Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = geared DC motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1309 KiB  
Proceeding Paper
A Sustainable Approach to Cooking: Design and Evaluation of a Sun-Tracking Concentrated Solar Stove
by Hasan Ali Khan, Malik Hassan Nawaz, Main Omair Gul and Mazhar Javed
Mater. Proc. 2025, 23(1), 4; https://doi.org/10.3390/materproc2025023004 - 29 Jul 2025
Viewed by 168
Abstract
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, [...] Read more.
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, dual-axis solar tracking parabolic dish cooker designed for such regions, featuring adjustable pot holder height and portability for ease of use. The system uses an Arduino UNO, LDR sensors, and a DC gear motor to automate sun tracking, ensuring optimal alignment throughout the day. A 0.61 m parabolic dish with ≥97% reflective silver-coated mirrors concentrates sunlight to temperatures exceeding 300 °C. Performance tests in April, June, and November showed boiling times as low as 3.37 min in high-irradiance conditions (7.66 kWh/m2/day) and 6.63 min under lower-irradiance conditions (3.86 kWh/m2/day). Compared to fixed or single-axis systems, this design achieved higher thermal efficiency and reliability, even under partially cloudy skies. Built with locally available materials, the system offers an affordable, clean, and effective cooking solution that supports energy access, health, and sustainability in underserved communities. Full article
Show Figures

Figure 1

28 pages, 7300 KiB  
Article
Design and Experiment of Electric Control System for Self-Propelled Chinese Herbal Medicine Materials Transplanter
by Qingxu Yu, Xian Zhang, Guangqiao Cao, Yan Gong and Xiao Chen
Agriculture 2025, 15(6), 621; https://doi.org/10.3390/agriculture15060621 - 14 Mar 2025
Cited by 1 | Viewed by 650
Abstract
To address the challenges of low efficiency and poor quality in the transplantation of the roots and stems of Chinese medicinal herbs, an electromechanical control system for Chinese medicinal herb transplantation was studied. The electronic control system employs an STM32 single-chip microcomputer as [...] Read more.
To address the challenges of low efficiency and poor quality in the transplantation of the roots and stems of Chinese medicinal herbs, an electromechanical control system for Chinese medicinal herb transplantation was studied. The electronic control system employs an STM32 single-chip microcomputer as the main controller, utilizes a Hall sensor to capture the movement speed of the transplanter, employs an encoder to monitor the working speed of the DC drum motor and provide feedback to the system, and drives a belt conveyor for transplanter movement using a DC drum motor. The fuzzy PID algorithm is used to adjust the speed of the DC drum in real time based on the difference between the captured speed and the actual monitored speed, ensuring precise matching between the transplanting operation speed and the transplanter movement speed. The control system was simulated using Matlab/Simulink 2022b software. Compared to the traditional PID control algorithm, the steady-state error was reduced by 36.41%, the steady-state time was shortened by 47.26%, the response time was shorter, there was no overshoot, and the robustness was good. Based on the simulation test, a real machine-verification experiment was conducted. The test results indicated that, when operated at the forward speeds corresponding to the low-speed first gear (Low 1) and low-speed second gear (Low 2), the Codonopsis pilosula seedlings exhibited the following characteristics: the exposed seedling rate was 1.1% and 1.5%, the injured seedling rate was 0.5% and 0.7%, the unplanted rate was 1.6% and 2.2%, and the transplant qualification rate was 96.8% and 95.6%, respectively. Similarly, for Astragalus membranaceus seedlings at these speeds, the corresponding rates were as follows: the exposed seedling rate was 1.3% and 1.9%, the injured seedling rate was 0.4% and 0.5%, the unplanted rate was 0.8% and 1.2%, and the transplant qualification rate was 97.5% and 96.4%, respectively. Both results met the design requirements. This study lays a theoretical and technical foundation for controlling the transplanting speed, improving the transplanting accuracy, and promoting the mechanized development of transplantation in traditional Chinese medicine. Full article
Show Figures

Graphical abstract

14 pages, 5540 KiB  
Article
Wide-Temperature-Range Tachometer Based on a Magnetoelectric Composite
by Boyu Xin, Qianshi Zhang, Lizhi Hu, Anran Gao, Chungang Duan, Zhanjiang Gong, Erdong Song, Likai Sun and Jie Jiao
Sensors 2025, 25(3), 829; https://doi.org/10.3390/s25030829 - 30 Jan 2025
Viewed by 843
Abstract
In this work, a tachometer based on a Metglas/PZT/Metglas magnetoelectric (ME) composite was developed to achieve high-precision rotational speed measurement over a wide temperature range (−70 °C to 160 °C). The tachometer converts external magnetic signals into electrical signals through the ME effect [...] Read more.
In this work, a tachometer based on a Metglas/PZT/Metglas magnetoelectric (ME) composite was developed to achieve high-precision rotational speed measurement over a wide temperature range (−70 °C to 160 °C). The tachometer converts external magnetic signals into electrical signals through the ME effect and operates stably in extreme temperature environments. COMSOL Multiphysics software was used for simulation analysis to investigate the ME response characteristics of the composite in such environments. To evaluate the properties of the ME composite under different conditions, its response characteristics at various frequencies, DC bias, and temperatures were systematically investigated. A permanent magnet and a DC motor were used to simulate gear rotation, and the voltage output was analyzed by adjusting the position between the sensor and the DC motor. The results show that the measured values of the ME tachometer closely match the set values, and the tachometer demonstrates high measurement accuracy within the range of 480 to 1260 revolutions per minute (rpm). Additionally, the properties of the ME composite at different temperatures were examined. In the temperature range from −70 °C to 160 °C, the ME coefficients exhibit good regularity and stability, with the measured trend closely matching the simulation results, ensuring the reliability and accuracy of the ME tachometer. To verify its practicality, the measurement capability of the ME tachometer was comprehensively tested under extreme temperature conditions. The results show that in high-temperature environments, the tachometer can accurately measure speed while maintaining a high signal-to-noise ratio (SNR), demonstrating excellent anti-interference ability. The proposed ME tachometer shows promising application potential in extreme temperature conditions, particularly in complex industrial environments that require high reliability and precision. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 12940 KiB  
Article
Design and Comparison of Two Maize Seeders Coupled with an Agricultural Robot
by Jesús A. López-Gómez, Joshua E. Patiño-Espejel, Noé Velázquez-López, David I. Sánchez-Chávez and Jelle Van Loon
Machines 2024, 12(12), 935; https://doi.org/10.3390/machines12120935 - 20 Dec 2024
Cited by 1 | Viewed by 1773
Abstract
In recent years, the development of robotic vehicles in agriculture has made it possible to reduce human intervention and fatigue in carrying out arduous or repetitive tasks, as well as helping to promote sustainable agriculture to address climate change. However, the great diversity [...] Read more.
In recent years, the development of robotic vehicles in agriculture has made it possible to reduce human intervention and fatigue in carrying out arduous or repetitive tasks, as well as helping to promote sustainable agriculture to address climate change. However, the great diversity of agricultural tasks and the varied production systems and crops demand a wide range of solutions that can be adapted to robotic vehicles as a power source. These alternatives must be affordable and user-friendly for some users, although more sophisticated solutions must also be developed for others, depending on their specific needs. For this, the present work focuses on the development of two maize seeders with different metering systems coupled to an agricultural robot. The first seeder has a conventional mechanically driven seed metering system with a drive wheel and chain gear, while the second one has an electronically driven metering system based on a DC motor and a digital encoder controlled by a microcontroller. Both seeders were coupled to a remote-controlled robotic vehicle and evaluated on real farmland. Seed distribution in the seed rows was contrasting; the results indicated that the mechanical system performed better in the field than the electronic system. For both seeders, the working capacity was approximately 0.135 ha/h at an average speed of 2.0 km/h. The proposed robot–seeder assembly could help farmers automate and reduce the workload associated with planting, as well as attract young people to the field. Full article
(This article belongs to the Special Issue Design and Control of Agricultural Robots)
Show Figures

Figure 1

15 pages, 1105 KiB  
Article
Tracking Control and Backlash Compensation in an Inverted Pendulum with Switched-Mode PID Controllers
by Aisha Akbar Awan, Umar S. Khan, Asad Ullah Awan and Amir Hamza
Appl. Sci. 2024, 14(22), 10265; https://doi.org/10.3390/app142210265 - 7 Nov 2024
Cited by 2 | Viewed by 1648
Abstract
In electromechanical systems, backlash in gear trains can lead to a degradation in control performance. We propose a drive–anti-drive mechanism to address this issue. It consists of two DC motors that operate in opposite directions. One motor acts as the drive, while the [...] Read more.
In electromechanical systems, backlash in gear trains can lead to a degradation in control performance. We propose a drive–anti-drive mechanism to address this issue. It consists of two DC motors that operate in opposite directions. One motor acts as the drive, while the other serves as the anti-drive to compensate for the backlash. This work focuses on switching between the drive and anti-drive motors, controlled by a switched-mode PID controller. Simulation results on an inverted pendulum demonstrate that the proposed scheme effectively compensates for backlash, improving position accuracy and control. This switched controller approach enhances the performance of electromechanical systems, particularly where gear backlash poses challenges to closed-loop performance. Full article
Show Figures

Figure 1

10 pages, 1064 KiB  
Proceeding Paper
Compensation of Backlash for High Precision Tracking Control of Inverted Pendulum by Drive-Anti Drive Mechanisms
by Aisha Akbar Awan and Umar S. Khan
Eng. Proc. 2024, 75(1), 32; https://doi.org/10.3390/engproc2024075032 - 29 Sep 2024
Viewed by 907
Abstract
Many actuating and electro-mechanical devices are driven by DC motors. Gear trains are used to amplify the torque in these motors. They are used in a wide variety of automotives, robotics, and automation applications. However, gears are prone to backlash during their operation [...] Read more.
Many actuating and electro-mechanical devices are driven by DC motors. Gear trains are used to amplify the torque in these motors. They are used in a wide variety of automotives, robotics, and automation applications. However, gears are prone to backlash during their operation of amplifying torques of electromehanical drives. This results in the disengagement of gear teeth when the rotation is reversed. These effects give rise to positional inaccuracies and poor control of the system. This proposed Drive-Anti Drive mechanism is used to track the system’s desired response in the presence of backlash in such cases. The Drive-Anti Drive mechanism consists of two motors rotating in opposite directions. Both the drive and the anti-drive are the DC Machines. The simulation results of the proposed scheme on the tracking control of Inverted Pendulum have been presented. Simulation results depict that the utilization of Drive-Anti Drive system has achieved the target outcome in less than 20 s. However, the target tracking of a system with the utilization of single drives takes 40 s. Setting response of an inverted pendulum is approximately twice as efficient with the utilization of the Drive-Anti Drive mechanism. This approach has been able to effectively track the target in the presence of backlash with the utilization of the Drive-Anti Drive mechanism. Full article
Show Figures

Figure 1

29 pages, 2422 KiB  
Article
AdaBoost Ensemble Approach with Weak Classifiers for Gear Fault Diagnosis and Prognosis in DC Motors
by Syed Safdar Hussain and Syed Sajjad Haider Zaidi
Appl. Sci. 2024, 14(7), 3105; https://doi.org/10.3390/app14073105 - 7 Apr 2024
Cited by 8 | Viewed by 2397
Abstract
This study introduces a novel predictive methodology for diagnosing and predicting gear problems in DC motors. Leveraging AdaBoost with weak classifiers and regressors, the diagnostic aspect categorizes the machine’s current operational state by analyzing time–frequency features extracted from motor current signals. AdaBoost classifiers [...] Read more.
This study introduces a novel predictive methodology for diagnosing and predicting gear problems in DC motors. Leveraging AdaBoost with weak classifiers and regressors, the diagnostic aspect categorizes the machine’s current operational state by analyzing time–frequency features extracted from motor current signals. AdaBoost classifiers are employed as weak learners to effectively identify fault severity conditions. Meanwhile, the prognostic aspect utilizes AdaBoost regressors, also acting as weak learners trained on the same features, to predict the machine’s future state and estimate its remaining useful life. A key contribution of this approach is its ability to address the challenge of limited historical data for electrical equipment by optimizing AdaBoost parameters with minimal data. Experimental validation is conducted using a dedicated setup to collect comprehensive data. Through illustrative examples using experimental data, the efficacy of this method in identifying malfunctions and precisely forecasting the remaining lifespan of DC motors is demonstrated. Full article
(This article belongs to the Special Issue Fault Classification and Detection Using Artificial Intelligence)
Show Figures

Figure 1

20 pages, 5663 KiB  
Article
Research on Precise Tracking Control of Gear-Shifting Actuator for Non-Synchronizer Automatic Mechanical Transmission Based on Sleeve Trajectory Planning
by Xiangyu Gongye, Changqing Du, Longjian Li, Cheng Huang, Jinhai Wang and Zhengli Dai
Energies 2024, 17(5), 1092; https://doi.org/10.3390/en17051092 - 25 Feb 2024
Cited by 3 | Viewed by 1573
Abstract
The Non-Synchronizer Automated Mechanical Transmission (NSAMT) demonstrates a straightforward structure and cost-effectiveness; however, the primary obstacle to its widespread application lies in NSAMT shift control. The implementation of active angle alignment effectively addresses the issue of shifting quality, but achieving active angle alignment [...] Read more.
The Non-Synchronizer Automated Mechanical Transmission (NSAMT) demonstrates a straightforward structure and cost-effectiveness; however, the primary obstacle to its widespread application lies in NSAMT shift control. The implementation of active angle alignment effectively addresses the issue of shifting quality, but achieving active angle alignment necessitates precise tracking of the planned shifting curve by the gear-shifting actuator. To tackle the control problem of accurate tracking for NSAMT shift actuators, this paper initially analyzes the structure and shift characteristics of the NSAMT. Based on this analysis, a physical model is established using Amesim, incorporating a drive motor, two-gear NSAMT, shift actuator, sleeve, and DC motor model. An extended state observer (ESO) is designed to mitigate unknown interference within the system. Furthermore, an active angle alignment control algorithm based on “zero speed difference” and “zero angle difference” for double target tracking is constructed while planning the axial motion trajectory of the sleeve. The Backstepping algorithm is employed to successfully track and regulate this planned trajectory. Finally, through Hardware-in-the-Loop testing, we validate our proposed control strategy, which demonstrates consistent results with simulation outcomes, thereby affirming its effectiveness. Full article
Show Figures

Figure 1

20 pages, 6542 KiB  
Article
Analysis of Efficiency Characteristics of a Deep-Sea Hydraulic Power Source
by Donglin Li, Fuhang Guo, Liping Xu, Shuai Wang, Youpeng Yan, Xianshuai Ma and Yinshui Liu
Lubricants 2023, 11(11), 485; https://doi.org/10.3390/lubricants11110485 - 9 Nov 2023
Cited by 6 | Viewed by 2124
Abstract
Deep-sea submersibles carry limited energy sources, so a high efficiency of the equipment is required to improve endurance. In the deep-sea environment, the hydraulic power source is filled with oil, which causes structural deformation of the power source and changes in the physical [...] Read more.
Deep-sea submersibles carry limited energy sources, so a high efficiency of the equipment is required to improve endurance. In the deep-sea environment, the hydraulic power source is filled with oil, which causes structural deformation of the power source and changes in the physical properties of the medium, leading to unknown changes in the efficiency characteristics of the power source. In order to explore the efficiency characteristics of the deep-sea hydraulic power source composed of a gear pump and a DC (direct current) brushless motor in a variable sea depth environment, we undertook the following. First, considering the effects of seawater pressure and temperature on the physical properties of the medium and the radial clearance deformation of the gear pump, a mathematical model for the total efficiency of the hydraulic power source was established. The results indicate that the deformation of the pump body is mainly determined by the seawater pressure and working pressure. Subsequently, by analyzing the effects of the two factors on the efficiency of the power source, respectively, when the oil temperature range is large enough, the total efficiency of the power source will increase and then decrease under six sea depths; the total efficiency of the power source decreases with the increase in the rotational speed. However, in a land environment, the trend of the efficiency characteristics of the power source is opposite to that of the remaining six deep-sea environments, both in terms of oil temperature and rotational speed. Finally, the efficiency trend of the power source with changes in sea depth under rated conditions was obtained. Under different sea depth ranges, the optimal operating oil temperatures and suitable rotational speed ranges of the power source could be obtained. This paper could provide a certain theoretical basis for the research and development of deep-sea equipment. Full article
(This article belongs to the Special Issue Marine Tribology)
Show Figures

Figure 1

27 pages, 2349 KiB  
Article
Time-Series Machine Learning Techniques for Modeling and Identification of Mechatronic Systems with Friction: A Review and Real Application
by Samuel Ayankoso and Paweł Olejnik
Electronics 2023, 12(17), 3669; https://doi.org/10.3390/electronics12173669 - 30 Aug 2023
Cited by 15 | Viewed by 4734
Abstract
Developing accurate dynamic models for various systems is crucial for optimization, control, fault diagnosis, and prognosis. Recent advancements in information technologies and computing platforms enable the acquisition of input–output data from dynamical systems, resulting in a shift from physics-based methods to data-driven techniques [...] Read more.
Developing accurate dynamic models for various systems is crucial for optimization, control, fault diagnosis, and prognosis. Recent advancements in information technologies and computing platforms enable the acquisition of input–output data from dynamical systems, resulting in a shift from physics-based methods to data-driven techniques in science and engineering. This review examines different data-driven modeling approaches applied to the identification of mechanical and electronic systems. The approaches encompass various neural networks (NNs), like the feedforward neural network (FNN), convolutional neural network (CNN), long short-term memory (LSTM), transformer, and emerging machine learning (ML) techniques, such as the physics-informed neural network (PINN) and sparse identification of nonlinear dynamics (SINDy). The main focus is placed on applying these techniques to real-world problems. A real application is presented to demonstrate the effectiveness of different machine learning techniques, namely, FNN, CNN, LSTM, transformer, SINDy, and PINN, in data-driven modeling and the identification of a geared DC motor. The results show that the considered ML techniques (traditional and state-of-the-art methods) perform well in predicting the behavior of such a classic dynamical system. Furthermore, SINDy and PINN models stand out for their interpretability compared to the other data-driven models examined. Our findings explicitly show the satisfactory predictive performance of six different ML models while also highlighting their pros and cons, such as interpretability and computational complexity, using a real-world case study. The developed models have various applications and potential research areas are discussed. Full article
(This article belongs to the Collection Predictive and Learning Control in Engineering Applications)
Show Figures

Figure 1

15 pages, 6640 KiB  
Article
Parametric Design and Prototyping of a Low-Power Planar Biped Robot
by Koray K. Şafak, Turgut Batuhan Baturalp and Selim Bozkurt
Biomimetics 2023, 8(4), 346; https://doi.org/10.3390/biomimetics8040346 - 5 Aug 2023
Cited by 3 | Viewed by 2335
Abstract
This study proposes a design approach and the development of a low-power planar biped robot named YU-Bibot. The kinematic structure of the robot consists of six independently driven axes, and it weighs approximately 20 kg. Based on biomimetics, the robot dimensions were selected [...] Read more.
This study proposes a design approach and the development of a low-power planar biped robot named YU-Bibot. The kinematic structure of the robot consists of six independently driven axes, and it weighs approximately 20 kg. Based on biomimetics, the robot dimensions were selected as the average anthropomorphic dimensions of the human lower extremities. The optimization of the mechanical design and actuator selection of the robot was based on the results of parametric simulations. The natural human walking gait was mimicked as a walking pattern in these simulations. As a result of the optimization, a low power-to-weight ratio of 30 W/kg was obtained. The drive system of the robot joints consists of servo-controlled brushless DC motors with reduction gears and additional bevel gears at the knee and ankle joints. The robot features spring-supported knee and ankle joints that counteract the robot’s weight and compensate for the backlash present in these joints. The robot is constrained to move only in the sagittal plane by using a lateral support structure. The robot’s feet are equipped with low-cost, force-sensitive resistor (FSR)-type sensors for monitoring ground contact and zero-moment point (ZMP) criterion. The experimental results indicate that the proposed robot mechanism can follow the posture commands accurately and demonstrate locomotion at moderate stability. The proposed parametric natural gait simulation-based design approach and the resulting biped robot design with a low power/weight ratio are the main contributions of this study. Full article
(This article belongs to the Special Issue Advanced Service Robots: Exoskeleton Robots)
Show Figures

Figure 1

35 pages, 6505 KiB  
Article
Design and Control of a Single-Leg Exoskeleton with Gravity Compensation for Children with Unilateral Cerebral Palsy
by Mohammadhadi Sarajchi and Konstantinos Sirlantzis
Sensors 2023, 23(13), 6103; https://doi.org/10.3390/s23136103 - 2 Jul 2023
Cited by 24 | Viewed by 7604
Abstract
Children with cerebral palsy (CP) experience reduced quality of life due to limited mobility and independence. Recent studies have shown that lower-limb exoskeletons (LLEs) have significant potential to improve the walking ability of children with CP. However, the number of prototyped LLEs for [...] Read more.
Children with cerebral palsy (CP) experience reduced quality of life due to limited mobility and independence. Recent studies have shown that lower-limb exoskeletons (LLEs) have significant potential to improve the walking ability of children with CP. However, the number of prototyped LLEs for children with CP is very limited, while no single-leg exoskeleton (SLE) has been developed specifically for children with CP. This study aims to fill this gap by designing the first size-adjustable SLE for children with CP aged 8 to 12, covering Gross Motor Function Classification System (GMFCS) levels I to IV. The exoskeleton incorporates three active joints at the hip, knee, and ankle, actuated by brushless DC motors and harmonic drive gears. Individuals with CP have higher metabolic consumption than their typically developed (TD) peers, with gravity being a significant contributing factor. To address this, the study designed a model-based gravity-compensator impedance controller for the SLE. A dynamic model of user and exoskeleton interaction based on the Euler–Lagrange formulation and following Denavit–Hartenberg rules was derived and validated in Simscape and Simulink® with remarkable precision. Additionally, a novel systematic simplification method was developed to facilitate dynamic modelling. The simulation results demonstrate that the controlled SLE can improve the walking functionality of children with CP, enabling them to follow predefined target trajectories with high accuracy. Full article
(This article belongs to the Special Issue Assistive Robotics in Healthcare)
Show Figures

Figure 1

19 pages, 16435 KiB  
Article
Radio-Controlled Intelligent UGV as a Spy Robot with Laser Targeting for Military Purposes
by Muhammad Zia Ur Rahman, Umair Raza, Muhammad Azeem Akbar, Muhammad Tanveer Riaz, Abdu H. Gumaei and Nasir Ahmad
Axioms 2023, 12(2), 176; https://doi.org/10.3390/axioms12020176 - 8 Feb 2023
Cited by 10 | Viewed by 4401
Abstract
The main objective of this unmanned ground vehicle is to deal with the security issues like terrorist activities across the border and in various remote combat missions by reducing the involvement of soldiers. This unmanned ground robot comprises a wireless high-definition camera that [...] Read more.
The main objective of this unmanned ground vehicle is to deal with the security issues like terrorist activities across the border and in various remote combat missions by reducing the involvement of soldiers. This unmanned ground robot comprises a wireless high-definition camera that can transfer live streams from the robot to headquarters using Wi-Fi. The robot’s movement can be controlled with two modes; one of them is a radio controller working on 2.4 GHz frequency with seven independent channels. Secondly, its movement can also be controlled using a Python-based GUI application. Nowadays, different techniques have been used for face recognition; in our remotely piloted robot, we have used Haar-cascade classifiers in combination with the LBPH algorithm to implement real-time facial recognition. The robot uses a rack and pinion driving mechanism and an ATMEL Cortex-M3 CPU as a controller with 32-bit/s processing speed. In addition, a laser is installed on the turret to shoot the targets down, which can be used in an autonomous mode based on facial recognition results, or it can be used manually either through an RF controller or Python-based GUI. The turret moves in 2-DOF with the help of metallic geared servo motors. Both servo motors can rotate up to 180°. The driving mechanism of the robotic tank is just like DDR, with one difference, the two DC gear motors of the robot are connected diagonally. Full article
(This article belongs to the Special Issue Applied Mathematics in the Design and Control of Robot Manipulators)
Show Figures

Figure 1

14 pages, 1589 KiB  
Review
Advanced Electric Battery Power Storage for Motors through the Use of Differential Gears and High Torque for Recirculating Power Generation
by Wenich Vattanapuripakorn, Sathapon Sonsupap, Khomson Khannam, Natthakrit Bamrungwong, Prachakon Kaewkhiaw, Jiradanai Sarasamkan and Bopit Bubphachot
Clean Technol. 2022, 4(4), 987-1000; https://doi.org/10.3390/cleantechnol4040061 - 11 Oct 2022
Cited by 1 | Viewed by 7352
Abstract
Electricity has become one of the most important factors contributing to both the livelihoods of individuals and global economic development. Most electricity generation is still derived from burning fossil fuels that contribute to environmental degradation. The aim of this research, through innovative design, [...] Read more.
Electricity has become one of the most important factors contributing to both the livelihoods of individuals and global economic development. Most electricity generation is still derived from burning fossil fuels that contribute to environmental degradation. The aim of this research, through innovative design, was to create clean circular technology through the utilization of electronic devices that control and send optimally timed commands to two 72-volt batteries (DC) that store and distribute energy. This new form of electric power generation was adapted to be used with a three-way differential gear system. The speed of transmission was adjusted, and shaft rotation was connected to a 7.5 kw/h DC power motor with two 15 kw/h alternators in three phases to generate high torque power at the desired rate of 3000 RPM and electricity. The first set of alternators generated the electrical energy to be distributed. The circuit system of battery set one was used for storage and slowly fed to the motor, which was kept continuously running for hours. The second alternator distributed the generated voltage to the secondary battery, which stored backup power and provided the main power to the grid. This system is especially appealing for those looking to improve energy efficiency and contribute to the green economy, as this system can be applied to power charging stations for electric vehicles or used as a backup power source for buildings. Full article
Show Figures

Figure 1

12 pages, 4366 KiB  
Article
Study of the Polishing Characteristics by Abrasive Flow Machining with a Rotating Device
by Ken-Chuan Cheng, A-Cheng Wang, Kuan-Yu Chen and Chien-Yao Huang
Processes 2022, 10(7), 1362; https://doi.org/10.3390/pr10071362 - 13 Jul 2022
Cited by 9 | Viewed by 3280
Abstract
Since only uni-direction motion is produced by traditional abrasive flow machining (AFM), so the polishing effects of the inner hole is not easy to achieve uniform roughness of the whole surface after polishing. Therefore, in this study, a rotating device with a DC [...] Read more.
Since only uni-direction motion is produced by traditional abrasive flow machining (AFM), so the polishing effects of the inner hole is not easy to achieve uniform roughness of the whole surface after polishing. Therefore, in this study, a rotating device with a DC servo motor was set up in the AFM to increase the tangential forces on the machining surface, and therefore, improve the uniform surface roughness and polishing efficiency. The rotating device was designed by a group of transmission gear set and a DC servo motor to create a rotational finishing path for the abrasive medium. The rotational motion of an abrasive can create different tangential forces on the working surface, inducing a more complex polishing path than that of traditional AFM. In addition to rotational speed, a servo motor can also change rotation directions in one working process, causing an abrasive medium to create many irregular finishing paths in the AFM. The experimental results showed that the surface roughness of the workpiece was significantly decreased with an increase in the rotational speed. Additionally, the results also showed that the surface roughness (SR) of the inner hole decreased from 0.61 μm Ra to 0.082 μm Ra after 20 machining cycles, the surface roughness improvement rate reached 87% at 15 rpm rotational speed, by applying a 1.5:1 silicone gel/abrasive concentration ratio and #60 abrasive mesh in the experiments. This study created excellent polishing efficiency by using a servo rotational device with AFM to produce good surface quality. Full article
(This article belongs to the Special Issue New Frontiers in Magnetic Polishing and Electrochemical Technology)
Show Figures

Figure 1

Back to TopTop