Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = gasification of lignocellulosic wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2113 KB  
Review
Agricultural Waste: Challenges and Solutions, a Review
by Maximilian Lackner and Maghsoud Besharati
Waste 2025, 3(2), 18; https://doi.org/10.3390/waste3020018 - 3 Jun 2025
Cited by 5 | Viewed by 3299
Abstract
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such [...] Read more.
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such as those from sugarcane, rice, and wheat, contribute to pollution when improperly disposed of through burning or burying, contaminating soil, water, and air. However, these residues also represent untapped resources for bioenergy production, composting, mulching, and the creation of value-added products like biochar, bioplastics, single-cell protein and biobased building blocks. The paper highlights various solutions, including integrating agricultural waste into livestock feed formulations to reduce competition for human food crops, producing biofuels like ethanol and biodiesel from lignocellulosic materials, and adopting circular economy practices to upcycle waste into high-value products. Technologies such as anaerobic digestion for biogas production and gasification for synthesis gas offer renewable energy alternatives and ample feedstocks for gas fermentation while addressing waste management issues. Composting and vermicomposting enhance soil fertility, while mulching improves moisture retention and reduces erosion. Moreover, the review emphasizes the importance of policy frameworks, public-private partnerships, and farmer education in promoting effective waste management practices. By implementing these strategies, agricultural waste can be transformed into a resource, contributing to food security, environmental conservation, and economic growth. Full article
Show Figures

Figure 1

15 pages, 5206 KB  
Article
Prediction of Syngas Composition During Gasification of Lignocellulosic Waste Mixtures
by Carlos Andrés Muñoz-Huerta, Gladys Jiménez-García, Luis Germán Hernández-Pérez and Rafael Maya-Yescas
Processes 2024, 12(11), 2462; https://doi.org/10.3390/pr12112462 - 7 Nov 2024
Viewed by 1098
Abstract
Avoiding global dependence on fossil oils and improving the environmental impact of energy production are factors that drive research into renewable energies. Considering lignocellulosic biomass residues as a raw material for gasification, a thermochemical process that converts lignocellulosic resources into synthesis gas (H [...] Read more.
Avoiding global dependence on fossil oils and improving the environmental impact of energy production are factors that drive research into renewable energies. Considering lignocellulosic biomass residues as a raw material for gasification, a thermochemical process that converts lignocellulosic resources into synthesis gas (H2, CO, CH4, and CO2) is an alternative under study due to its low costs, high efficiency, and wide variety of applications. Fortunately, there are still areas for its improvement and technological development. For example, this can be achieved by gasification. Distinct types of lignocellulosic biomass, such as sugarcane bagasse, wheat straw, pine sawdust, or corn cob, differ in their physical, chemical, and morphological properties, which can affect the characteristics of the gasification process. This work uses the generalized stoichiometry and mass and atomic balances in the gasification reactor to predict the composition of syngas produced via the gasification of both individual substrates and mixtures. The results provide useful information for the design and operation of gasification reactors with an operating region between 2.0 bar and 4.5 bar and between 1023.15 K and 1223.15 K, particularly with regard to understanding the effects of distinct types of biomasses in terms of their humidity and molecular weight on the operation and performance of the process. One important conclusion reached after simulating the addition of more vapor is that the (H2/CO) ratio cannot be increased indefinitely: it is limited by the thermodynamic equilibrium reached by the system. Full article
(This article belongs to the Special Issue Process Intensification towards Sustainable Biorefineries)
Show Figures

Figure 1

17 pages, 3929 KB  
Article
Kinetic Model Implementation of Fluidized Bed Devolatilization
by Armando Vitale, Andrea Di Carlo, Pier Ugo Foscolo and Alessandro Antonio Papa
Energies 2024, 17(13), 3154; https://doi.org/10.3390/en17133154 - 26 Jun 2024
Cited by 3 | Viewed by 1781
Abstract
Computational modeling is a powerful tool for studying and investigating the behavior of fluidized bed gasifiers and the modeling of the initial devolatilization step is necessary to provide a reliable description of the whole process involving the feedstock decomposition and the subsequent gasification [...] Read more.
Computational modeling is a powerful tool for studying and investigating the behavior of fluidized bed gasifiers and the modeling of the initial devolatilization step is necessary to provide a reliable description of the whole process involving the feedstock decomposition and the subsequent gasification reaction. In this work, a bench-scale fluidized bed reactor was used to examine the devolatilization of different carbonaceous materials within the temperature range from 650 to 850 °C. The experimental test campaign was used to derive the linear correlation factor to describe the devolatilization in terms of product distribution as a function of temperature and highlight the different behavior between lignocellulosic and plastic feedstocks. Furthermore, the experimental data were used to develop concise kinetic expressions able to fit the experimental devolatilization times ranging from 75 in the case of poplar at a lower temperature and 22 s for the Organic Fraction of Municipal Solid Waste (OFMSW) at a higher temperature. The obtained model produces a simple kinetic expression where the size of the particle is enclosed in the kinetic parameters. The kinetic model sided by the application of linear correlations describes the overall thermal decomposition in a fluidized bed, simplifying its modeling in commercial simulation software, even when particles are considered as point-like bodies. Full article
(This article belongs to the Special Issue Advances in Numerical Modeling of Multiphase Flow and Heat Transfer)
Show Figures

Figure 1

16 pages, 2792 KB  
Article
Gasification of Lignocellulosic Waste in Supercritical Water: Study of Thermodynamic Equilibrium as a Nonlinear Programming Problem
by Julles Mitoura dos Santos Junior and Adriano Pinto Mariano
Eng 2024, 5(2), 1096-1111; https://doi.org/10.3390/eng5020060 - 12 Jun 2024
Cited by 2 | Viewed by 1224
Abstract
As one of the main industrial segments of the current geoeconomics scenario, agro-industrial activities generate excessive amounts of waste. The gasification of such waste using supercritical water (SCWG) has the potential to convert the waste and generate products with high added value, hydrogen [...] Read more.
As one of the main industrial segments of the current geoeconomics scenario, agro-industrial activities generate excessive amounts of waste. The gasification of such waste using supercritical water (SCWG) has the potential to convert the waste and generate products with high added value, hydrogen being the product of greatest interest. Within this context, this article presents studies on the SCWG processes of lignocellulosic residues from cotton, rice, and mustard husks. The Gibbs energy minimization (minG) and entropy maximization (maxS) approaches were applied to evaluate the processes conditioned in isothermal and adiabatic reactors, respectively. The thermodynamic and phase equilibria were written as a nonlinear programming problem using the Peng–Robinson state solution for the prediction of fugacity coefficients. As an optimization tool, TeS (Thermodynamic Equilibrium Simulation) software v.10 was used with the help of the trust-constr algorithm to search for the optimal point. The simulated results were validated with experimental data presenting surface coefficients greater than 0.99, validating the use of the proposed modeling to evaluate reaction systems of interest. It was found that increases in temperature and amounts of biomass in the process feed tend to maximize hydrogen formation. In addition to these variables, the H2/CO ratio is of interest considering that these processes can be directed toward the production of synthesis gas (syngas). The results indicated that the selected processes can be directed to the production of synthesis gas, including the production of chemicals such as methanol, dimethyl ether, and ammonia. Using an entropy maximization approach, it was possible to verify the thermal behavior of reaction systems. The maxS results indicated that the selected processes have a predominantly exothermic character. The initial temperature and biomass composition had predominant effects on the equilibrium temperature of the system. In summary, this work applied advanced optimization and modeling methodologies to validate the feasibility of SCWG processes in producing hydrogen and other valuable chemicals from agro-industrial waste. Full article
Show Figures

Figure 1

15 pages, 5946 KB  
Article
A Route for Bioenergy in the Sahara Region: Date Palm Waste Valorization through Updraft Gasification
by Mohammed Djaafri, Fethya Salem, Slimane Kalloum, Umberto Desideri, Pietro Bartocci, Mostefa Khelafi, Abdulaziz E. Atabani and Arianna Baldinelli
Energies 2024, 17(11), 2520; https://doi.org/10.3390/en17112520 - 23 May 2024
Cited by 3 | Viewed by 1468
Abstract
The Adrar region (Algeria) has a total of 397,800 date palm trees (Phoenix dactylifera L.). Due to annual palm cleaning, large quantities of lignocellulosic biomass are produced. Depending on the variety, an average of 65 kg of biowaste is obtained per palm [...] Read more.
The Adrar region (Algeria) has a total of 397,800 date palm trees (Phoenix dactylifera L.). Due to annual palm cleaning, large quantities of lignocellulosic biomass are produced. Depending on the variety, an average of 65 kg of biowaste is obtained per palm tree. Since the value of this biowaste is underrated, most of the palms are burned outdoors, causing air and visual pollution. This work explores the gasification potential of lignocellulosic waste from date palms (Phoenix dactylifera L. Takarbouche variety) into useful energy. The technology investigated is air updraft fixed-bed gasification, thanks to an originally designed and built reactor, with the capability to process 1 kg of feedstock. Four types of palm waste—namely, palms, petioles, bunch, and bunch peduncles—are first characterized (bulk density, proximate analysis, fixed carbon, elemental composition, and calorific value) and then used as feedstock for two gasification tests each. The syngas produced for the four date palm wastes is combustible, with an outlet temperature between 200 and 400 °C. The operating temperature inside the gasifier varies according to the feature of the biomass cuts (from 174 °C for the peduncles to 557 °C for palms). The experimental setup is also equipped with a cyclone, allowing for the recovery of some of the tar produced during the tests. Finally, the results show that the residence time has a positive effect on the conversion rate of date palm waste, which can significantly increase it to values of around 95%. Full article
(This article belongs to the Special Issue Advances in Fuels and Combustion)
Show Figures

Figure 1

17 pages, 5089 KB  
Article
Characterization of Uganda’s Main Agri-Food Value Chain Wastes for Gasification
by Peter Wilberforce Olupot, Tadeo Mibulo and Jacintha Gumoteyo Nayebare
Energies 2024, 17(1), 164; https://doi.org/10.3390/en17010164 - 28 Dec 2023
Cited by 2 | Viewed by 2094
Abstract
Agricultural residues are a source of energy derived through various conversion processes. They are gaining attention as a solution to limited energy access in developing countries in which a majority of the population depends on agriculture for a living at a time when [...] Read more.
Agricultural residues are a source of energy derived through various conversion processes. They are gaining attention as a solution to limited energy access in developing countries in which a majority of the population depends on agriculture for a living at a time when global population growth is outpacing the depreciation of conventional energy sources. This study characterized residues generated along the main agri-food value chains in Uganda for gasification by reviewing relevant literature and through field measurements and laboratory experiments. Maize, beans, cassava, banana, coffee, and sugarcane are the most important value chains, occupying 5.73 million hectares, and accounting for 40% of the country’s total area under cultivation. In terms of biomass residues, banana, maize, and sugarcane are the most feasible options, producing 4.18, 2.2, and 0.6 metric tons of biomass waste per ton, respectively. The bulk densities vary from 65.5 to 160 kg/m3, moisture content from 6.67 to 22.5%, and heating values from 12.6 to 16.74 MJ/kg for all residues. In terms of principal elements, oxygen has the highest proportion of 38.76–57.25% followed by carbon, 33.46–47.9%, and hydrogen 6%. The lignocellulosic composition is 23.46–41.38% hemicellulose, 9.9–55% cellulose, and 5.77–35% lignin. The three value chains have the potential to generate 172.2 PJ annually, which is enough to offset 50% of the cooking energy demands for Uganda. The main disadvantage of this is the low bulk density, which raises production costs and reduces conversion efficiency. Bulk density can be improved by densification through the compaction of residues. Given their composition and current utilization, maize stover, banana leaves, banana pseudo stems, and sugarcane tops are promising gasification feedstocks. Full article
Show Figures

Figure 1

15 pages, 3165 KB  
Article
Home Trash Biomass Valorization by Catalytic Pyrolysis
by Bruna Rijo, Ana Paula Soares Dias, Nicole de Jesus and Manuel Francisco Pereira
Environments 2023, 10(10), 186; https://doi.org/10.3390/environments10100186 - 20 Oct 2023
Cited by 8 | Viewed by 3241
Abstract
With the increase in population, large amounts of food waste are produced worldwide every day. These leftovers can be used as a source of lignocellulosic waste, oils, and polysaccharides for renewable fuels. In a fixed bed reactor, low-temperature catalytic pyrolysis was investigated using [...] Read more.
With the increase in population, large amounts of food waste are produced worldwide every day. These leftovers can be used as a source of lignocellulosic waste, oils, and polysaccharides for renewable fuels. In a fixed bed reactor, low-temperature catalytic pyrolysis was investigated using biomass gathered from domestic garbage. Thermogravimetry, under N2 flow, was used to assess the pyrolysis behavior of tea and coffee grounds, white potato, sweet potato, banana peels, walnut, almonds, and hazelnut shells. A mixture of biomass was also evaluated by thermogravimetry. Waste inorganic materials (marble, limestone, dolomite, bauxite, and spent Fluid Catalytic Cracking (FCC) catalyst) were used as catalysts (16.7% wt.) in the pyrolysis studies at 400 °C in a fixed bed reactor. Yields of bio-oil in the 22–36% wt. range were attained. All of the catalysts promoted gasification and a decrease in the bio-oil carboxylic acids content. The marble dust catalyst increased the bio-oil volatility. The results show that it is possible to valorize lignocellulosic household waste by pyrolysis using inorganic waste materials as catalysts. Full article
(This article belongs to the Special Issue Thermochemical Treatments of Biomass)
Show Figures

Graphical abstract

18 pages, 2754 KB  
Article
Exploring Hydrochars from Lignocellulosic Wastes as Secondary Carbon Fuels for Sustainable Steel Production
by Álvaro Amado-Fierro, Teresa A. Centeno and María A. Diez
Materials 2023, 16(19), 6563; https://doi.org/10.3390/ma16196563 - 5 Oct 2023
Cited by 11 | Viewed by 1584
Abstract
This study investigates the suitability of different lignocellulosic sources, namely eucalyptus, apple bagasse, and out-of-use wood, for injection into blast furnaces (BFs). While wastes possess carbon potential, their high moisture renders them unsuitable for direct energy utilization. Additionally, the P and K impurities, [...] Read more.
This study investigates the suitability of different lignocellulosic sources, namely eucalyptus, apple bagasse, and out-of-use wood, for injection into blast furnaces (BFs). While wastes possess carbon potential, their high moisture renders them unsuitable for direct energy utilization. Additionally, the P and K impurities, particularly in apple bagasse, can pose operational and product quality challenges in BF. Thus, different thermochemical processes were performed to convert raw biomass into a more suitable carbon fuel. Low-temperature carbonization was selected for eucalyptus, yielding a biochar with properties closer to the low-rank coal. Hydrothermal carbonization was chosen for apple bagasse and out-of-use wood, resulting in hydrochars with enhanced fuel characteristics and fewer adverse inorganic species but still limiting the amount in binary PCI blends. Thermogravimetry evaluated the cause–effect relationships between coal and coal- and bio-based chars during co-pyrolysis, co-combustion and CO2-gasification. No synergistic effects for char formation were observed, while biochars benefited ignition and reactivity during combustion at the programmed temperature. From heat-flow data in combustion, the high calorific values of the chars were well predicted. The CO2-gasification profiles of in situ chars revealed that lignin-rich hydrochars exhibited higher reactivity and conversion than those with a higher carbohydrate content, making them more suitable for gasification applications. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

30 pages, 2653 KB  
Review
Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review
by Budi Mandra Harahap and Birgitte K. Ahring
Microorganisms 2023, 11(4), 995; https://doi.org/10.3390/microorganisms11040995 - 11 Apr 2023
Cited by 19 | Viewed by 5453
Abstract
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In [...] Read more.
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In this paper, we will review the microbial conversion of syngas to acetic acid. This will include the presentation of acetate-producing bacterial strains and their optimal fermentation conditions, such as pH, temperature, media composition, and syngas composition, to enhance acetate production. The influence of syngas impurities generated from lignocellulose gasification will further be covered along with the means to alleviate impurity problems through gas purification. The problem with mass transfer limitation of gaseous fermentation will further be discussed as well as ways to improve gas uptake during the fermentation. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

23 pages, 4090 KB  
Article
Energy Recovery from Polymeric 3D Printing Waste and Olive Pomace Mixtures via Thermal Gasification—Effect of Temperature
by Daniel Díaz-Perete, Manuel Jesús Hermoso-Orzáez, Luís Carmo-Calado, Cristina Martín-Doñate and Julio Terrados-Cepeda
Polymers 2023, 15(3), 750; https://doi.org/10.3390/polym15030750 - 1 Feb 2023
Cited by 4 | Viewed by 2432
Abstract
One of the polymeric materials used in the most common 3D printers is poly(ethylene terephthalate) glycol (PETG). It represents, in world terms, around 2.3% of polymeric raw material used in additive manufacturing. However, after processing this material, its properties change irreversibly. A significant [...] Read more.
One of the polymeric materials used in the most common 3D printers is poly(ethylene terephthalate) glycol (PETG). It represents, in world terms, around 2.3% of polymeric raw material used in additive manufacturing. However, after processing this material, its properties change irreversibly. A significant amount of waste is produced around the world, and its disposal is usually destined for landfill or incineration, which can generate an important issue due to the high environmental risks. Polymer waste from 3D printing, hereinafter 3DPPW, has a relatively high calorific value and adequate characteristics to be valued in thermochemical processes. Gasification emerges as an innovative and alternative solution for recovering energy from 3DPPW, mixed with residues of lignocellulosic origin, and presents some environmental advantages compared to other types of thermochemical treatments, since the gasification process releases smaller amounts of NOx into the atmosphere, SOx, and CO2. In the case of the study, co-gasification of olive pomace (OLB) was carried out with small additions of 3DPPW (10% and 20%) at different temperatures. Comparing the different gasifications (100% OLB, 90% OLB + 10% 3DPPW, 80% OLB + 20% 3DPPW), the best results for the synthesis gas were obtained for the mixture of 10% 3DPPW and 90% olive pomace (OLB), having a lower calorific value of 6.16 MJ/m3, synthesis gas yield of 3.19%, and cold gas efficiency of 87.85% for a gasification temperature of 750 °C. In addition, the results demonstrate that the addition of 3DPPW improved the quality of syngas, especially between temperatures of 750 and 850 °C. Including polymeric 3D printing materials in the context of the circular economy and extending their life cycle helps to improve the efficiency of subsequent industrial processes, reducing process costs in general, thanks to the new industrial value acquired by the generated by-products. Full article
(This article belongs to the Special Issue New Development in Additive Manufacturing of Polymers)
Show Figures

Figure 1

23 pages, 1660 KB  
Review
A Review of Thermochemical Conversion of Waste Biomass to Biofuels
by Shivangi Jha, Sonil Nanda, Bishnu Acharya and Ajay K. Dalai
Energies 2022, 15(17), 6352; https://doi.org/10.3390/en15176352 - 31 Aug 2022
Cited by 147 | Viewed by 12660
Abstract
Biofuels are sustainable alternatives to fossil fuels because of their renewable and low-cost raw materials, environmentally friendly conversion technologies and low emissions upon combustion. In addition, biofuels can also be upgraded to enhance their fuel properties for wide applicability in power infrastructures. Biofuels [...] Read more.
Biofuels are sustainable alternatives to fossil fuels because of their renewable and low-cost raw materials, environmentally friendly conversion technologies and low emissions upon combustion. In addition, biofuels can also be upgraded to enhance their fuel properties for wide applicability in power infrastructures. Biofuels can be produced from a wide variety of biomasses through thermochemical and biological conversion processes. This article provides insights into the fundamental and applied concepts of thermochemical conversion methods such as torrefaction, pyrolysis, liquefaction, gasification and transesterification. It is important to understand the physicochemical attributes of biomass resources to ascertain their potential for biofuel production. Hence, the composition and properties of different biomass resources such as lignocellulosic feedstocks, oilseed crops, municipal solid waste, food waste and animal manure have been discussed. The properties of different biofuels such as biochar, bio-oil, bio-crude oil, syngas and biodiesel have been described. The article concludes with an analysis of the strength, weaknesses, opportunities and threats of the thermochemical conversion technologies to understand their scale-up applications and commercialization. Full article
(This article belongs to the Special Issue Biomass and Waste as Feedstocks for Biofuel Production)
Show Figures

Figure 1

20 pages, 5456 KB  
Article
Purification of Wastewater from Biomass-Derived Syngas Scrubber Using Biochar and Activated Carbons
by Enrico Catizzone, Corradino Sposato, Assunta Romanelli, Donatella Barisano, Giacinto Cornacchia, Luigi Marsico, Daniela Cozza and Massimo Migliori
Int. J. Environ. Res. Public Health 2021, 18(8), 4247; https://doi.org/10.3390/ijerph18084247 - 16 Apr 2021
Cited by 15 | Viewed by 4185
Abstract
Phenol is a major component in the scrubber wastewater used for syngas purification in biomass-based gasification plants. Adsorption is a common strategy for wastewater purification, and carbon materials, such as activated carbons and biochar, may be used for its remediation. In this work, [...] Read more.
Phenol is a major component in the scrubber wastewater used for syngas purification in biomass-based gasification plants. Adsorption is a common strategy for wastewater purification, and carbon materials, such as activated carbons and biochar, may be used for its remediation. In this work, we compare the adsorption behavior towards phenol of two biochar samples, produced by pyrolysis and gasification of lignocellulose biomass, with two commercial activated carbons. Obtained data were also used to assess the effect of textural properties (i.e., surface area) on phenol removal. Continuous tests in lab-scale columns were also carried out and the obtained data were processed with literature models in order to obtain design parameters for scale-up. Results clearly indicate the superiority of activated carbons due to the higher pore volume, although biomass-derived char may be more suitable from an economic and environmental point of view. The phenol adsorption capacity increases from about 65 m/g for gasification biochar to about 270 mg/g for the commercial activated carbon. Correspondingly, service time of commercial activated carbons was found to be about six times higher than that of gasification biochar. Finally, results indicate that phenol may be used as a model for characterizing the adsorption capacity of the investigated carbon materials, but in the case of real waste water the carbon usage rate should be considered at least 1.5 times higher than that calculated for phenol. Full article
(This article belongs to the Special Issue Environmental Impact Assessment by Green Processes)
Show Figures

Figure 1

12 pages, 3420 KB  
Article
Simulation and Performance Analysis of Integrated Gasification–Syngas Fermentation Plant for Lignocellulosic Ethanol Production
by Sahar Safarian, Runar Unnthorsson and Christiaan Richter
Fermentation 2020, 6(3), 68; https://doi.org/10.3390/fermentation6030068 - 14 Jul 2020
Cited by 23 | Viewed by 8687
Abstract
This study presents a new simulation model developed with ASPEN Plus of waste biomass gasification integrated with syngas fermentation and product recovery units for bioethanol production from garden waste as a lignocellulosic biomass. The simulation model includes three modules: gasification, fermentation, and ethanol [...] Read more.
This study presents a new simulation model developed with ASPEN Plus of waste biomass gasification integrated with syngas fermentation and product recovery units for bioethanol production from garden waste as a lignocellulosic biomass. The simulation model includes three modules: gasification, fermentation, and ethanol recovery. A parametric analysis is carried out to investigate the effect of gasification temperature (500–1500 °C) and equivalence ratio (0.2–0.6) on the gasification performance and bioethanol production yield. The results reveal that, for efficient gasification and high ethanol production, the operating temperature range should be 700–1000 °C, as well as an equivalence ratio between 0.2 and 0.4. At optimal operating conditions, the bioethanol production yield is 0.114 kg/h per 1 kg/h input garden waste with 50% moisture content. It is worth mentioning that this parameter increases to 0.217 kgbioethanol/kggarden waste under dry-based conditions. Full article
(This article belongs to the Special Issue Biorefineries)
Show Figures

Figure 1

9 pages, 2041 KB  
Communication
Probing Synergies between Lignin-Rich and Cellulose Compounds for Gasification
by Martin J. Taylor, Apostolos K. Michopoulos, Anastasia A. Zabaniotou and Vasiliki Skoulou
Energies 2020, 13(10), 2590; https://doi.org/10.3390/en13102590 - 20 May 2020
Cited by 4 | Viewed by 3170
Abstract
The fixed-bed gasification of lignin-rich and -deficient mixtures was carried out to probe the synergistic effects between two model compounds, Lignin Pink (LP) rich in Na and Cellulose Microcrystalline (CM). Reaction conditions utilized the most commonly used air ratios in current wood gasifiers [...] Read more.
The fixed-bed gasification of lignin-rich and -deficient mixtures was carried out to probe the synergistic effects between two model compounds, Lignin Pink (LP) rich in Na and Cellulose Microcrystalline (CM). Reaction conditions utilized the most commonly used air ratios in current wood gasifiers at 750 and 850 °C. It was found that by increasing the lignin content in the mixture, there was a selectivity change from solid to gas products, contrary to a similar study previously carried out for pyrolysis. This change in product mix was promoted by the catalytic effect of Na edge recession deposits on the surface of the char. As a result, the water gas shift reaction was enhanced at 850 °C for the LP48CM52 mixture across all air ratios. This was evidenced by a strong correlation between the produced H2 and COx. Meanwhile, by lowering the lignin content in the mixtures, the reactivity of cellulose microcrystalline was found to generate more char at higher temperatures, similar to lignin mixtures when undergoing pyrolysis. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Graphical abstract

16 pages, 6111 KB  
Article
Biodegradable Carbon-based Ashes/Maize Starch Composite Films for Agricultural Applications
by Enrica Stasi, Antonella Giuri, Francesca Ferrari, Vincenza Armenise, Silvia Colella, Andrea Listorti, Aurora Rizzo, Eleonora Ferraris and Carola Esposito Corcione
Polymers 2020, 12(3), 524; https://doi.org/10.3390/polym12030524 - 1 Mar 2020
Cited by 25 | Viewed by 4391
Abstract
The aim of this work is the development and characterization of biodegradable thermoplastic recycled carbon ashes/maize starch (TPAS) composite films for agricultural applications. A proper plasticizer, that is, glycerol, was added to a commercial maize starch in an amount of 35 wt.%. Carbon-based [...] Read more.
The aim of this work is the development and characterization of biodegradable thermoplastic recycled carbon ashes/maize starch (TPAS) composite films for agricultural applications. A proper plasticizer, that is, glycerol, was added to a commercial maize starch in an amount of 35 wt.%. Carbon-based ashes were produced by the biomass pyro-gasification plant CMD ECO 20, starting from lignocellulosic wastes. The ashes were added to glycerol and maize native starch at different amounts ranging from 7 wt.% to 21 wt.%. The composite was mixed at 130 °C for 10 min and then molded. The effect of the different amounts of carbon based ashes on the thermal and physical-mechanical properties of the composite was assessed by using several techniques, such as rheology, wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), moisture absorption, degradation and mechanical tests. The presence of the carbon waste ashes allows to improve thermal and durability performances of the thermoplastic starch (TPS) films. It reduces the water absorption of starch matrix and strongly decreases the deterioration of starch, independently from fillers amount, enhancing the lifetime of the TPS films in outdoor conditions. In addition, the waste carbon ashes/maize starch films present an advantage in comparison to those of neat starch; it can biodegrade, releasing the plant nutrients contained in the ashes into the soil. In conclusion, this approach for recycling carbon waste ashes increases the efficiency of industrial waste management, along with a reduction of its impact on the environment. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop