Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = gemcitabine prodrugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3326 KiB  
Article
Tumor Microenvironment Modulates Invadopodia Activity of Non-Selected and Acid-Selected Pancreatic Cancer Cells and Its Sensitivity to Gemcitabine and C18-Gemcitabine
by Tiago M. A. Carvalho, Madelaine Magalì Audero, Maria Raffaella Greco, Marilena Ardone, Teresa Maggi, Rosanna Mallamaci, Barbara Rolando, Silvia Arpicco, Federico Alessandro Ruffinatti, Alessandra Fiorio Pla, Natalia Prevarskaya, Tomas Koltai, Stephan J. Reshkin and Rosa Angela Cardone
Cells 2024, 13(9), 730; https://doi.org/10.3390/cells13090730 - 23 Apr 2024
Cited by 5 | Viewed by 2403
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the [...] Read more.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. Methods: For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. Results: We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. Conclusions: We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance. Full article
Show Figures

Graphical abstract

20 pages, 2267 KiB  
Article
Oxaliplatin(IV) Prodrugs Functionalized with Gemcitabine and Capecitabine Induce Blockage of Colorectal Cancer Cell Growth—An Investigation of the Activation Mechanism and Their Nanoformulation
by Carlo Marotta, Damiano Cirri, Ioannis Kanavos, Luisa Ronga, Ryszard Lobinski, Tiziana Funaioli, Chiara Giacomelli, Elisabetta Barresi, Maria Letizia Trincavelli, Tiziano Marzo and Alessandro Pratesi
Pharmaceutics 2024, 16(2), 278; https://doi.org/10.3390/pharmaceutics16020278 - 16 Feb 2024
Cited by 3 | Viewed by 2442
Abstract
The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, [...] Read more.
The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, has been explored. One approach to overcome these limitations is the modification of traditional Pt(II) drugs to obtain new molecules with an improved pharmacological profile, such as Pt(IV) prodrugs. The design, synthesis, and characterization of two novel Pt(IV) prodrugs based on oxaliplatin bearing the anticancer drugs gemcitabine or capecitabine in the axial positions have been reported. These complexes were able to dissociate into their constituents to promote cell death and induce apoptosis and cell cycle blockade in a representative colorectal cancer cell model. Specifically, the complex bearing gemcitabine resulted in being the most active on the HCT116 colorectal cancer cell line with an IC50 value of 0.49 ± 0.04. A pilot study on the encapsulation of these complexes in biocompatible PLGA-PEG nanoparticles is also included to confirm the retention of the pharmacological properties and cellular drug uptake, opening up to the possible delivery of the studied complexes through their nanoformulation. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

36 pages, 5311 KiB  
Article
Gemcitabine-Vitamin E Prodrug-Loaded Micelles for Pancreatic Cancer Therapy
by Miguel Pereira-Silva, Darío Miranda-Pastoriza, Luis Diaz-Gomez, Eddy Sotelo, Ana Cláudia Paiva-Santos, Francisco Veiga, Angel Concheiro and Carmen Alvarez-Lorenzo
Pharmaceutics 2024, 16(1), 95; https://doi.org/10.3390/pharmaceutics16010095 - 10 Jan 2024
Cited by 11 | Viewed by 3942
Abstract
Pancreatic cancer (PC) is an aggressive cancer subtype presenting unmet clinical challenges. Conventional chemotherapy, which includes antimetabolite gemcitabine (GEM), is seriously undermined by a short half-life, its lack of targeting ability, and systemic toxicity. GEM incorporation in self-assembled nanosystems is still underexplored due [...] Read more.
Pancreatic cancer (PC) is an aggressive cancer subtype presenting unmet clinical challenges. Conventional chemotherapy, which includes antimetabolite gemcitabine (GEM), is seriously undermined by a short half-life, its lack of targeting ability, and systemic toxicity. GEM incorporation in self-assembled nanosystems is still underexplored due to GEM’s hydrophilicity which hinders efficient encapsulation. We hypothesized that vitamin E succinate–GEM prodrug (VES-GEM conjugate) combines hydrophobicity and multifunctionalities that can facilitate the development of Pluronic® F68 and Pluronic® F127 micelle-based nanocarriers, improving the therapeutic potential of GEM. Pluronic® F68/VES-GEM and Pluronic® F127/VES-GEM micelles covering a wide range of molar ratios were prepared by solvent evaporation applying different purification methods, and characterized regarding size, charge, polydispersity index, morphology, and encapsulation. Moreover, the effect of sonication and ultrasonication and the influence of a co-surfactant were explored together with drug release, stability, blood compatibility, efficacy against tumour cells, and cell uptake. The VES-GEM conjugate-loaded micelles showed acceptable size and high encapsulation efficiency (>95%) following an excipient reduction rationale. Pluronic® F127/VES-GEM micelles evidenced a superior VES-GEM release profile (cumulative release > 50%, pH = 7.4), stability, cell growth inhibition (<50% cell viability for 100 µM VES-GEM), blood compatibility, and extensive cell internalization, and therefore represent a promising approach to leveraging the efficacy and safety of GEM for PC-targeted therapies. Full article
Show Figures

Graphical abstract

17 pages, 4178 KiB  
Article
Drugs That Mimic Hypoxia Selectively Target EBV-Positive Gastric Cancer Cells
by Blue-leaf A. Cordes, Andrea Bilger, Richard J. Kraus, Ella T. Ward-Shaw, Madeline R. Labott, Shinhyo Lee, Paul F. Lambert and Janet E. Mertz
Cancers 2023, 15(6), 1846; https://doi.org/10.3390/cancers15061846 - 19 Mar 2023
Cited by 2 | Viewed by 2751
Abstract
Latent infection of Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cell cancers, including 10% of gastric carcinomas. We previously reported that hypoxia inducible factor-1α (HIF-1α) induces EBV’s latent-to-lytic switch and identified several HIF-1α-stabilizing drugs that induce this viral reactivation. Here, we [...] Read more.
Latent infection of Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cell cancers, including 10% of gastric carcinomas. We previously reported that hypoxia inducible factor-1α (HIF-1α) induces EBV’s latent-to-lytic switch and identified several HIF-1α-stabilizing drugs that induce this viral reactivation. Here, we tested three classes of these drugs for preferential killing of the EBV-positive gastric cancer AGS-Akata cell line compared to its matched EBV-negative AGS control. We observed preferential killing with iron chelators [Deferoxamine (DFO); Deferasirox (DFX)] and a prolyl hydroxylase inhibitor (BAY 85-3934 (Molidustat)), but not with a neddylation inhibitor [MLN4924 (Pevonedistat)]. DFO and DFX also induced preferential killing of the EBV-positive gastric cancer AGS-BDneo and SNU-719 cell lines. Preferential killing was enhanced when low-dose DFX (10 μM) was combined with the antiviral prodrug ganciclovir. DFO and DFX induced lytic EBV reactivation in approximately 10% of SNU-719 and 20-30% of AGS-Akata and AGS-BDneo cells. However, neither DFO nor DFX significantly induced synthesis of lytic EBV proteins in xenografts grown in NSG mice from AGS-Akata cells above the level observed in control-treated mice. Therefore, these FDA-approved iron chelators are less effective than gemcitabine at promoting EBV reactivation in vivo despite their high specificity and efficiency in vitro. Full article
(This article belongs to the Special Issue Viruses in Cancer Etiology)
Show Figures

Figure 1

16 pages, 4528 KiB  
Article
Co-Delivery of Paclitaxel Prodrug, Gemcitabine and Porphine by Micelles for Pancreatic Cancer Treatment via Chemo-Photodynamic Combination Therapy
by Qiwei Wu, Xiaodong Ma, Wenhui Zhou, Rong Yu, Jessica M. Rosenholm, Weizhong Tian, Lirong Zhang, Dongqing Wang and Hongbo Zhang
Pharmaceutics 2022, 14(11), 2280; https://doi.org/10.3390/pharmaceutics14112280 - 25 Oct 2022
Cited by 8 | Viewed by 2854
Abstract
Pancreatic carcinoma is an aggressive subtype of cancer with poor prognosis, known for its refractory nature. To address this challenge, we have established a stable nanoplatform that combines chemotherapy with photodynamic therapy (PDT) to achieve better curative efficacy. First, we designed and synthesized [...] Read more.
Pancreatic carcinoma is an aggressive subtype of cancer with poor prognosis, known for its refractory nature. To address this challenge, we have established a stable nanoplatform that combines chemotherapy with photodynamic therapy (PDT) to achieve better curative efficacy. First, we designed and synthesized a disulfide-bonded paclitaxel (PTX)-based prodrug, which was further mixed with gemcitabine (GEM) and photosensitizer THPP in an optimized ratio. Subsequently, the mixture was added dropwise into amphiphilic polymer DSPE-PEG water solution to form micelles composed of DSPE-PEG nanoparticles (TPG NPs). The TPG NPs were around 135 nm, and showed great ability of DTT stimulated release of PTX and GEM. Moreover, the TPG NPs can be efficiently uptaken by pancreatic cancer PANC-1 cells and effectively kill them, especially when combined with 650 nm laser irradiation. Finally, the TPG NPs have shown enhanced long-term circulation ability and also exhibited efficient anti-tumor activity in combination with 650 nm laser irradiation in a pancreatic cancer mouse model. In summary, the designed TPG NPs possesses great potential for co-delivery of paclitaxel prodrug, GEM and THPP, which enables combined chemo-photodynamic therapy for cancer treatment. In addition, the stimulated release of PTX prodrug and GEM also allows for better targeting of tumor cells and the increased therapeutic effect against cancer cells. Overall, the TPG NPs can serve as a good candidate for pancreatic cancer treatment. Full article
Show Figures

Graphical abstract

51 pages, 1818 KiB  
Review
Application of Approved Cisplatin Derivatives in Combination Therapy against Different Cancer Diseases
by Dobrina Tsvetkova and Stefka Ivanova
Molecules 2022, 27(8), 2466; https://doi.org/10.3390/molecules27082466 - 11 Apr 2022
Cited by 72 | Viewed by 9223
Abstract
The problems with anticancer therapy are resistance and toxicity. From 3000 Cisplatin derivatives tested as antitumor agents, most of them have been rejected, due to toxicity. The aim of current study is the comparison of therapeutic combinations of the currently applied in clinical [...] Read more.
The problems with anticancer therapy are resistance and toxicity. From 3000 Cisplatin derivatives tested as antitumor agents, most of them have been rejected, due to toxicity. The aim of current study is the comparison of therapeutic combinations of the currently applied in clinical practice: Cisplatin, Carboplatin, Oxaliplatin, Nedaplatin, Lobaplatin, Heptaplatin, and Satraplatin. The literature data show that the strategies for the development of platinum anticancer agents and bypassing of resistance to Cisplatin derivatives and their toxicity are: combination therapy, Pt IV prodrugs, the targeted nanocarriers. The very important strategy for the improvement of the antitumor effect against different cancers is synergistic combination of Cisplatin derivatives with: (1) anticancer agents—Fluorouracil, Gemcitabine, Cytarabine, Fludarabine, Pemetrexed, Ifosfamide, Irinotecan, Topotecan, Etoposide, Amrubicin, Doxorubicin, Epirubicin, Vinorelbine, Docetaxel, Paclitaxel, Nab-Paclitaxel; (2) modulators of resistant mechanisms; (3) signaling protein inhibitors—Erlotinib; Bortezomib; Everolimus; (4) and immunotherapeutic drugs—Atezolizumab, Avelumab, Bevacizumab, Cemiplimab, Cetuximab, Durvalumab, Erlotinib, Imatinib, Necitumumab, Nimotuzumab, Nivolumab, Onartuzumab, Panitumumab, Pembrolizumab, Rilotumumab, Trastuzumab, Tremelimumab, and Sintilimab. An important approach for overcoming the drug resistance and reduction of toxicity of Cisplatin derivatives is the application of nanocarriers (polymers and liposomes), which provide improved targeted delivery, increased intracellular penetration, selective accumulation in tumor tissue, and enhanced therapeutic efficacy. The advantages of combination therapy are maximum removal of tumor cells in different phases; prevention of resistance; inhibition of the adaptation of tumor cells and their mutations; and reduction of toxicity. Full article
Show Figures

Figure 1

17 pages, 3468 KiB  
Article
Microfluidics Formulated Liposomes of Hypoxia Activated Prodrug for Treatment of Pancreatic Cancer
by Vidhi M. Shah, Craig Dorrell, Adel Al-Fatease, Brittany L. Allen-Petersen, Yeonhee Woo, Yuliya Bortnyak, Rohi Gheewala, Brett C. Sheppard, Rosalie C. Sears and Adam WG. Alani
Pharmaceutics 2022, 14(4), 713; https://doi.org/10.3390/pharmaceutics14040713 - 26 Mar 2022
Cited by 15 | Viewed by 8575
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents as an unmet clinical challenge for drug delivery due to its unique hypoxic biology. Vinblastine-N-Oxide (CPD100) is a hypoxia-activated prodrug (HAP) that selectively converts to its parent compound, vinblastine, a potent cytotoxic agent, under oxygen gradient. The study [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) presents as an unmet clinical challenge for drug delivery due to its unique hypoxic biology. Vinblastine-N-Oxide (CPD100) is a hypoxia-activated prodrug (HAP) that selectively converts to its parent compound, vinblastine, a potent cytotoxic agent, under oxygen gradient. The study evaluates the efficacy of microfluidics formulated liposomal CPD100 (CPD100Li) in PDAC. CPD100Li were formulated with a size of 95 nm and a polydispersity index of 0.2. CPD100Li was stable for a period of 18 months when freeze-dried at a concentration of 3.55 mg/mL. CPD100 and CPD100Li confirmed selective activation at low oxygen levels in pancreatic cancer cell lines. Moreover, in 3D spheroids, CPD100Li displayed higher penetration and disruption compared to CPD100. In patient-derived 3D organoids, CPD100Li exhibited higher cell inhibition in the organoids that displayed higher expression of hypoxia-inducible factor 1 alpha (HIF1A) compared to CPD100. In the orthotopic model, the combination of CPD100Li with gemcitabine (GEM) (standard of care for PDAC) showed higher efficacy than CPD100Li alone for a period of 90 days. In summary, the evaluation of CPD100Li in multiple cellular models provides a strong foundation for its clinical application in PDAC. Full article
(This article belongs to the Special Issue Novel Strategies for Cancer Targeted Delivery)
Show Figures

Graphical abstract

10 pages, 1938 KiB  
Review
Recent Development of Prodrugs of Gemcitabine
by Bhoomika Pandit and Maksim Royzen
Genes 2022, 13(3), 466; https://doi.org/10.3390/genes13030466 - 5 Mar 2022
Cited by 59 | Viewed by 6928
Abstract
Gemcitabine is a nucleoside analog that has been used widely as an anticancer drug for the treatment of a variety of conditions, including ovarian, bladder, non-small-cell lung, pancreatic, and breast cancer. However, enzymatic deamination, fast systemic clearance, and the emergence of chemoresistance have [...] Read more.
Gemcitabine is a nucleoside analog that has been used widely as an anticancer drug for the treatment of a variety of conditions, including ovarian, bladder, non-small-cell lung, pancreatic, and breast cancer. However, enzymatic deamination, fast systemic clearance, and the emergence of chemoresistance have limited its efficacy. Different prodrug strategies have been explored in recent years, seeking to obtain better pharmacokinetic properties, efficacy, and safety. Different drug delivery strategies have also been employed, seeking to transform gemcitabine into a targeted medicine. This review will provide an overview of the recent developments in gemcitabine prodrugs and their effectiveness in treating cancerous tumors. Full article
(This article belongs to the Special Issue RNA Chemical Biology)
Show Figures

Figure 1

20 pages, 4140 KiB  
Article
Immunotherapy Combined with Metronomic Dosing: An Effective Approach for the Treatment of NSCLC
by Eleni Skavatsou, Maria Semitekolou, Ioannis Morianos, Theodoros Karampelas, Nikolaos Lougiakis, Georgina Xanthou and Constantin Tamvakopoulos
Cancers 2021, 13(8), 1901; https://doi.org/10.3390/cancers13081901 - 15 Apr 2021
Cited by 15 | Viewed by 3687
Abstract
Pioneering studies on tumor and immune cell interactions have highlighted immune checkpoint inhibitors (ICIs) as revolutionizing interventions for the management of NSCLC, typically combined with traditional MTD chemotherapies, which usually lead to toxicities and resistance to treatment. Alternatively, MTR chemotherapy is based on [...] Read more.
Pioneering studies on tumor and immune cell interactions have highlighted immune checkpoint inhibitors (ICIs) as revolutionizing interventions for the management of NSCLC, typically combined with traditional MTD chemotherapies, which usually lead to toxicities and resistance to treatment. Alternatively, MTR chemotherapy is based on the daily low dose administration of chemotherapeutics, preventing tumor growth indirectly by targeting the tumor microenvironment. The effects of MTR administration of an oral prodrug of gemcitabine (OralGem), alone or with anti-PD1, were evaluated. Relevant in vitro and in vivo models were developed to investigate the efficacy of MTR alone or with immunotherapy and the potential toxicities associated with each dosing scheme. MTR OralGem restricted tumor angiogenesis by regulating thrombospondin-1 (TSP-1) and vascular endothelial growth factor A (VEGFA) expression. MTR OralGem enhanced antitumor immunity by increasing T effector responses and cytokine release, concomitant with dampening regulatory T cell populations. Promising pharmacokinetic properties afforded minimized blood and thymus toxicity and favorable bioavailability upon MTR administration compared to MTD. The combination of MTR OralGem with immunotherapy was shown to be highly efficacious and tolerable, illuminating it as a strong candidate therapeutic scheme for the treatment of NSCLC. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

21 pages, 5297 KiB  
Article
Extracellular Matrix Composition Modulates the Responsiveness of Differentiated and Stem Pancreatic Cancer Cells to Lipophilic Derivate of Gemcitabine
by Stefania Forciniti, Elisa Dalla Pozza, Maria Raffaella Greco, Tiago Miguel Amaral Carvalho, Barbara Rolando, Giulia Ambrosini, Cristian Andres Carmona-Carmona, Raffaella Pacchiana, Daria Di Molfetta, Massimo Donadelli, Silvia Arpicco, Marta Palmieri, Stephan Joel Reshkin, Ilaria Dando and Rosa Angela Cardone
Int. J. Mol. Sci. 2021, 22(1), 29; https://doi.org/10.3390/ijms22010029 - 22 Dec 2020
Cited by 15 | Viewed by 4204
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Gemcitabine (GEM) is used as the gold standard drug in PDAC treatment. However, due to its poor efficacy, it remains urgent to identify novel strategies to overcome resistance issues. In this context, an [...] Read more.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Gemcitabine (GEM) is used as the gold standard drug in PDAC treatment. However, due to its poor efficacy, it remains urgent to identify novel strategies to overcome resistance issues. In this context, an intense stroma reaction and the presence of cancer stem cells (CSCs) have been shown to influence PDAC aggressiveness, metastatic potential, and chemoresistance. Methods: We used three-dimensional (3D) organotypic cultures grown on an extracellular matrix composed of Matrigel or collagen I to test the effect of the new potential therapeutic prodrug 4-(N)-stearoyl-GEM, called C18GEM. We analyzed C18GEM cytotoxic activity, intracellular uptake, apoptosis, necrosis, and autophagy induction in both Panc1 cell line (P) and their derived CSCs. Results: PDAC CSCs show higher sensitivity to C18GEM treatment when cultured in both two-dimensional (2D) and 3D conditions, especially on collagen I, in comparison to GEM. The intracellular uptake mechanisms of C18GEM are mainly due to membrane nucleoside transporters’ expression and fatty acid translocase CD36 in Panc1 P cells and to clathrin-mediated endocytosis and CD36 in Panc1 CSCs. Furthermore, C18GEM induces an increase in cell death compared to GEM in both cell lines grown on 2D and 3D cultures. Finally, C18GEM stimulated protective autophagy in Panc1 P and CSCs cultured on 3D conditions. Conclusion: We propose C18GEM together with autophagy inhibitors as a valid alternative therapeutic approach in PDAC treatment. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

18 pages, 2924 KiB  
Article
Targeting EphA2 in Bladder Cancer Using a Novel Antibody-Directed Nanotherapeutic
by Walid Kamoun, Elden Swindell, Christine Pien, Lia Luus, Jason Cain, Minh Pham, Irawati Kandela, Zhaohua Richard Huang, Suresh K. Tipparaju, Alexander Koshkaryev, Vasileios Askoxylakis, Dmitri B. Kirpotin, Troy Bloom, Mari Mino-Kenudson, James D. Marks, Alena Zalutskaya, Wiam Bshara, Carl Morrison and Daryl C. Drummond
Pharmaceutics 2020, 12(10), 996; https://doi.org/10.3390/pharmaceutics12100996 - 20 Oct 2020
Cited by 12 | Viewed by 3421
Abstract
Ephrin receptor A2 (EphA2) is a member of the Ephrin/Eph receptor cell-to-cell signaling family of molecules, and it plays a key role in cell proliferation, differentiation, and migration. EphA2 is overexpressed in a broad range of cancers, and its expression is in many [...] Read more.
Ephrin receptor A2 (EphA2) is a member of the Ephrin/Eph receptor cell-to-cell signaling family of molecules, and it plays a key role in cell proliferation, differentiation, and migration. EphA2 is overexpressed in a broad range of cancers, and its expression is in many cases associated with poor prognosis. We recently developed a novel EphA2-targeting antibody-directed nanotherapeutic encapsulating a labile prodrug of docetaxel (EphA2-ILs-DTXp) for the treatment of EphA2-expressing malignancies. Here, we characterized the expression of EphA2 in bladder cancer using immunohistochemistry in 177 human bladder cancer samples and determined the preclinical efficacy of EphA2-ILs-DTXp in four EphA2-positive patient-derived xenograft (PDX) models of the disease, either as a monotherapy, or in combination with gemcitabine. EphA2 expression was detected in 80–100% of bladder cancer samples and correlated with shorter patient survival. EphA2 was found to be expressed in tumor cells and/or tumor-associated blood vessels in both primary and metastatic lesions with a concordance rate of approximately 90%. The EphA2-targeted antibody-directed nanotherapeutic EphA2-ILs-DTXp controlled tumor growth, mediated greater regression, and was more active than free docetaxel at equitoxic dosing in all four EphA2-positive bladder cancer PDX models. Combination of EphA2-ILs-DTXp and gemcitabine in one PDX model led to improved tumor growth control compared to monotherapies or the combination of free docetaxel and gemcitabine. These data demonstrating the prevalence of EphA2 in bladder cancers and efficacy of EphA2-ILs-DTXp in PDX models support the clinical exploration of EphA2 targeting in bladder cancer. Full article
(This article belongs to the Special Issue Nanovesicles for Targeted Drug Delivery)
Show Figures

Figure 1

14 pages, 2278 KiB  
Article
A Pharmacokinetic and Pharmacodynamic Evaluation of the Anti-Hepatocellular Carcinoma Compound 4-N-Carbobenzoxy-gemcitabine (Cbz-dFdC)
by Yilin Sun, Jiankun Wang and Kun Hao
Molecules 2020, 25(9), 2218; https://doi.org/10.3390/molecules25092218 - 8 May 2020
Cited by 4 | Viewed by 2896
Abstract
Gemcitabine (dFdC) demonstrates significant effectiveness against solid tumors in vitro and in vivo; however, its clinical application is limited because it tends to easily undergo deamination metabolism. Therefore, we synthesized 4-N-carbobenzoxy-gemcitabine (Cbz-dFdC) as a lead prodrug and conducted a detailed pharmacokinetic, [...] Read more.
Gemcitabine (dFdC) demonstrates significant effectiveness against solid tumors in vitro and in vivo; however, its clinical application is limited because it tends to easily undergo deamination metabolism. Therefore, we synthesized 4-N-carbobenzoxy-gemcitabine (Cbz-dFdC) as a lead prodrug and conducted a detailed pharmacokinetic, metabolic, and pharmacodynamic evaluation. After intragastric Cbz-dFdC administration, the Cmax of Cbz-dFdC and dFdC was 451.1 ± 106.7 and 1656.3 ± 431.5 ng/mL, respectively. The Tmax of Cbz-dFdC and dFdC was 2 and 4 h, respectively. After intragastric administration of Cbz-dFdC, this compound was mainly distributed in the intestine due to low carboxylesterase-1 (CES1) activity. Cbz-dFdC is activated by CES1 in both humans and rats. The enzyme kinetic curves were well fitted by the Michaelis–Menten equation in rats’ blood, plasma, and tissue homogenates and S9 of the liver and kidney, as well as human liver S9 and CES1 recombinase. The pharmacodynamic results showed that the Cbz-dFdC have a good antitumor effect in the HepG2 cell and in tumor-bearing mice, respectively. In general, Cbz-dFdC has good pharmaceutical characteristics and is therefore a good candidate for a potential prodrug. Full article
Show Figures

Figure 1

25 pages, 9659 KiB  
Review
Recent Advances in the Chemical Synthesis and Evaluation of Anticancer Nucleoside Analogues
by Mieke Guinan, Caecilie Benckendorff, Mark Smith and Gavin J. Miller
Molecules 2020, 25(9), 2050; https://doi.org/10.3390/molecules25092050 - 28 Apr 2020
Cited by 98 | Viewed by 11682
Abstract
Nucleoside analogues have proven to be highly successful chemotherapeutic agents in the treatment of a wide variety of cancers. Several such compounds, including gemcitabine and cytarabine, are the go-to option in first-line treatments. However, these materials do have limitations and the development of [...] Read more.
Nucleoside analogues have proven to be highly successful chemotherapeutic agents in the treatment of a wide variety of cancers. Several such compounds, including gemcitabine and cytarabine, are the go-to option in first-line treatments. However, these materials do have limitations and the development of next generation compounds remains a topic of significant interest and necessity. Herein, we discuss recent advances in the chemical synthesis and biological evaluation of nucleoside analogues as potential anticancer agents. Focus is paid to 4′-heteroatom substitution of the furanose oxygen, 2′-, 3′-, 4′- and 5′-position ring modifications and the development of new prodrug strategies for these materials. Full article
(This article belongs to the Special Issue Advances in Anticancer Drug Discovery)
Show Figures

Graphical abstract

12 pages, 1463 KiB  
Article
Synthesis of Gemcitabine-Threonine Amide Prodrug Effective on Pancreatic Cancer Cells with Improved Pharmacokinetic Properties
by Sungwoo Hong, Zhenghuan Fang, Hoi-Yun Jung, Jin-Ha Yoon, Soon-Sun Hong and Han-Joo Maeng
Molecules 2018, 23(10), 2608; https://doi.org/10.3390/molecules23102608 - 11 Oct 2018
Cited by 24 | Viewed by 7028
Abstract
To investigate the amino acid transporter-based prodrug anticancer strategy further, several amino acid-conjugated amide gemcitabine prodrugs were synthesized to target amino acid transporters in pancreatic cancer cells. The structures of the synthesized amino acid-conjugated prodrugs were confirmed by 1H-NMR and LC-MS. The [...] Read more.
To investigate the amino acid transporter-based prodrug anticancer strategy further, several amino acid-conjugated amide gemcitabine prodrugs were synthesized to target amino acid transporters in pancreatic cancer cells. The structures of the synthesized amino acid-conjugated prodrugs were confirmed by 1H-NMR and LC-MS. The pancreatic cancer cells, AsPC1, BxPC-3, PANC-1 and MIAPaCa-2, appeared to overexpress the amino acid transporter LAT-1 by conventional RT-PCR. Among the six amino acid derivatives of gemcitabine, threonine derivative of gemcitabine (Gem-Thr) was more effective than free gemcitabine in the pancreatic cancer cells, BxPC-3 and MIAPaCa-2, respectively, in terms of anti-cancer effects. Furthermore, Gem-Thr was metabolically stable in PBS (pH 7.4), rat plasma and liver microsomal fractions. When Gem-Thr was administered to rats at 4 mg/kg i.v., Gem-Thr was found to be successfully converted to gemcitabine via amide bond cleavage. Moreover, the Gem-Thr showed the increased systemic exposure of formed gemcitabine by 1.83-fold, compared to free gemcitabine treatment, due to the significantly decreased total clearance (0.60 vs. 4.23 mL/min/kg), indicating that the amide prodrug approach improves the metabolic stability of gemcitabine in vivo. Taken together, the amino acid transporter-targeting gemcitabine prodrug, Gem-Thr, was found to be effective on pancreatic cancer cells and to offer an efficient potential means of treating pancreatic cancer with significantly better pharmacokinetic characteristics than gemcitabine. Full article
(This article belongs to the Special Issue Amide Bond Activation)
Show Figures

Graphical abstract

17 pages, 4905 KiB  
Article
Involvement of CYP4F2 in the Metabolism of a Novel Monophosphate Ester Prodrug of Gemcitabine and Its Interaction Potential In Vitro
by Yedong Wang, Yuan Li, Jia Lu, Huixin Qi, Isabel Cheng and Hongjian Zhang
Molecules 2018, 23(5), 1195; https://doi.org/10.3390/molecules23051195 - 16 May 2018
Cited by 10 | Viewed by 3924
Abstract
Compound-3 is an oral monophosphate prodrug of gemcitabine. Previous data showed that Compound-3 was more potent than gemcitabine and it was orally active in a tumor xenograft model. In the present study, the metabolism of Compound-3 was investigated in several [...] Read more.
Compound-3 is an oral monophosphate prodrug of gemcitabine. Previous data showed that Compound-3 was more potent than gemcitabine and it was orally active in a tumor xenograft model. In the present study, the metabolism of Compound-3 was investigated in several well-known in vitro matrices. While relatively stable in human and rat plasma, Compound-3 demonstrated noticeable metabolism in liver and intestinal microsomes in the presence of NADPH and human hepatocytes. Compound-3 could also be hydrolyzed by alkaline phosphatase, leading to gemcitabine formation. Metabolite identification using accurate mass- and information-based scan techniques revealed that Compound-3 was subjected to sequential metabolism, forming alcohol, aldehyde and carboxylic acid metabolites, respectively. Results from reaction phenotyping studies indicated that cytochrome P450 4F2 (CYP4F2) was a key CYP isozyme involved in Compound-3 metabolism. Interaction assays suggested that CYP4F2 activity could be inhibited by Compound-3 or an antiparasitic prodrug pafuramidine. Because CYP4F2 is a key CYP isozyme involved in the metabolism of eicosanoids and therapeutic drugs, clinical relevance of drug-drug interactions mediated via CYP4F2 inhibition warrants further investigation. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop