Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,250)

Search Parameters:
Keywords = gene expression system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2227 KiB  
Article
Physiological and Transcriptomic Mechanisms Underlying Vitamin C-Mediated Cold Stress Tolerance in Grafted Cucumber
by Panpan Yu, Junkai Wang, Xuyang Zhang, Zhenglong Weng, Kaisen Huo, Qiuxia Yi, Chenxi Wu, Sunjeet Kumar, Hao Gao, Lin Fu, Yanli Chen and Guopeng Zhu
Plants 2025, 14(15), 2398; https://doi.org/10.3390/plants14152398 (registering DOI) - 2 Aug 2025
Abstract
Cucumbers (Cucumis sativus L.) are highly sensitive to cold, but grafting onto cold-tolerant rootstocks can enhance their low-temperature resilience. This study investigates the physiological and molecular mechanisms by which exogenous vitamin C (Vc) mitigates cold stress in grafted cucumber seedlings. Using cucumber [...] Read more.
Cucumbers (Cucumis sativus L.) are highly sensitive to cold, but grafting onto cold-tolerant rootstocks can enhance their low-temperature resilience. This study investigates the physiological and molecular mechanisms by which exogenous vitamin C (Vc) mitigates cold stress in grafted cucumber seedlings. Using cucumber ‘Chiyu 505’ as the scion and pumpkin ‘Chuangfan No.1’ as the rootstock, seedlings were grafted using the whip grafting method. In the third true leaf expansion stage, seedlings were foliar sprayed with Vc at concentrations of 50, 100, 150, and 200 mg L−1. Three days after initial spraying, seedlings were subjected to cold stress (8 °C) for 3 days, with continued spraying. After that, morphological and physiological parameters were assessed. Results showed that 150 mg L−1 Vc treatment was most impactive, significantly reducing the cold damage index while increasing the root-to-shoot ratio, root vitality, chlorophyll content, and activities of antioxidant enzymes (SOD, POD, CAT). Moreover, this treatment enhanced levels of soluble sugars, soluble proteins, and proline compared to control. However, 200 mg L−1 treatment elevated malondialdehyde (MDA) content, indicating potential oxidative stress. For transcriptomic analysis, leaves from the 150 mg L−1 Vc and CK treatments were sampled at 0, 1, 2, and 3 days of cold stress. Differential gene expression revealed that genes associated with photosynthesis (LHCA1), stress signal transduction (MYC2-1, MYC2-2, WRKY22, WRKY2), and antioxidant defense (SOD-1, SOD-2) were initially up-regulated and subsequently down-regulated, as validated by qRT-PCR. Overall, we found that the application of 150 mg L−1 Vc enhanced cold tolerance in grafted cucumber seedlings by modulating gene expression networks related to photosynthesis, stress response, and the antioxidant defense system. This study provides a way for developing Vc biostimulants to enhance cold tolerance in grafted cucumbers, improving sustainable cultivation in low-temperature regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 (registering DOI) - 2 Aug 2025
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

17 pages, 4136 KiB  
Article
The Effects of Interactions Between Key Environmental Factors on Non-Specific Indicators in Carassius auratus
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Fishes 2025, 10(8), 372; https://doi.org/10.3390/fishes10080372 (registering DOI) - 2 Aug 2025
Abstract
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this [...] Read more.
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this species. The key findings revealed that thermal elevation profoundly influenced blood glucose and cortisol concentrations. Notably, exposure to hyperoxic conditions markedly attenuated stress responses relative to hypoxia at equivalent temperatures: cortisol levels were significantly suppressed (reductions of 60.11%, 118.06%, and 34.72%), while blood glucose levels exhibited concurrent increases (16.42%, 26.43%, and 26.34%). Distinctive behavioral patterns, including floating head behavior, surface swimming behavior, and rollover behavior, were identified as indicative behaviors of thermal–oxygen stress. Molecular analysis demonstrated the upregulated expression of stress-associated genes (HSP70, HSP90, HIF-1α, and Prdx3), which correlated temporally with elevated cortisol and glucose concentrations and the manifestation of stress behaviors. Furthermore, a muscle texture assessment indicated that increased DO availability mitigated the textural deterioration induced by heat stress. Collectively, this work establishes an authentic biomarker framework, providing crucial threshold parameters essential for the development of intelligent, real-time environmental monitoring and dynamic regulation systems to enhance climate-resilient aquaculture management. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 (registering DOI) - 2 Aug 2025
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

21 pages, 2436 KiB  
Review
The Role of Genomic Islands in the Pathogenicity and Evolution of Plant-Pathogenic Gammaproteobacteria
by Yuta Watanabe, Yasuhiro Ishiga and Nanami Sakata
Microorganisms 2025, 13(8), 1803; https://doi.org/10.3390/microorganisms13081803 (registering DOI) - 1 Aug 2025
Abstract
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance [...] Read more.
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance environmental adaptability. In plant-pathogenic species such as Pseudomonas syringae, GIs contribute to host specificity, immune evasion, and the emergence of novel pathogenic variants. ICEclc and its homologs represent integrative and mobilizable elements whose tightly regulated excision and transfer are driven by a specialized transcriptional cascade, while ICEs in P. syringae highlight the ecological impact of cargo genes on pathogen virulence and fitness. Pathogenicity islands further modulate virulence gene expression in response to in planta stimuli. Beyond P. syringae, GIs in genera such as Erwinia, Pectobacterium, and Ralstonia underpin critical traits like toxin biosynthesis, secretion system acquisition, and topoisomerase-mediated stability. Leveraging high-throughput genomics and structural biology will be essential to dissect GI regulation and develop targeted interventions to curb disease spread. This review synthesizes the current understanding of GIs in plant-pathogenic gammaproteobacteria and outlines future research priorities for translating mechanistic insights into sustainable disease control strategies. Full article
13 pages, 1293 KiB  
Article
Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas
by Isidro Machado, Raquel López-Reig, Eduardo Giner, Antonio Fernández-Serra, Celia Requena, Beatriz Llombart, Francisco Giner, Julia Cruz, Victor Traves, Javier Lavernia, Antonio Llombart-Bosch and José Antonio López Guerrero
Cancers 2025, 17(15), 2551; https://doi.org/10.3390/cancers17152551 (registering DOI) - 1 Aug 2025
Abstract
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related [...] Read more.
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related prognostic model—termed the AS score—using data from two independent sarcoma cohorts. Methods: A prognostic model was developed using a previously characterized cohort of 25 angiosarcoma samples. Candidate genes were identified via the Maxstat algorithm (Maxstat v0.7-25 for R), combined with log-rank testing. The AS score was then computed by weighing normalized gene expression levels according to Cox regression coefficients. For external validation, transcriptomic data from TCGA Sarcoma cohort (n = 253) were analyzed. The Immunoscore—which reflects the tumor immune microenvironment—was inferred using the ESTIMATE package (v1.0.13) in R. All statistical analyses were performed in RStudio (v 4.0.3). Results: Four genes—IGF1R, MAP2K1, SERPINE1, and TCF12—were ultimately selected to construct the prognostic model. The resulting AS score enabled the classification of angiosarcoma cases into two prognostically distinct groups (p = 0.00012). Cases with high AS score values, which included both cutaneous and non-cutaneous forms, exhibited significantly poorer outcomes, whereas cases with low AS scores were predominantly cutaneous. A significant association was observed between the AS score and the Immunoscore (p = 0.025), with higher Immunoscore values found in high-AS score tumors. Validation using TCGA sarcoma cohort confirmed the prognostic value of both the AS score (p = 0.0066) and the Immunoscore (p = 0.0029), with a strong correlation between their continuous values (p = 2.9 × 10−8). Further survival analysis, integrating categorized scores into four groups, demonstrated robust prognostic significance (p = 0.00021). Notably, in tumors with a low Immunoscore, AS score stratification was not prognostic. In contrast, among cases with a high Immunoscore, the AS score effectively distinguished outcomes (p < 0.0001), identifying a subgroup with poor prognosis but potential sensitivity to immunotherapy. Conclusions: This combined classification using the AS score and Immunoscore has prognostic relevance in sarcoma, suggesting that angiosarcomas with an immunologically active microenvironment (high Immunoscore) and poor prognosis (high AS score) may be prime candidates for immunotherapy and this approach warrants prospective validation. Full article
(This article belongs to the Special Issue Genomics and Transcriptomics in Sarcoma)
Show Figures

Figure 1

8 pages, 347 KiB  
Article
Localizing Synergies of Hidden Factors in Complex Systems: Resting Brain Networks and HeLa GeneExpression Profile as Case Studies
by Marlis Ontivero-Ortega, Gorana Mijatovic, Luca Faes, Fernando E. Rosas, Daniele Marinazzo and Sebastiano Stramaglia
Entropy 2025, 27(8), 820; https://doi.org/10.3390/e27080820 (registering DOI) - 1 Aug 2025
Abstract
Factor analysis is a well-known statistical method to describe the variability of observed variables in terms of a smaller number of unobserved latent variables called factors. Even though latent factors are conceptually independent of each other, their influence on the observed variables is [...] Read more.
Factor analysis is a well-known statistical method to describe the variability of observed variables in terms of a smaller number of unobserved latent variables called factors. Even though latent factors are conceptually independent of each other, their influence on the observed variables is often joint and synergistic. We propose to quantify the synergy of the joint influence of factors on the observed variables using O-information, a recently introduced metric to assess high-order dependencies in complex systems; in the proposed framework, latent factors and observed variables are jointly analyzed in terms of their joint informational character. Two case studies are reported: analyzing resting fMRI data, we find that DMN and FP networks show the highest synergy, consistent with their crucial role in higher cognitive functions; concerning HeLa cells, we find that the most synergistic gene is STK-12 (AURKB), suggesting that this gene is involved in controlling the HeLa cell cycle. We believe that our approach, representing a bridge between factor analysis and the field of high-order interactions, will find wide application across several domains. Full article
(This article belongs to the Special Issue Entropy in Biomedical Engineering, 3rd Edition)
Show Figures

Figure 1

20 pages, 1383 KiB  
Review
The Multifaceted Role of miR-211 in Health and Disease
by Juan Rayo Parra, Zachary Grand, Gabriel Gonzalez, Ranjan Perera, Dipendra Pandeya, Tracey Weiler and Prem Chapagain
Biomolecules 2025, 15(8), 1109; https://doi.org/10.3390/biom15081109 (registering DOI) - 1 Aug 2025
Abstract
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor [...] Read more.
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor suppressor and oncogene. In physiological contexts, miR-211 regulates cell cycle progression, metabolism, and differentiation through the modulation of key signaling pathways, including TGF-β/SMAD and PI3K/AKT. miR-211 participates in retinal development, bone physiology, and protection against renal ischemia–reperfusion injury. In pathological conditions, miR-211 expression is altered in various diseases, particularly cancer, where it may be a useful diagnostic and prognostic biomarker. Its stability in serum and differential expression in various cancer types make it a promising candidate for non-invasive diagnostics. The review also explores miR-211’s therapeutic potential, discussing both challenges and opportunities in developing miRNA-based treatments. Understanding miR-211’s complex regulatory interactions and context-dependent functions is crucial for advancing its clinical applications for diagnosis, prognosis, and targeted therapy in multiple diseases. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 (registering DOI) - 1 Aug 2025
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

11 pages, 1106 KiB  
Article
The Role of clbF in the Pathogenicity of Avian Pathogenic Escherichia coli
by Meng Wu, Haitao Wu, Ling Li, Pan Hao and Peili Wang
Vet. Sci. 2025, 12(8), 727; https://doi.org/10.3390/vetsci12080727 (registering DOI) - 1 Aug 2025
Abstract
The genotoxin colibactin, a complex secondary metabolite, targets eukaryotic cell cycle machinery and contributes to neonatal sepsis and meningitis. Avian pathogenic Escherichia coli (APEC) XM, which produces this genotoxin, is an agent of poultry diseases with zoonotic potential. In this study, we confirmed [...] Read more.
The genotoxin colibactin, a complex secondary metabolite, targets eukaryotic cell cycle machinery and contributes to neonatal sepsis and meningitis. Avian pathogenic Escherichia coli (APEC) XM, which produces this genotoxin, is an agent of poultry diseases with zoonotic potential. In this study, we confirmed that clbF was necessary for the APEC XM strain to produce colibactin, but it did not affect the growth, adhesion, or invasion of cells. Deletion of clbF substantially diminished both virulence and systemic dissemination, but it also changed the gene expression of the antiserum survival factor, adherence and invasion, iron acquisition genes, and the secretion system. In conclusion, clbF is necessary for the synthesis of the genotoxin colibactin and affects the development of APEC meningitis in mice. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

19 pages, 6096 KiB  
Article
Functional Characterization of Two Glutamate Dehydrogenase Genes in Bacillus altitudinis AS19 and Optimization of Soluble Recombinant Expression
by Fangfang Wang, Xiaoying Lv, Zhongyao Guo, Xianyi Wang, Yaohang Long and Hongmei Liu
Curr. Issues Mol. Biol. 2025, 47(8), 603; https://doi.org/10.3390/cimb47080603 (registering DOI) - 1 Aug 2025
Abstract
Glutamate dehydrogenase (GDH) is ubiquitous in organisms and crucial for amino acid metabolism, energy production, and redox balance. The gdhA and gudB genes encoding GDH were identified in Bacillus altitudinis AS19 and shown to be regulated by iron. However, their functions remain unclear. [...] Read more.
Glutamate dehydrogenase (GDH) is ubiquitous in organisms and crucial for amino acid metabolism, energy production, and redox balance. The gdhA and gudB genes encoding GDH were identified in Bacillus altitudinis AS19 and shown to be regulated by iron. However, their functions remain unclear. In this study, gdhA and gudB were analyzed using bioinformatics tools, such as MEGA, Expasy, and SWISS-MODEL, expressed with a prokaryotic expression system, and the induction conditions were optimized to increase the yield of soluble proteins. Phylogenetic analysis revealed that GDH is evolutionarily conserved within the genus Bacillus. GdhA and GudB were identified as hydrophobic proteins, not secreted or membrane proteins. Their structures were primarily composed of irregular coils and α-helices. SWISS-MODEL predicts GdhA to be an NADP-specific GDH, whereas GudB is an NAD-specific GDH. SDS-PAGE analysis showed that GdhA was expressed as a soluble protein after induction with 0.2 mmol/L IPTG at 24 °C for 16 h. GudB was expressed as a soluble protein after induction with 0.1 mmol/L IPTG at 16 °C for 12 h. The proteins were confirmed by Western blot and mass spectrometry. The enzyme activity of recombinant GdhA was 62.7 U/mg with NADPH as the coenzyme. This study provides a foundation for uncovering the functions of two GDHs of B. altitudinis AS19. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

17 pages, 2582 KiB  
Article
Transcriptional Regulatory Mechanisms of Blueberry Endophytes in Enhancing Aluminum (Al) Tolerance in Pumpkins
by Qiang Chen, Xinqi Guo, Hongbo Pang, Ying Zhang, Haiyan Lv and Chong Zhang
Horticulturae 2025, 11(8), 887; https://doi.org/10.3390/horticulturae11080887 (registering DOI) - 1 Aug 2025
Abstract
Aluminum (Al) stress is an important factor that inhibits crop growth in acidic soils and poses a threat to pumpkin (Cucurbita moschata) production. In this study, we investigated the effect of endophyte (endophyte) strain J01 of blueberry (Vaccinium uliginosum) [...] Read more.
Aluminum (Al) stress is an important factor that inhibits crop growth in acidic soils and poses a threat to pumpkin (Cucurbita moschata) production. In this study, we investigated the effect of endophyte (endophyte) strain J01 of blueberry (Vaccinium uliginosum) on the growth, development, and transcriptional regulatory mechanisms of pumpkin under aluminum stress. The results showed that the blueberry endophyte strain J01 significantly increased the root length of pumpkin under aluminum stress, promoted the growth of lateral roots, and increased root vigor; strain J01 reduced the content of MDA and the relative conductivity in the root system; strain J01 enhanced the activities of superoxide dismutase and catalase in the root system but inhibited ascorbate peroxidase activity. Transcriptome analysis further revealed that strain J01 significantly regulated the expression of key genes associated with aluminum tolerance, including the upregulation of transporter protein genes (aluminum-activated malate transporter and aquaporin), affecting the gene expression levels of genes encoding antioxidant enzymes (ascorbate peroxidase and glutathione S-transferase) and cell wall modification genes (xyloglucan endotransglucosylase/hydrolase and pectin methylesterase). This study provides a theoretical basis and practical guidance for using microbial resources to improve aluminum tolerance in cucurbit crops. Full article
Show Figures

Figure 1

13 pages, 6907 KiB  
Article
The Characterization of the Neuroimmune Response in Primary Pterygia
by Luis Fernando Barba-Gallardo, Sofía Guadalupe Ocón-Garcia, Manuel Enrique Avila-Blanco, José Luis Diaz-Rubio, Javier Ventura-Juárez, Elizabeth Casillas-Casillas and Martín Humberto Muñoz-Ortega
Int. J. Mol. Sci. 2025, 26(15), 7417; https://doi.org/10.3390/ijms26157417 (registering DOI) - 1 Aug 2025
Abstract
Several chronic inflammatory processes are currently being studied in relation to other systems to better understand the regulation mechanisms and identify potential therapeutic targets. A significant body of evidence supports the role of the nervous system in regulating various immunological processes. This study [...] Read more.
Several chronic inflammatory processes are currently being studied in relation to other systems to better understand the regulation mechanisms and identify potential therapeutic targets. A significant body of evidence supports the role of the nervous system in regulating various immunological processes. This study investigates the relationship between pterygia and the sympathetic nervous system, focusing on their interaction in the inflammatory response and fibrogenic process. Sixteen surgical specimens of primary pterygia and four conjunctival tissue samples were examined, and their morphology was analyzed using hematoxylin–eosin and Masson’s trichrome stains. The gene expression of adrenergic receptors, as well as inflammatory and fibrogenic cytokines, was also assessed. Additionally, both adrenergic receptors and tyrosine hydroxylase were found to be localized within the tissues according to immunohistochemistry and immunofluorescence techniques. Increased expression of proinflammatory, fibrogenic, and adrenergic genes was observed in the pterygium compared to the healthy conjunctiva. Adrenergic receptors and tyrosine hydroxylase were localized in the basal region of the epithelium and within blood vessels, closely associated with immune cells. Neuroimmunomodulation plays a key role in the pathogenesis of pterygia by activating the sympathetic nervous system. At the intravascular level, norepinephrine promotes the migration of immune cells, thereby sustaining inflammation. Additionally, sympathetic nerve fibers located at the subepithelial level contribute to epithelial growth and the fibrosis associated with pterygia. Full article
Show Figures

Graphical abstract

16 pages, 2055 KiB  
Article
The Transcription Factor Basic Pentacysteine 5, RsBPC5, Enhances Lead Stress Tolerance in Raphanus sativus
by Jian Xiao, Yongli Wen, Wenjing Kang, Fangzhou Yu, Chuan Liu, Zhenyu Peng and Dianheng Xu
Plants 2025, 14(15), 2362; https://doi.org/10.3390/plants14152362 - 1 Aug 2025
Abstract
Radish (Raphanus sativus), a commonly grown root vegetable prized for its nutrition and culinary use, is particularly vulnerable to lead (Pb) stress, which mainly results in Pb accumulation in the roots. However, the molecular mechanisms underlying Pb accumulation in radish remain [...] Read more.
Radish (Raphanus sativus), a commonly grown root vegetable prized for its nutrition and culinary use, is particularly vulnerable to lead (Pb) stress, which mainly results in Pb accumulation in the roots. However, the molecular mechanisms underlying Pb accumulation in radish remain largely unknown. In this study, we investigated the role of BASIC PENTACYSTEINE (BPC) genes in radish’s response to Pb stress. Phylogenetic analysis revealed that radish contains 10 BPC genes, which are distinctly clustered in Cluster III. Expression analysis revealed that, except for RsBPC2, RsBPC4, and RsBPC7, the expression of most RsBPC genes was significantly altered under Pb stress. Notably, the expression of RsBPC5 gradually decreased with prolonged Pb exposure. Subcellular localization analysis confirmed that RsBPC5 is localized in the nucleus and acts as a transcriptional repressor. Functional assays demonstrated that transient overexpression of RsBPC5 enhanced the tolerance of radish plants to Pb stress via reducing Pb accumulation and activating the antioxidant defense system. Collectively, our findings suggest that RsBPC5 plays a key role in radish’s response to Pb stress, potentially improving Pb tolerance by modulating Pb uptake and strengthening antioxidant defense mechanisms. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

19 pages, 4365 KiB  
Article
Fecal Virome Transplantation Confirms Non-Bacterial Components (Virome and Metabolites) Participate in Fecal Microbiota Transplantation-Mediated Growth Performance Enhancement and Intestinal Development in Broilers with Spatial Heterogeneity
by Shuaihu Chen, Tingting Liu, Junyao Chen, Hong Shen and Jungang Wang
Microorganisms 2025, 13(8), 1795; https://doi.org/10.3390/microorganisms13081795 - 31 Jul 2025
Abstract
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome [...] Read more.
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome and metabolites to perform fecal virome transplantation (FVT), aiming to investigate its regulatory role in broiler growth. Healthy yellow-feathered broilers with high body weights (top 10% of the population) were used as FVT donors. Ninety-six 8-day-old healthy male yellow-feathered broilers (95.67 ± 3.31 g) served as FVT recipients. Recipient chickens were randomly assigned to a control group and an FVT group. The control group was gavaged with 0.5 mL of normal saline daily, while the FVT group was gavaged with 0.5 mL of FVT solution daily. Growth performance, immune and antioxidant capacity, intestinal development and related gene expression, and microbial diversity were measured. The results showed that FVT improved the feed utilization rate of broilers (the feed conversion ratio decreased by 3%; p < 0.05), significantly increased jejunal length (21%), villus height (69%), and crypt depth (84%) (p < 0.05), and regulated the jejunal barrier: insulin-like growth factor-1 (IGF-1) (2.5 times) and Mucin 2 (MUC2) (63 times) were significantly upregulated (p < 0.05). FVT increased the abundance of beneficial bacteria Lactobacillales. However, negative effects were also observed: Immunoglobulin A (IgA), Immunoglobulin G (IgG), Immunoglobulin M (IgM), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α), and Interferon-gamma (IFN-γ) in broilers were significantly upregulated (p < 0.05), indicating immune system overactivation. Duodenal barrier-related genes Mucin 2 (MUC2), Occludin (OCLN), Claudin (CLDN1), and metabolism-related genes solute carrier family 5 member 1 (SLC5A1) and solute carrier family 7 member 9 (SLC7A9) were significantly downregulated (p < 0.05). The results of this trial demonstrate that, besides the microbiota, the gut virome and metabolites are also functional components contributing to the growth-promoting effect of FMT. The differential responses in the duodenum and jejunum reveal spatial heterogeneity and dual effects of FVT on the intestine. The negative effects limit the application of FMT/FVT. Identifying the primary functional components of FMT/FVT to develop safe and targeted microbial preparations is one potential solution. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

Back to TopTop