A Route for Bioenergy in the Sahara Region: Date Palm Waste Valorization through Updraft Gasification
Abstract
:1. Introduction
1.1. Biomass from the Sahara Region: The Case of Adrar (Algeria)
1.2. Biomass Gasification
1.3. Scope of the Paper
2. Materials and Methods
2.1. Biomass Preparation and Characterization
2.2. Gasifier
- -
- Feedstock inlet: The substrate supply is maintained in the upper part of the gasifier body, with the addition of a feeder made of a 41 mm diameter pipe controlled by a valve and a 10 × 10 × 10 cm tank. The feeder facilitates the substrate supply and limits substrate losses (Figure 2).
- -
- Syngas outlet and gas cleaning system: The syngas outlet is moved from the top to the upper side of the gasification body with an increase in the outlet diameter from 21 mm to 40 mm to avoid risks linked to the pressure increase. To clean the synthesis gas, a cyclone-type cleaning system is connected to the gasification body to remove undesired compounds (mainly tars). The syngas outlet and the cleaning cyclone are shown in Figure 3.
- -
- Feedstock bed: The grid used as a substrate bed is replaced by a steel circle (Figure 4, left), approximately 27 cm in diameter, with 3.5 mm diameter holes. The grid is installed 9 cm above the gasifier agent inlet.
- -
- Gasifying agent inlets: In the preliminary design, the gasification agent distribution system consisted of a 29 cm long single copper tube. This is replaced by two half circles of 26 cm diameter connected with a straight pipe all in copper equipped with 3 mm diameter holes over their entire surface, as shown in Figure 4 (right), to provide better air distribution during the gasification process.
- -
- Ignition point: A small hole with a plug is placed at the level of the gasification bed, as shown in Figure 5. The plug allows for the biomass to be ignited in order to better initiate the process.
2.3. Gasification Tests
2.4. Biomass Conversion Rate
3. Results
3.1. Biomass Characterization
3.2. Gasification Tests
3.2.1. Time Temperature Profiles
3.2.2. Axial Temperature Profile
3.2.3. Gas Cleaning System
3.3. Biomass Conversion Rate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Bakhtawar, J.; Arshad, H.; Faiz, S.; Irfan, M.; Shakir, H.A.; Khan, M.; Ali, S.; Saeed, S.; Mehmood, T.; Franco, M. Advancements in Biofuel Production. In Bioenergy Research: Biomass Waste to Energy; Srivastava, M., Srivastava, N., Singh, R., Eds.; Springer Nature: Singapore, 2021; pp. 1–26. [Google Scholar]
- Farzad, S.; Mandegari, M.A.; Görgens, J.F. A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Res. J. 2016, 12, 483–495. [Google Scholar] [CrossRef]
- IEA. Biomass Explained. 2021. Available online: https://www.eia.gov (accessed on 10 January 2024).
- Jain, M.; Mital, M.; Gupta, P. Bioenergy: Sustainable Renewable Energy. In Bioenergy Research: Biomass Waste to Energy; Srivastava, M., Srivastava, N., Singh, R., Eds.; Springer Nature: Singapore, 2021; pp. 27–53. [Google Scholar]
- IEA. World Energy Outlook 2023; IEA Publications: Paris, France, 2023. [Google Scholar]
- Ministry of Energy. Energies Nouvelles, Renouvelables et Maitrise de l’Energie. 2019. Available online: https://www.energy.gov.dz (accessed on 1 January 2023).
- DSA. Rapport Statistique Annuel; Service des Statistique, Direction des Services Agricoles (DSA): Adrar, Algeria, 2021. [Google Scholar]
- Bousdira, K. Valorisation Énergétique de la Biomasse dans l’Écosystème Oasien—Impact Environnemental et Socio-Économique; Université M’Hamed Bougara: Boumerdes, Algeria, 2015. [Google Scholar]
- Djaafri, M.; Kalloum, S.; Kaidi, K.; Salem, F.; Balla, S.; Meslem, D.; Abdelkader, I. Enhanced Methane Production from Dry Leaflets of Algerian Date Palm (Phoenix dactylifera L.) Hmira Cultivar, by Alkaline Pretreatment. Waste Biomass Valoriz. 2020, 11, 2661–2671. [Google Scholar] [CrossRef]
- Djaafri, M.; Kalloum, S.; Soulimani, A.E.; Khelafi, M. Bioconversion of Dried Leaves from Algerian Date Palm (Phoenix dactylifera L.) to Biogas by Anaerobic Digestion. Int. J. Eng. Res. Afr. 2019, 41, 131–144. [Google Scholar] [CrossRef]
- Djaafri, M.; Drissi, A.; Mehdaoui, S.; Kalloum, S.; Atelge, M.; Khelafi, M.; Kaidi, K.; Salem, F.; Tahri, A.; Atabani, A.; et al. Anaerobic digestion of dry palms from five cultivars of Algerian date palm (Phoenix dactylifera L.) namely H’mira, Teggaza, Tinacer, Aghamou and Takarbouchet: A new comparative study. Energy 2023, 269, 126774. [Google Scholar] [CrossRef]
- Arshid, M.A.; Inayat, M.; Zahrani, A.A.; Shahzad, K.; Shahbaz, M.; Sulaiman, S.A.; Sadig, H. Process optimization and economic evaluation of air gasification of Saudi Arabian date palm fronds for H2-rich syngas using response surface methodology. Fuel 2022, 316, 123359. [Google Scholar]
- Basu, P. Biomass Gasification, Pyrolysis, and Torrefaction: Practical Design and Theory, 2nd ed.; Elsevier Inc.: London, UK, 2013. [Google Scholar]
- Broer, K.M.; Peterson, C. Gasification. In Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power; Brown, R.C., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 85–123. [Google Scholar]
- Pommeret, A.; Yang, X.; Kwan, T.H.; Christoforou, E.A.; Fokaides, P.A.; Lin, C.S.K. Techno-Economic Study and Environmental Assessment of Food Waste Based Biorefinery. In Food Waste Reduction and Valorisation, Sustainability Assessment and Policy Analysis; Morone, P., Papendiek, F., Tartiu, V.E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 121–146. [Google Scholar]
- Zhang, S.; Sun, S.; Gao, N.; Quan, C.; Wu, C. Effect of auto thermal biomass gasification on the sintering of simulated ashes. Appl. Energy Combust. Sci. 2021, 9, 100054. [Google Scholar] [CrossRef]
- Baldinelli, A.; Cinti, G.; Desideri, U.; Fantozzi, F. Biomass integrated gasifier-fuel cells: Experimental investigation on wood syngas tars impact on NiYSZ-anode Solid Oxide Fuel Cells. Energy Convers. Manag. 2016, 128, 361–370. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.K.C.; Kikas, T. Thermochemical and biochemical treatment strategies for resource recovery from agri-food industry wastes. In Valorization of Agri-Food Wastes and By-Products; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 787–807. [Google Scholar]
- Mandal, S.; Daguppati, S.; Bandyopadhyay, R.; Das, A.K. Recent Advances in Biomass Gasification: A Review. In Macromolecular Characterization of Hydrocarbons for Sustainable Future; Bhu, U.K., Ed.; Springer: Singapore, 2021; pp. 239–257. [Google Scholar]
- Mishra, S.; Upadhyay, R.K. Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Mater. Sci. Energy Technol. 2021, 4, 329–340. [Google Scholar] [CrossRef]
- ISO 14780; Solid Biofuels—Sample Preparation. International Organization for Standardization: Geneva, Switzerland, 2017.
- Dupraz, P.-A.; Mooser, M.; Pflug, D. Dimensionnement des Structures en Bois: Aide au Calcul Basé sur la SIA 265 “Construciton en Bois”; PPUR Presses Polytechniques: Lausanne, Switzerland, 2009. [Google Scholar]
- ASTM E871-82; Standard Test Method for Moisture Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM E872-82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTEM-D1102-84; Standard Test Method for Ash in Wood. ASTM International: West Conshohocken, PA, USA, 2013.
- Adekiigbe, A. Determination of Heating Value of Five Economic Trees Residue as a Fuel for Bimass Heating System. Nat. Sci. 2012, 10, 26–29. [Google Scholar]
- Nhuchhen, D.R. Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel 2016, 180, 348–356. [Google Scholar] [CrossRef]
- Nhuchhen, D.R.; Salam, P.A. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 2012, 99, 55–63. [Google Scholar] [CrossRef]
- Salem, F.; Kalloum, S. Realization and Testing of an Updraft Gasifier Preliminary Study. Int. J. Mech. Eng. Robot. Res. 2017, 6, 114–117. [Google Scholar] [CrossRef]
- Sait, H.H.; Hussain, A.; Salema, A.A.; Ani, F.N. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour. Technol. 2012, 118, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Rogaume, Y. La combustion du bois et de la biomasse. In Le Bois Énergie: Enjeux Écologiques et de Santé Environnementale; Pollution atmosphérique, no. Numéro special; Association Pour la Prévention de la Pollution Atmosphérique: Loos, France, 2009; pp. 65–81. [Google Scholar]
- Basu, P. Biomass Gasification and Pyrolysis, Practical Design and Theory; Elsevier Inc.: Oxford, UK, 2010. [Google Scholar]
- Speight, J.G. Handbook of Gasification Technology, Science, Processes, and Applications; Wiley-Scrivener Publishing: Beverly, MA, USA, 2020. [Google Scholar]
- Kumar, A.; Sharma, A. Bhandari. Biomass Gasification and Syngas Utilization. In Sustainable Bioenergy Production; Wang, L., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 341–360. [Google Scholar]
- Miller, K. Coal analysis. In The Coal Handbook: Towards Cleaner Production; Osborne, D., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 151–189. [Google Scholar]
- Bousdira, K.; Bousdira, D.; El Amine, B.S.M.; Yahiaoui, F.Z.; Nouri, L.; Legrand, J. Combustion Study of Phoenicicole Biomass in Algerian Oasis Using Thermogravimetric in Algerian Oasis Using Thermogravimetric Analysis: Deglet Nour Cultivar Case. Arab. J. Sci. Eng. 2018, 43, 2299–2308. [Google Scholar] [CrossRef]
- Arshid, M.A.; Shahbaz, M.; Shahzad, K.; Inayat, M.; Naqvi, S.; Al-Zahrani, A.A.; Rashid, M.I.; Rehan, M.; Mahpudz, A.B. Polygeneration syngas and power from date palm waste steam gasification through an Aspen Plus process modeling. Fuel 2023, 332, 126120. [Google Scholar]
- Jamro, I.A.; Kumar, A.; Khoso, S.; Ahmad, M.; Baloch, H.A.; Shah, S.A.R.; Kumari, L.; Wenga, T.; Nadeem, M.; Laghari, A.A.; et al. Investigation of optimum H2 production from date palm waste leaves using different modeling tools. Int. J. Hydrogen Energy 2023, 48, 21636–21653. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Nasser, R.A.; Salem, M.Z.M.; Hiziroglu, S.; Al-Mefarrej, H.A.; Mohareb, A.S.; Alam, M.; Aref, I.M. Chemical Analysis of Different Parts of Date Palm (Phoenix dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production. Energies 2016, 9, 374. [Google Scholar] [CrossRef]
- Makkawi, Y.; Sayed, Y.E.; Salih, M.; Nancarrow, P.; Banks, S.; Bridgwater, T. Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. Renew. Energy 2019, 143, 719–730. [Google Scholar] [CrossRef]
- Lin, J.C.; Chen, H.C.; Huang, J.Y. Development of a Modified Biomass Updraft Fixed Bed Gasifier with an Embedded Combustor. J. Chin. Inst. Eng. 2006, 29, 557–562. [Google Scholar] [CrossRef]
- Mandl, C.; Obernberger, I.; Biedermann, F. Modelling of an updraft fixed-bed gasifier operated with softwood pellets. Fuel 2010, 89, 3795–3806. [Google Scholar] [CrossRef]
- Zhou, B.; Dichiara, A.; Zhang, Y.; Zhang, Q.; Zhou, J. Tar formation and evolution during biomass gasification: An experimental and theoretical study. Fuel 2018, 234, 944–953. [Google Scholar] [CrossRef]
Feedstock | Bulk Density (kg/m3) | Ultimate Analysis (wt% Dry Basis) | Proximate Analysis (wt% Dry Basis) | HHV (MJ/kg) | |||||
---|---|---|---|---|---|---|---|---|---|
C | H | O | Moisture | VM | Ash | FC | |||
Palms | 271.57 ± 1.45 | 37.15 | 6.03 | 44.03 | 3.32 ± 0.55 | 85.86 ± 0.55 | 11.70 ± 0.35 | 2.45 ± 0.55 | 11.81 ± 1.99 |
Petioles | 124.48 ± 0.56 | 46.34 | 3.62 | 32.78 | 5.81 ± 0.07 | 82.47 ± 0.93 | 10.10 ± 0.23 | 11.73 ± 0.93 | 17.81 ± 0.13 |
Bunch | 102.81 ± 0.87 | 41.80 | 6.69 | 48.36 | 4.99 ± 0.10 | 94.05 ± 0.47 | 2.49 ± 0.40 | 3.46 ± 0.47 | 13.52 ± 0.81 |
Peduncles bunch | 111.42 ± 0.77 | 39.21 | 8.07 | 53.40 | 5.61 ± 0.50 | 91.41 ± 0.63 | 2.76 ± 0.20 | 2.97 ± 0.63 | 12.74 ± 1.72 |
Sawdust | 100.77 ± 0.76 | 46.91 | 6.48 | 45.59 | 5.87 ± 0.13 | 88.52 ± 0.401 | 0.47 ± 0.12 | 11.01 ± 0.88 | 18.12 ± 1.05 |
N° | Substrate | Holding Time | Conversion Rate (t %) |
---|---|---|---|
1 | Palms | 3 h | 75 ± 1.852 |
5 h | 94 ± 1.452 | ||
2 | Petioles | 4 h | 74.5 ± 4.769 |
6 h | 95 ± 1.053 | ||
3 | Peduncle of the bunch | 4 h | 70 ± 2.451 |
6 h | 89 ± 2.645 | ||
4 | Bunch | 4 h | 72 ± 2.783 |
6 h | 90.5 ± 1.307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djaafri, M.; Salem, F.; Kalloum, S.; Desideri, U.; Bartocci, P.; Khelafi, M.; Atabani, A.E.; Baldinelli, A. A Route for Bioenergy in the Sahara Region: Date Palm Waste Valorization through Updraft Gasification. Energies 2024, 17, 2520. https://doi.org/10.3390/en17112520
Djaafri M, Salem F, Kalloum S, Desideri U, Bartocci P, Khelafi M, Atabani AE, Baldinelli A. A Route for Bioenergy in the Sahara Region: Date Palm Waste Valorization through Updraft Gasification. Energies. 2024; 17(11):2520. https://doi.org/10.3390/en17112520
Chicago/Turabian StyleDjaafri, Mohammed, Fethya Salem, Slimane Kalloum, Umberto Desideri, Pietro Bartocci, Mostefa Khelafi, Abdulaziz E. Atabani, and Arianna Baldinelli. 2024. "A Route for Bioenergy in the Sahara Region: Date Palm Waste Valorization through Updraft Gasification" Energies 17, no. 11: 2520. https://doi.org/10.3390/en17112520
APA StyleDjaafri, M., Salem, F., Kalloum, S., Desideri, U., Bartocci, P., Khelafi, M., Atabani, A. E., & Baldinelli, A. (2024). A Route for Bioenergy in the Sahara Region: Date Palm Waste Valorization through Updraft Gasification. Energies, 17(11), 2520. https://doi.org/10.3390/en17112520