differential expression of key proteins may assist in identifying new therapeutic targets. In this proof-of-concept (POC) study, a new approach of [...] Read more.
The search for the biomarkers of Alzheimer’s disease (AD) may prove essential in the diagnosis and prognosis of the pathology, and the differential expression of key proteins may assist in identifying new therapeutic targets. In this proof-of-concept (POC) study, a new approach of data mining and matching combined with the biochemical analysis of proteins was applied to AD investigation. Three influential online open databases (UniProt, AlzGene, and Allen Human Brain Atlas) were explored to identify the genes and encoded proteins involved in AD linked to mitochondrial and iron dysmetabolism. The databases were searched using specific keywords to collect information about protein composition, and function, and meta-analysis data about their correlation with AD. The extracted datasets were matched to yield a list of relevant proteins in AD. The biochemical analysis of their amino acid content suggested a defective synthesis of these proteins in poorly oxygenated brain tissue, supporting their relevance in AD progression. The result of our POC study revealed several potential new markers of AD that deserve further molecular and clinical investigation. This novel database search approach can be a valuable strategy for biomarker search that can be exploited in many diseases. Full article
Show Figures

Figure 1

15 pages, 8600 KiB  
Article
A Small-Molecule Compound Targeting Canine Mammary Cancer Regulates CXCL10 and MECOM Transcripts via Histone Modifications in CMT-N7
by Rongrong Wang, Chuyang Zhu, Xiaoyue Yuan, Cuipeng Zhu, Saber Y. Adam, Haoyu Liu, Demin Cai and Jiaguo Liu
Animals 2025, 15(15), 2274; https://doi.org/10.3390/ani15152274 - 4 Aug 2025
Abstract
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with [...] Read more.
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with a relative incidence rate of 46.71% for CMT in China over the past five years, severely threatening the life and health of dogs. Therefore, the search for novel drugs targeting canine mammary cancer is of great significance. This study aims to investigate how the RORγ inhibitors W6134 and XY018 affect the expression of inflammatory genes through histone modifications in CMT-N7 cells. These results show that W6134 and XY018 can upregulate signaling pathways related to inflammation and apoptosis and influence the expression of associated genes. The close link between RORγ and inflammation-related genes further confirms that RORγ may serve as a therapeutic target for canine cancer. Additionally, ChIP-qPCR was used to detect the enrichment of histone markers such as P300, H3K27ac, H3K4me1, H3K9la, and H3K9bhb at the target loci of CXCL10 and MECOM genes. Collectively, our findings provide molecular evidence for the protective role of RORγ in canine mammary cancer, potentially by regulating inflammatory pathways via histone modifications, offering new insights for improving the cure rate and survival of affected dogs. Full article
(This article belongs to the Special Issue Nutrition, Physiology and Metabolism of Companion Animals)
Show Figures

Figure 1

18 pages, 881 KiB  
Systematic Review
Association of Single Nucleotide Polymorphisms in the Cyclooxygenase-2 (COX-2) Gene with Periodontal Disease—A Systematic Review with Meta-Analysis and Implications for Personalized Dentistry
by Vasiliki Savva, Ioannis Fragkioudakis and Dimitra Sakellari
J. Pers. Med. 2025, 15(8), 351; https://doi.org/10.3390/jpm15080351 (registering DOI) - 3 Aug 2025
Abstract
Background: Genetic polymorphisms in the cyclooxygenase-2 (COX-2) gene may contribute to individual susceptibility to periodontal disease. A meta-analysis assessed the association between three COX-2 single-nucleotide polymorphisms (SNPs) namely, −765 G/C (rs20417), −1195 G/A (rs689466), and 8473 T/C (rs5275), and the risk of CP. [...] Read more.
Background: Genetic polymorphisms in the cyclooxygenase-2 (COX-2) gene may contribute to individual susceptibility to periodontal disease. A meta-analysis assessed the association between three COX-2 single-nucleotide polymorphisms (SNPs) namely, −765 G/C (rs20417), −1195 G/A (rs689466), and 8473 T/C (rs5275), and the risk of CP. Methods: Following the PRISMA 2020 guidelines, we conducted a comprehensive search of five electronic databases and additional sources. The eligible studies were observational (case–control or cohort) with genotypic data comparing individuals with periodontal disease and periodontally healthy controls. Methodological quality was assessed using the Newcastle–Ottawa Scale (NOS), and the certainty of evidence was evaluated via the GRADE framework. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated under dominant genetic models. Results: Seven studies (n = 1467 participants) met the inclusion criteria. No eligible studies evaluated the 8473 T/C SNP. The meta-analysis of the −765 G/C variant revealed a significant association with periodontal disease (OR = 1.61; 95% CI: 1.12–2.32, p = 0.03; I2 = 0%). For the −1195 G/A variant, the pooled OR was 1.86 (95% CI: 1.00–3.43, p = 0.05; I2 = 35%), suggesting a borderline significant association. The certainty of evidence was graded as moderate for −765 G/C and low for −1195 G/A. Conclusions: The COX-2 −765 G/C polymorphism is significantly associated with increased CP risk, while the −1195 G/A variant shows a potential, though less certain, link. Larger, high-quality studies using standardized classifications are needed to confirm these associations. Full article
(This article belongs to the Section Omics/Informatics)
Show Figures

Figure 1

21 pages, 1677 KiB  
Systematic Review
Pharmacoeconomic Profiles of Advanced Therapy Medicinal Products in Rare Diseases: A Systematic Review
by Marianna Serino, Milana Krstin, Sara Mucherino, Enrica Menditto and Valentina Orlando
Healthcare 2025, 13(15), 1894; https://doi.org/10.3390/healthcare13151894 - 2 Aug 2025
Viewed by 42
Abstract
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic [...] Read more.
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic review aims to analyze the cost-effectiveness and cost-utility profiles of the European Medicines Agency-authorized ATMPs for treating rare diseases. Methods: A systematic review was conducted following PRISMA guidelines. Studies were identified by searching PubMed, Embase, Web of Science, and ProQuest scientific databases. Economic evaluations reporting incremental cost-effectiveness/utility ratios (ICERs/ICURs) for ATMPs were included. Costs were standardized to 2023 Euros, and a cost-effectiveness plane was constructed to evaluate the results against willingness-to-pay (WTP) thresholds of EUR 50,000, EUR 100,000, and EUR 150,000 per QALY, as part of a sensitivity analysis. Results: A total of 61 studies met the inclusion criteria. ATMPs for rare blood diseases, such as tisagenlecleucel and axicabtagene ciloleucel, were found to be cost-effective in a majority of studies, with incremental QALYs ranging from 1.5 to 10 per patient over lifetime horizon. Tisagenlecleucel demonstrated a positive cost-effectiveness profile in the treatment of acute lymphoblastic leukemia (58%), while axicabtagene ciloleucel showed a positive profile in the treatment of diffuse large B-cell lymphoma (85%). Onasemnogene abeparvovec for spinal muscular atrophy (SMA) showed uncertain cost-effectiveness results, and voretigene neparvovec for retinal diseases was not cost-effective in 40% of studies, with incremental QALYs around 1.3 and high costs exceeding the WTP threshold set. Conclusions: ATMPs in treating rare diseases show promising economic potential, but cost-effectiveness varies across indications. Policymakers must balance innovation with system sustainability, using refined models and the long-term impact on patient outcomes. Full article
(This article belongs to the Special Issue Healthcare Economics, Management, and Innovation for Health Systems)
Show Figures

Figure 1

39 pages, 2336 KiB  
Review
Omics-Mediated Treatment for Advanced Prostate Cancer: Moving Towards Precision Oncology
by Yasra Fatima, Kirubel Nigusu Jobre, Enrique Gomez-Gomez, Bartosz Małkiewicz, Antonia Vlahou, Marika Mokou, Harald Mischak, Maria Frantzi and Vera Jankowski
Int. J. Mol. Sci. 2025, 26(15), 7475; https://doi.org/10.3390/ijms26157475 (registering DOI) - 2 Aug 2025
Viewed by 199
Abstract
Prostate cancer accounts for approximately 1.5 million new diagnoses and 400,000 deaths every year worldwide, and demographic projections indicate a near-doubling of both figures by 2040. Despite existing treatments, 10–20% of patients eventually progress to metastatic castration-resistant disease (mCRPC). The median overall survival [...] Read more.
Prostate cancer accounts for approximately 1.5 million new diagnoses and 400,000 deaths every year worldwide, and demographic projections indicate a near-doubling of both figures by 2040. Despite existing treatments, 10–20% of patients eventually progress to metastatic castration-resistant disease (mCRPC). The median overall survival (OS) after progression to mCPRC drops to 24 months, and efficacy drops severely after each additional line of treatment. Omics platforms have reached advanced levels and enable the acquisition of high-resolution large datasets that can provide insights into the molecular mechanisms underlying PCa pathology. Genomics, especially DDR (DNA damage response) gene alterations, detected via tissue and/or circulating tumor DNA, efficiently guides therapy in advanced prostate cancer. Given recent developments, we have performed a comprehensive literature search to cover recent research and clinical trial reports (over the last five years) that integrate omics along three converging trajectories in therapeutic development: (i) predicting response to approved agents with demonstrated survival benefits, (ii) stratifying patients to receive therapies in clinical trials, (iii) guiding drug development as part of drug repurposing frameworks. Collectively, this review is intended to serve as a comprehensive resource of recent advancements in omics-guided therapies for advanced prostate cancer, a clinical setting with existing clinical needs and poor outcomes. Full article
(This article belongs to the Special Issue Molecular Research on Prostate Cancer)
Show Figures

Figure 1

36 pages, 3621 KiB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 280
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

24 pages, 3039 KiB  
Article
Plasmodium falciparum Subtilisin-like Domain-Containing Protein (PfSDP), a Cross-Stage Antigen, Elicits Short-Lived Antibody Response Following Natural Infection with Plasmodium falciparum
by Jonas A. Kengne-Ouafo, Collins M. Morang’a, Nancy K. Nyakoe, Daniel Dosoo, Richmond Tackie, Joe K. Mutungi, Saikou Y. Bah, Lucas N. Amenga-Etego, Britta Urban, Gordon A. Awandare, Bismarck Dinko and Yaw Aniweh
Cells 2025, 14(15), 1184; https://doi.org/10.3390/cells14151184 - 31 Jul 2025
Viewed by 435
Abstract
With the increasing detection of artemisinin resistance to front-line antimalarials in Africa and notwithstanding the planned roll-out of RTS’S and R21 in Africa, the search for new vaccines with high efficacy remains an imperative. Towards this endeavour, we performed in silico screening to [...] Read more.
With the increasing detection of artemisinin resistance to front-line antimalarials in Africa and notwithstanding the planned roll-out of RTS’S and R21 in Africa, the search for new vaccines with high efficacy remains an imperative. Towards this endeavour, we performed in silico screening to identify Plasmodium falciparum gametocyte stage genes that could be targets of protection or diagnosis. Through the analysis we identified a gene, Pf3D7_1105800, coding for a Plasmodium falciparum subtilisin-like domain-containing protein (PfSDP) and thus dubbed the gene Pfsdp. Genetic diversity assessment revealed the Pfsdp gene to be relatively conserved across continents with signs of directional selection. Using RT qPCR and Western blots, we observed that Pfsdp is expressed in all developmental stages of the parasite both at the transcript and protein level. Immunofluorescence assays found PfSDP protein co-localizing with PfMSP-1 and partially with Pfs48/45 at the asexual and sexual stages, respectively. Further, we demonstrated that anti-PfSDP peptide-specific antibodies inhibited erythrocyte invasion by 20–60% in a dose-dependent manner, suggesting that PfSDP protein might play a role in merozoite invasion. We also discovered that PfSDP protein is immunogenic in children from different endemic areas with antibody levels increasing from acute infection to day 7 post-treatment, followed by a gradual decay. The limited effect of antibodies on erythrocyte invasion could imply that it might be more involved in other processes in the development of the parasite. Full article
Show Figures

Figure 1

41 pages, 1640 KiB  
Review
Early Roots of Childhood Obesity: Risk Factors, Mechanisms, and Prevention Strategies
by Giuseppina Rosaria Umano, Simonetta Bellone, Raffaele Buganza, Valeria Calcaterra, Domenico Corica, Luisa De Sanctis, Anna Di Sessa, Maria Felicia Faienza, Nicola Improda, Maria Rosaria Licenziati, Melania Manco, Carla Ungaro, Flavia Urbano, Giuliana Valerio, Malgorzata Wasniewska and Maria Elisabeth Street
Int. J. Mol. Sci. 2025, 26(15), 7388; https://doi.org/10.3390/ijms26157388 - 30 Jul 2025
Viewed by 584
Abstract
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to [...] Read more.
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to long-term metabolic and cardiovascular diseases. The “Developmental Origins of Health and Disease” (DOHaD) paradigm provides a framework for understanding how early life environmental exposures, particularly during the periconceptional, fetal, and neonatal periods, can program future health outcomes through epigenetic mechanisms. Epigenetic modifications alter gene expression without changing the DNA sequence and are increasingly recognized as key mediators in the development of obesity. This narrative review summarizes current findings on the early determinants of childhood obesity, emphasizing the molecular and epigenetic pathways involved. A comprehensive literature search was conducted across multiple databases and international sources, focusing on recent studies from the past decade. Both human and animal research were included to provide a broad perspective. This review aims to consolidate recent insights into early life influences on obesity, underscoring the need for preventive strategies starting as early as the preconception period. Full article
(This article belongs to the Special Issue Genetic and Molecular Mechanisms of Obesity)
Show Figures

Figure 1

14 pages, 290 KiB  
Article
Patterns of Reverse Transcriptase Inhibitor Resistance Mutations in People Living with Human Immunodeficiency Virus in Libreville, Gabon
by Guy Francis Nzengui-Nzengui, Gaël Mourembou, Euloge Ibinga, Ayawa Claudine Kombila-Koumavor, Hervé M’boyis-Kamdem, Edmery Muriel Mpouho-Ntsougha, Alain Mombo-Mombo and Angélique Ndjoyi-Mbiguino
Trop. Med. Infect. Dis. 2025, 10(8), 216; https://doi.org/10.3390/tropicalmed10080216 - 30 Jul 2025
Viewed by 220
Abstract
Objective: To characterize the profiles of resistance mutations to HIV reverse transcriptase inhibitors in Gabon. Design: Cross-sectional study conducted over 37 months, from October 2019 to October 2022, at the IST/HIV/AIDS Reference Laboratory, a reference center for the biological monitoring of people living [...] Read more.
Objective: To characterize the profiles of resistance mutations to HIV reverse transcriptase inhibitors in Gabon. Design: Cross-sectional study conducted over 37 months, from October 2019 to October 2022, at the IST/HIV/AIDS Reference Laboratory, a reference center for the biological monitoring of people living with the human immunodeficiency virus (PWHIV) in Gabon. Methods: Plasma from 666 PWHIV receiving antiretroviral treatment was collected, followed by RNA extraction, amplification, and reverse transcriptase gene sequencing. Statistical analyses were performed using Stata® 14.0 software (USA). Results: Six hundred and sixty-six (666) PWHIV plasma collected from 252 male and 414 female patients were analyzed and 1654 mutations were detected in 388 patients, including 849 (51.3%) associated with nucleoside reverse transcriptase inhibitors (NRTIs) and 805 (48.7%) with non-nucleoside reverse transcriptase inhibitors (NNRTIs). Three of the most prescribed treatment regimens were associated to the appearance of both NRTIs and NNRTIs resistance mutations: TDF + 3TC + EFV (24.02%; 160/666); TDF + FTC + EFV) (17.2%; 114/666) and AZT + 3TC + EFV (14.6%; 97/666). Additionally, stage 3 of CD4 T-lymphocyte deficiency, the higher viral load, and treatment duration are risk factors influencing the appearance of virus mutations. Also, treatment containing TDF-3TC + DTG is more protective against mutations. Conclusions: Drug resistance mutations are common in Gabon and compromise the efficacy of ART. Further study must search for other causes of therapeutic failure in Gabon in PWHIV. Full article
(This article belongs to the Special Issue HIV Testing, Prevention and Care Interventions, 2nd Edition)
27 pages, 3430 KiB  
Article
Systematic Characterization of Antioxidant Shielding Capacity Against Oxidative Stress of Aerial Part Extracts of Anacardium occidentale
by Alejandro Ponce-Mora, Lucia Gimeno-Mallench, José Luis Lavandera, Ryland T. Giebelhaus, Alicia Domenech-Bendaña, Antonella Locascio, Irene Gutierrez-Rojas, Salvatore Sauro, Paulina de la Mata, Seo Lin Nam, Vanessa Méril-Mamert, Muriel Sylvestre, James J. Harynuk, Gerardo Cebrián-Torrejón and Eloy Bejarano
Antioxidants 2025, 14(8), 935; https://doi.org/10.3390/antiox14080935 - 30 Jul 2025
Viewed by 276
Abstract
Oxidative stress is a biological imbalance that contributes to cellular damage and is a major driver of aging and age-related disorders, prompting the search for natural antioxidant agents. Our study is a phytochemical, electrochemical, and biological characterization of the antioxidant potential of aqueous [...] Read more.
Oxidative stress is a biological imbalance that contributes to cellular damage and is a major driver of aging and age-related disorders, prompting the search for natural antioxidant agents. Our study is a phytochemical, electrochemical, and biological characterization of the antioxidant potential of aqueous extracts from aerial parts of A. occidentale—leaves, bark, fruit, and cashew nuts—traditionally used in folklore medicine. Extracts were analyzed using FT-IR spectroscopy, GC × GC-TOFMS, polyphenol quantification, and antioxidant capacity assays (ABTS, FRAP, DPPH). Biological activity was tested in different mice and human cell lines (SH-SY5Y, MEF, ARPE-19, and HLECs). Aqueous extracts from the leaves and bark of A. occidentale exhibited significantly higher antioxidant activity compared to those from the fruit and cashew nut. These extracts showed elevated polyphenol content and strong performance in antioxidant capacity assays. In vitro, leaf and bark extracts enhanced cell viability under H2O2-induced oxidative stress, preserved mitochondrial membrane potential, and upregulated cytoprotective genes (HMOX1, NQO1, GCLC, and GCLM) in multiple cell lines. In contrast, fruit and nut extracts showed minimal antioxidant activity and no significant gene modulation. Our findings underscore the therapeutic potential of A. occidentale leaf and bark extracts as effective natural antioxidants and support their further development as candidates for phytotherapeutic interventions. Full article
Show Figures

Figure 1

30 pages, 1403 KiB  
Review
Role of Interleukins in Type 1 and Type 2 Diabetes
by Roha Asif, Ammara Khalid, Tolga Mercantepe, Aleksandra Klisic, Sana Rafaqat, Saira Rafaqat and Filiz Mercantepe
Diagnostics 2025, 15(15), 1906; https://doi.org/10.3390/diagnostics15151906 - 30 Jul 2025
Viewed by 326
Abstract
Background: Despite distinct etiologies, type 1 diabetes (T1D) and type 2 diabetes (T2D) share chronic inflammation as a core feature. Interleukins, key immune mediators, play important yet still not fully understood roles in the development and complications of both conditions. Objective: [...] Read more.
Background: Despite distinct etiologies, type 1 diabetes (T1D) and type 2 diabetes (T2D) share chronic inflammation as a core feature. Interleukins, key immune mediators, play important yet still not fully understood roles in the development and complications of both conditions. Objective: This narrative review aims to provide a comprehensive and critical synthesis of current evidence on the role of key interleukins in T1D and T2D, highlighting their immunological functions, genetic associations, clinical correlations, and translational potential. Methods: A targeted literature search was conducted in PubMed, Google Scholar, and ScienceDirect up to January 2025, focusing on English-language clinical and experimental studies involving interleukins and their relevance to T1D and T2D. Reference lists were manually screened for additional sources. Interleukins (ILs) were reviewed individually to assess their immunobiology, disease specificity, and biomarker or therapeutic value. Findings: Pro-inflammatory cytokines such as IL-1β, IL-6, and IL-17 contribute to islet inflammation, insulin resistance, and microvascular damage in both T1D and T2D. Anti-inflammatory mediators including IL-4, IL-10, and IL-13 exhibit protective effects but vary in expression across disease stages. Less-characterized interleukins such as IL-3, IL-5, IL-9, and IL-27 demonstrate dual or context-dependent roles, particularly in shaping immune tolerance and tissue-specific complications such as nephropathy and neuropathy. Polymorphisms in IL-10 and IL-6 genes further suggest genetic contributions to interleukin dysregulation and metabolic dysfunction. Despite promising insights, translational gaps persist due to overreliance on preclinical models and limited longitudinal clinical data. Conclusions: Interleukins represent a mechanistic bridge linking immune dysregulation to metabolic derangements in both T1D and T2D. While their diagnostic and therapeutic potential is increasingly recognized, future research must address current limitations through isoform-specific targeting, context-aware interventions, and validation in large-scale, human cohorts. A unified interleukin-based framework may ultimately advance personalized strategies for diabetes prevention and treatment. Full article
(This article belongs to the Special Issue Clinical Prognostic and Predictive Biomarkers, Third Edition)
Show Figures

Figure 1

36 pages, 3201 KiB  
Review
Botulinum Toxin Effects on Biochemical Biomarkers Related to Inflammation-Associated Head and Neck Chronic Conditions: A Systematic Review of Preclinical Research
by Ines Novo Pereira, Giancarlo De la Torre Canales, Sara Durão, Rawand Shado, Ana Cristina Braga, André Mariz Almeida, Haidar Hassan, Ana Cristina Manso and Ricardo Faria-Almeida
Toxins 2025, 17(8), 377; https://doi.org/10.3390/toxins17080377 - 29 Jul 2025
Viewed by 317
Abstract
Current research reported that the number of clinical studies found for botulinum toxin (BoNT) key effects on biochemical biomarkers in head and neck chronic conditions linked to inflammation was very low. There are no systematic reviews of animal studies on this topic, and [...] Read more.
Current research reported that the number of clinical studies found for botulinum toxin (BoNT) key effects on biochemical biomarkers in head and neck chronic conditions linked to inflammation was very low. There are no systematic reviews of animal studies on this topic, and hence our review aimed to evaluate the quality of the preclinical evidence. We searched PubMed, Scopus, and Web of Science databases, and registries up to 29 January 2024. There were 22 eligible records, and data were available for 11 randomised controlled trials. There were concerns about the risk of bias and great variations of data obtained regarding chronic conditions, which included mostly trigeminal neuralgia. The leading biomarkers were proinflammatory cytokines (IL-1β, TNF-α) and synaptosomal-associated protein-25 (SNAP25), followed by neuron activation marker c-Fos and calcitonin gene-related peptide (CGRP). Overall, data found that BoNT significantly altered the under/over-expression of biomarkers evoked by the investigated disease models and had no effect when the levels of these biomarkers were not changed by the induced chronic conditions in animals. However, there were some mixed results and exceptions, and the certainty evidence found was very low to low. Although the sample sizes detected significant effect size (p < 0.05), most studies are based on male inferior animals, which may limit the recommendations for clinical trials. This study is registered on PROSPERO (CRD42023432411). Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Graphical abstract

34 pages, 2083 KiB  
Article
EvoDevo: Bioinspired Generative Design via Evolutionary Graph-Based Development
by Farajollah Tahernezhad-Javazm, Andrew Colligan, Imelda Friel, Simon J. Hickinbotham, Paul Goodall, Edgar Buchanan, Mark Price, Trevor Robinson and Andy M. Tyrrell
Algorithms 2025, 18(8), 467; https://doi.org/10.3390/a18080467 - 26 Jul 2025
Viewed by 308
Abstract
Automated generative design is increasingly used across engineering disciplines to accelerate innovation and reduce costs. Generative design offers the prospect of simplifying manual design tasks by exploring the efficacy of solutions automatically. However, existing generative design frameworks rely heavily on expensive optimisation procedures [...] Read more.
Automated generative design is increasingly used across engineering disciplines to accelerate innovation and reduce costs. Generative design offers the prospect of simplifying manual design tasks by exploring the efficacy of solutions automatically. However, existing generative design frameworks rely heavily on expensive optimisation procedures and often produce customised solutions, lacking reusable generative rules that transfer across different problems. This work presents a bioinspired generative design algorithm utilising the concept of evolutionary development (EvoDevo). This evolves a set of developmental rules that can be applied to different engineering problems to rapidly develop designs without the need to run full optimisation procedures. In this approach, an initial design is decomposed into simple entities called cells, which independently control their local growth over a development cycle. In biology, the growth of cells is governed by a gene regulatory network (GRN), but there is no single widely accepted model for this in artificial systems. The GRN responds to the state of the cell induced by external stimuli in its environment, which, in this application, is the loading regime on a bridge truss structure (but can be generalised to any engineering structure). Two GRN models are investigated: graph neural network (GNN) and graph-based Cartesian genetic programming (CGP) models. Both GRN models are evolved using a novel genetic search algorithm for parameter search, which can be re-used for other design problems. It is revealed that the CGP-based method produces results similar to those obtained using the GNN-based methods while offering more interpretability. In this work, it is shown that this EvoDevo approach is able to produce near-optimal truss structures via growth mechanisms such as moving vertices or changing edge features. The technique can be set up to provide design automation for a range of engineering design tasks. Full article
Show Figures

Figure 1

19 pages, 5001 KiB  
Article
Prognostic Potential of Apoptosis-Related Biomarker Expression in Triple-Negative Breast Cancers
by Miklós Török, Ágnes Nagy, Gábor Cserni, Zsófia Karancsi, Barbara Gregus, Dóra Hanna Nagy, Péter Árkosy, Ilona Kovács, Gabor Méhes and Tibor Krenács
Int. J. Mol. Sci. 2025, 26(15), 7227; https://doi.org/10.3390/ijms26157227 - 25 Jul 2025
Viewed by 238
Abstract
Of breast cancers, the triple-negative subtype (TNBC) is characterized by aggressive behavior, poor prognosis and limited treatment options due to its high molecular heterogeneity. Since insufficient programmed cell death response is a major hallmark of cancer, here we searched for apoptosis-related biomarkers of [...] Read more.
Of breast cancers, the triple-negative subtype (TNBC) is characterized by aggressive behavior, poor prognosis and limited treatment options due to its high molecular heterogeneity. Since insufficient programmed cell death response is a major hallmark of cancer, here we searched for apoptosis-related biomarkers of prognostic potential in TNBC. The expression of the pro-apoptotic caspase 8, cytochrome c, caspase 3, the anti-apoptotic BCL2 and the caspase-independent mediator, apoptosis-inducing factor-1 (AIF1; gene AIFM1) was tested in TNBC both in silico at transcript and protein level using KM-Plotter, and in situ in our clinical TNBC cohort of 103 cases using immunohistochemistry. Expression data were correlated with overall survival (OS), recurrence-free survival (RFS) and distant metastasis-free survival (DMFS). We found that elevated expression of the executioner apoptotic factors AIF1 and caspase 3, and of BCL2, grants significant OS advantage within TNBC, both at the mRNA and protein level, particularly for chemotherapy-treated vs untreated patients. The dominantly cytoplasmic localization of AIF1 and cleaved-caspase 3 proteins in primary TNBC suggests that chemotherapy may recruit them from the cytoplasmic/mitochondrial stocks to contribute to improved patient survival in proportion to their expression. Our results suggest that testing for the expression of AIF1, caspase 3 and BCL2 may identify partly overlapping TNBC subgroups with favorable prognosis, warranting further research into the potential relevance of apoptosis-targeting treatment strategies. Full article
(This article belongs to the Special Issue Molecular Research in Triple-Negative Breast Cancer: 2nd Edition)
Show Figures

Figure 1

15 pages, 1672 KiB  
Systematic Review
A Systematic Review of Genetic Variants in Glutathione S-Transferase Genes and Their Dual Role in SARS-CoV-2 Pathogenesis: From Acute Respiratory Complications to Long COVID
by Valeria Villegas Sánchez, Juan Luis Chávez Pacheco, Margarita Isabel Palacios Arreola, Martha Patricia Sierra-Vargas, Luz Adriana Colín Godinez, Víctor Hugo Ahumada Topete, Rosario Fernández Plata, Anjarath Higuera-Iglesias, Roberto Lara-Lemus, Arnoldo Aquino-Gálvez, Luz María Torres-Espíndola and Manuel Castillejos-López
Antioxidants 2025, 14(8), 912; https://doi.org/10.3390/antiox14080912 - 25 Jul 2025
Viewed by 406
Abstract
Oxidative stress (OS) occurs when there is an imbalance between oxidants and antioxidants, leading to disruptions in cellular signaling and causing damage to molecules. Glutathione S-transferase (GST) enzymes are crucial for maintaining redox balance by facilitating glutathione conjugation. Increased oxidative damage has been [...] Read more.
Oxidative stress (OS) occurs when there is an imbalance between oxidants and antioxidants, leading to disruptions in cellular signaling and causing damage to molecules. Glutathione S-transferase (GST) enzymes are crucial for maintaining redox balance by facilitating glutathione conjugation. Increased oxidative damage has been noted during the COVID-19 pandemic, and its persistence may be linked to the onset of long COVID. This systematic review aimed to assess the relationship between GST gene polymorphisms and the prognosis of COVID-19, including long COVID. Adhering to the PRISMA guidelines, a thorough search was carried out in MEDLINE, CENTRAL, PubMed, and EMBASE for studies published from September 2020 to February 2025. Out of an initial selection of 462 articles, ten studies (four concerning COVID-19 severity and six related to long COVID) satisfied the inclusion criteria. The findings regarding GST polymorphisms were not consistent, especially concerning the GSTM1 and GSTT1 isoforms. Nevertheless, evidence indicates a sustained state of oxidative stress in patients with long COVID. The majority of research has focused on cytosolic GSTs, while the functions of microsomal and mitochondrial GST families remain largely unexplored. These findings suggest that further research into the various GST subfamilies and their genetic variants is necessary to enhance our understanding of their impact on COVID-19 severity and the pathophysiology of long COVID. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

Back to TopTop