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Abstract: Biofuels are sustainable alternatives to fossil fuels because of their renewable and low-cost
raw materials, environmentally friendly conversion technologies and low emissions upon combus-
tion. In addition, biofuels can also be upgraded to enhance their fuel properties for wide applicability
in power infrastructures. Biofuels can be produced from a wide variety of biomasses through thermo-
chemical and biological conversion processes. This article provides insights into the fundamental and
applied concepts of thermochemical conversion methods such as torrefaction, pyrolysis, liquefaction,
gasification and transesterification. It is important to understand the physicochemical attributes of
biomass resources to ascertain their potential for biofuel production. Hence, the composition and
properties of different biomass resources such as lignocellulosic feedstocks, oilseed crops, municipal
solid waste, food waste and animal manure have been discussed. The properties of different biofuels
such as biochar, bio-oil, bio-crude oil, syngas and biodiesel have been described. The article con-
cludes with an analysis of the strength, weaknesses, opportunities and threats of the thermochemical
conversion technologies to understand their scale-up applications and commercialization.

Keywords: biofuels; pyrolysis; torrefaction; liquefaction; gasification; transesterification

1. Introduction

Renewable resources such as wind, nuclear and solar power are promising alternative
sources of energy to complement fossil fuel resources. However, they cannot produce
liquid or gaseous fuels for transportation as well as combined heat and power generation.
Furthermore, they are seasonal and largely dependent on the weather, atmospheric, or
environmental conditions. It should be noted that some of these renewable resources
have certain geographical and environmental limitations. For example, wind and tidal
energies account for the channeling of wind and water, whereas solar energy is preferred
in regions with adequate hours of sunlight. On the other hand, biomass-derived energy in
the form of bioenergy is preferable because they are available in most regions of the world.
However, biomass can be converted to energy, energy carriers, and value-added chemicals
via thermochemical (e.g., gasification and pyrolysis) and biological conversion processes
(e.g., anaerobic digestion and fermentation) [1]. Renewable energy supply attributed to
nearly 14% of the world’s total primary energy supply in 2018 [2]. It is estimated that the
global demand for biofuels can rise to 41 billion liters by 2026 [3]. Currently, the worldwide
demands for bioethanol, renewable diesel, biodiesel and bio-jet fuels are 17, 14.5, 7.6 and
1.5 billion L/year. In terms of regions, North America (15.9 billion L/year) has the max-
imum total demand for biofuels followed by Asia (10.8 billion L/year), Latin America
(10.4 billion L/year) and Europe (3.4 billion L/year) [3].

The rising energy consumption, growing demands for fossil fuels, soaring fuel prices,
and increasing levels of greenhouse gas (GHG) emissions are some of the issues contribut-
ing to the need for a global shift towards renewable energy. Waste biomasses such as oil
seed crops, lignocellulosic materials (e.g., agricultural and forest residues), microalgae,
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energy crops, manure, food waste and organic fraction of municipal solid waste have
a huge potential to provide energy and value-added products via different conversion
technologies. Some examples of thermochemical processes are liquefaction, pyrolysis,
gasification, torrefaction, carbonization, transesterification and catalytic processes, whereas
fermentation, biomethanation and enzymatic processes are widely used biological tech-
nologies for biomass conversion [4]. In biological conversion methods, biomass residue
is hydrolyzed chemically and enzymatically to release the fermentable components after
which responsible microorganisms degrade them to produce high-value products such as
biofuels and biochemicals. In the thermochemical conversion processes, the feedstocks un-
dergo thermal breakdown of the organic components regardless of microbially fermentable
matter (i.e., saccharides) and non-fermentable components (i.e., lignin) to produce biofuels
and biochemical building blocks. Compared to biological conversion processes, thermo-
chemical methods have faster reaction rates due to the involvement of high temperatures,
pressures and catalysts.

The composition and characteristics of biomass largely impact the process parameters,
reaction rate as well as yields and quality of the conversion products. The main properties of
biomass can be determined through proximate and ultimate composition [5]. The proximate
composition is measured through the levels of moisture, ash, fixed carbon and volatile
matter. On the other hand, the ultimate composition includes carbon, hydrogen, nitrogen,
sulfur and oxygen. Ash includes mineral matter that remains as a residue after combustion.
Higher ash content could be a challenge for the formation of agglomeration and cause
sintering and corrosion during thermochemical conversion, especially in combustion,
pyrolysis, gasification and co-firing [6]. In addition, the higher moisture content in biomass
results in greater energy input to dry the feedstock before their thermochemical conversion
and reduced heating value of the biofuel product. The calorific value of the conversion
product can be improved with lower contents of moisture, oxygen and ash [7].

Biomass conversion technologies are variable depending on their processing require-
ments such as feedstock properties, process parameters, and product types and composition.
Hence, it is often difficult to make a comparative assessment of the thermochemical and
biological conversion technologies. In addition, an articulate understanding of the sources,
classification, origin and physicochemical properties of different waste biomass is lacking,
which impacts both upstream and downstream processing of biorefineries. Although the
applications of widely used thermochemical technologies are well documented, insights
into their fundamental concepts are lacking in the existing pool of literature. With this
objective, this article presents an overview of different waste biomass classifications based
on their source, origin, composition and physicochemical properties. Subsequently, dif-
ferent thermochemical biomass conversion technologies such as torrefaction, pyrolysis,
liquefaction, gasification and transesterification are described based on their fundamental
operating principles, parameters, applications and product type and composition. Lastly,
the properties of different products from thermochemical conversion of biomass such as
biochar, bio-crude oil, bio-oil, syngas and biodiesel are described in this review article.

2. Classification of Waste Biomass and Biogenic Materials
2.1. Lignocellulosic Biomass

Lignocellulosic biomass is a sustainable, cost-effective and carbon-neutral feedstock
that characteristically contains cellulose (40–60 wt.%), hemicellulose (20–40 wt.%) and lignin
(10–24 wt.%). Some of the sources of lignocellulosic biomass are agricultural crop residues,
forestry biomass and energy crops. Agricultural wastes are the residues produced by the
harvesting and processing of agricultural vegetative crops. Crop residues are generally
divided into two types such as field residues and agro-food processing residues. Since these
agro-residues are non-edible, they pose no competition to the food supply or fertile arable
lands. Regardless of the environmental, societal, and profitability of woody biomass in
different valuable products for household, industrial, construction and power sectors, most
of the forestry biomass remain underutilized. Some barricades that restrain the utilization
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of agricultural and forest biomass for the production of bioenergy are associated with their
seasonal, geographical and climatic variations, which determine their availability and cost.

Research interest in energy crops has augmented worldwide due to their diversity,
rapid growth, high production rate, the potential to fix CO2 during photosynthesis, cost-
effectiveness and resilience to grow on marginal quality soils [8]. Therefore, their cultivation
can encompass a substantial probability to biofuel industries to fulfill the clean energy
necessity. Some common energy crops include switchgrass, elephant grass, timothy grass,
Miscanthus and hybrid poplar.

2.2. Oilseed Crops

Plant-based oils have traditionally been a significant agrarian commodity. Several
species of plants contain oil in the form of fatty acids, lipids, triglycerides and triacylglycerol.
These components are stored in plant seeds and cells as reserves of carbon and energy
for the improvement of seedlings. The structural similarity of triacylglycerol with long-
chain hydrocarbons forms a foundation for a viable alternative to hydrocarbon-based
products. Moreover, owing to the physicochemical properties of fatty acids, the non-edible
plant-based oils are used to produce biodiesel and components as an integral part of
paints, coatings, lubricants and inks. There is a great demand for plant oils in agricultural,
nutraceuticals, cosmeceutical, pharmaceutical, food and biorefining industries.

Many plant-based oils are consumed as edible oils in cooking and food process-
ing such as canola oil, vegetable oil, mustard oil, olive oil, sunflower oil, soybean oil,
corn oil, almond oil, grapeseed oil and coconut oil. Non-edible plant-based oils are
extracted from microalgae, Ailanthus altissima (heaven tree), Azadirachta indica (Neem),
Jatropha, Linum usitatissimum (flax), Madhuca longifolia (Mahua), Pongamia pinnata (Karanja),
Ricinus communis (Castor), Sapindus mukorossi (Soapnut), Toona sinensis (Juss), Vernicia fordii
(Tung), rubber seed, silk cotton tree, etc. [9]. The fraction of oil fluctuates noticeably in
different oilseed crops. However, it can be inferred that there is scope for genetically
engineering the oilseed plants to generate a greater concentration of oils. Using oil seeds for
biofuels and biodiesel production is an excellent way to replace petroleum-based sources.

2.3. Municipal Solid Waste

The waste materials (e.g., garbage, recyclable and non-recyclable residues) obtained
from municipalities including households are known as municipal solid waste (MSW).
MSW could also include Industrial, Commercial and Institutional (ICI) waste such as
those discarded residues from businesses, large industries, hospitals, institutions, schools,
colleges and universities. It should be mentioned that the composition of MSW and ICI
varies depending on the origin, production patterns, household income and geographical
location [10]. MSW contains items such as kitchen and household materials, plastic and
rubber, metals, paper and cardboards, inert materials, electronic wastes, etc. [11]. MSW also
consists of biodegradable and non-biodegradable fractions. It should be mentioned that
about 15% of the total waste generated in municipalities is recycled while the remaining is
disposed of in landfills or dumped in open sites [12].

The worldwide surge in MSW generation is primarily due to the rise in popula-
tion, urbanization and industrialization. The global production of MSW has surpassed
1.2 billion tonnes per year with a projection to exceed 2 billion tonnes annually by 2025 [13].
It is projected that in some developing countries and other parts of the world, the MSW
generation could reach or exceed that of developed nations without proper regulations
and provisions for landfilling and waste recycling facilities [14]. The growth in the rate
of generation of MSW is also related to the change in food habits, consumption patterns,
consumer behavior and standards of living in rural and urban areas.

MSW generation creates severe environmental pollution when unmanaged. Moreover,
its conversion into value-added products could provide a solution to the challenges of
energy shortage and sustainable waste management. Various ways by which MSW can be
disposed of, recycled or valorized into energy resources are through landfilling, composting,



Energies 2022, 15, 6352 4 of 23

anaerobic digestion, pyrolysis and gasification [11]. The incineration of 1 ton of MSW
could emit 1.3 tons of CO2 equivalent emissions, which is similar to the amount of CO2
emissions from petroleum-based power plants [15]. In addition, incineration of MSW
emits a considerable amount of pollutants such as particulate matter and fly ash into the
atmosphere, making it an unsustainable waste management practice. On the other hand,
the fly and bottom ash produced from the incineration of MSW has been proven to contain
heavy metals posing risks to ecosystems [16].

The disposal of MSW in landfills is preferred by many municipalities globally for
the burial of non-recyclable wastes. Although promising, MSW disposal in landfills faces
challenges such as groundwater pollution from landfill leachate and methane gas emis-
sions. MSW landfill leachate exhibits chronic and acute toxicity and often permeates into
groundwater biomagnification. Moreover, leachate could also contaminate the flow of
water streams [17]. Energy production from MSW helps in minimizing pollution and
could facilitate the economic development of a nation in terms of waste management and
strengthening energy security.

2.4. Food Waste

Food waste, a component of the organic fraction of MSW, refers to the organic and
biodegradable waste produced from various sources including food processing plants,
restaurants, kitchens and households. A large amount of food waste is produced annually
due to food processing and consumption. Food waste could also be generated because of
overproduction, damage to food items including fruits and vegetables by microorganisms,
pests and insects, overwhelming purchases and delayed consumption [18]. Approximately
1.3 billion tonnes of food such as processed meat, dairy products, fruits, and vegetable are
lost along the food supply chain every year [19].

Landfilling and incineration are not feasible waste management practices for food
waste. Landfilling of food waste can lead to the emissions of methane, a more potent
GHG than CO2. On the other hand, incineration or combustion is suitable for dry biomass.
Hence, high-moisture containing food waste may result in greater energy requirements
for the incinerator leading to high operating costs. In such a scenario, anaerobic digestion
of food waste is a reasonable alternative to producing biogas (or biomethane) through
biomethanation by methanogenic bacteria [20].

Food waste consists of carbohydrates, organic acids, fatty acids, lipids, proteins and
cellulose. Moreover, the carbohydrates present in food waste could undergo hydrolysis
to produce oligosaccharides and monosaccharides suitable for biological conversion [19].
Owing to its organic composition, food waste can also be a crucial resource to produce
bioethanol [21], biobutanol [22] and biohydrogen [23] through fermentation. As biohydro-
gen is gaining popularity, food waste can prove to be an eco-friendly and cost-effective
feedstock for its production through photo/dark fermentation and gasification. Thermo-
chemically, food waste can also be converted to produce bio-oil and biochar by pyrolysis [24]
and hydrogen-rich syngas by hydrothermal gasification [18]. Food waste has also shown
promising results for biochar and activated carbon production [25]. The parameters such as
the composition of food waste, pretreatment methods and processing parameters influence
the production of biofuels.

2.5. Animal Manure

Animal manure refers to the metabolic and waste by-products of livestock and poultry
farming. Manure is a valuable material containing organic matter and nutrients essential
for the cultivation of crops. Moreover, animal manure could also contain different types
of pathogens posing ecological risks. Typically, animal manure contains metabolic waste
or feces, waste feed and waste feedwater. Despite being a major source of agricultural
nutrients, livestock manure can also contribute to the emission of GHGs such as CH4 by
microbial decomposition [26]. It should be mentioned that greenhouse gas emission from
animal manure accounts for 10% of the overall emissions from agricultural production [27].
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Some other traditional manure treatment includes composting and vermicomposting [27].
These treatments are very common in developing countries because of their simplicity and
cost-effectiveness. Furthermore, composting also ensures the availability of nutrients to
plants. Composting also leads to an increase in the aeration and water infiltration of clay
soils. Animal manure could be valorized by several methods such as anaerobic digestion [28],
dark fermentation [29], fermentation [30], pyrolysis [31], hydrothermal liquefaction [32],
hydrothermal gasification [33] and torrefaction [34] to produce biomethane, biohydrogen,
bioethanol, bio-oil, bio-crude oil, syngas and torrefied biomass, respectively. The digestate left
behind after the anaerobic digestion of manure could be used as feedstock for biochar, bio-oil
and syngas production through pyrolysis, liquefaction and gasification, respectively.

Animal manure has shown significant potential for biofuels and biochemicals produc-
tion via thermochemical and biological conversion processes. Nanda et al. [33] showed
that horse manure is an effective feedstock for hydrogen production via hydrothermal
gasification. In another study, chicken manure was used as feedstock for bioethanol pro-
duction via co-anaerobic digestion with ethanol plant effluent [35]. A mixture of poultry
manure and Eucalyptus wood was used for hydrogen production via catalytic hydrothermal
gasification [36].

3. Thermochemical Conversion Technologies
3.1. Torrefaction

Torrefaction is a clean and promising thermochemical technology that is often used as a
thermal pretreatment of biomass resources [37]. It has been evident that torrefaction enhances
the performance of thermochemical conversion processes such as pyrolysis, liquefaction and
gasification by removing moisture and partially degrading the biomass [38]. Torrefaction has
received substantial attention not only because torrefied and densified biomass encompasses
better properties, but the technologies linked with torrefaction are close to being marketable.
Some of the superior properties of torrefied biomass as compared to raw biomass are hy-
drophobicity, grindability, higher heating value and low-moisture content and pelletizable
nature [37]. Torrefaction accounts for increasing the percentage of carbon and reducing the
oxygen content consequently enhancing the heating value of biomass.

Figure 1 illustrates a typical torrefaction process flow diagram. Torrefaction refers
to the drying of feedstock typically at a temperature range of 200–300 ◦C under an inert
atmosphere. The temperature range determines the type of torrefaction, which can be
classified as light (200–235 ◦C), mild (235–275 ◦C) and severe (275–300 ◦C) [39]. It can also
be regarded as the slow heating of biomass under oxygen-free conditions. The volatile
matters that are emitted during the torrefaction process move to the condenser in the form
of hot vapors for condensation. The condensed liquid product of torrefaction contains
water and carboxylic acids along with traces of aldehydes, ketones, ethers, esters and
alcohols [40]. The non-condensable gases contain CO2, CO, CH4 and traces of H2. The
torrefied solids that are left behind have properties similar to coal and hence can be used
as their green alternatives. The advantage of using torrefaction is that it does not emit
any GHGs. Instead, it fixed the carbon in the form of densified and dehydrated biomass
for further thermochemical processing. Table 1 summarizes some notable studies on the
torrefaction of waste biomass to solid fuels.
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Table 1. Summary of notable works on torrefaction of waste biomass.

Feedstock Temperature (◦C) Residence Time (min) Observations Reference

Acacia nilotica (Babul) 225–300 15–60

• Oxygen removal efficiency and carbon
densification were amplified by 40% and
52%, respectively at 300 ◦C in 30 min.

• An increase of 42% of higher heating
value when compared to biomass in its
raw form was observed.

• There was an improvement in the physical
property of water.

• During the process, the overall aromatic
carbon and aromaticity of the liquid
condensate were augmented.

Singh et al. [41]

Cotton stalk, sugarcane bagasse,
rice straw and rice husk 250–300 30

• Microwave drying cracked the surface
of biomass, which consequently
released additional volatiles with
lower crystallinity.

• Torrefied rice husk, sugarcane bagasse
and cotton stalk demonstrated higher
elemental carbon and heating value
similar to that of bituminous coal.

• Carbon in torrefied rice straw presented
high crystallinity (around 50%), whereas
that in rice husk and sugarcane bagasse
was amorphous.

Amer et al. [42]

Oats, willow and poultry litter 200–300 15–45

• The torrefied products had up to 42%
more heating value as compared to the
untreated biomass.

• The mass and energy yields by oat
residues were the fastest, whereas it was
the least in poultry litter.

• Mass yield varied from 42% to 91%,
whereas the yield of energy varied
by 49%.

• All products displayed hydrophobic
characteristics.

Acharya and Dutta [43]
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Table 1. Cont.

Feedstock Temperature (◦C) Residence Time (min) Observations Reference

Pinewood, Miscanthus, and
wheat straw 250–300 45

• Mass balance ranged from 96 wt.%
to 103 wt.%.

• Several condensable species were
identified including anhydrous sugars,
terpenes and terpenoids.

• The type of biomass along with
temperature affected the yields of
condensable species.

Lê Thành et al. [44]

Soybean straw, corn straw, rice
straw and rice husk 300 -

• The flowability of ground biomass was
enhanced by torrefaction.

• Rice husk had the highest flowability,
whereas rice straw had the least.

Xu et al. [45]

Switchgrass 200–400 -

• The volatile content reduced while the
fixed carbon content upsurged.

• Severe torrefaction conditions resulted in
a higher mass loss.

Nhuchhen et al. [46]

3.2. Pyrolysis

In pyrolysis, the organic material present in the biomass undergoes an irreversible
thermochemical decomposition reaction to produce biofuels. Pyrolysis technologies can
be classified as slow, intermediate and fast (Table 2). The fast heating rate and short vapor
residence times result in rapid condensation of the volatile hydrocarbon vapors into bio-oil,
whereas slow pyrolysis results in greater biochar production due to slower carbonization
of biomass due to slow heating rate and longer vapor residence time [47].

Table 2. Typical operating conditions for slow, intermediate and fast pyrolysis.

Process Temperature (◦C) Heating Rate
(◦C/min)

Vapor
Residence Time

Bio-Oil
(wt.%)

Biochar
(wt.%)

Gas
(wt.%)

Slow pyrolysis 300–500 <50 >30 min 20–50 25–35 20–50

Intermediate pyrolysis 400–600 200–300 10 min 35–50 25–40 20–30

Fast/Flash pyrolysis 400–900 10–1000 <2 s 60–75 10–25 10–30

Figure 2 displays a typical process flow diagram for pyrolysis. Pyrolysis is a thermal
cracking method for biomass at higher temperatures of 300–700 ◦C in absence of oxygen to
obtain bio-oil, biochar and non-condensable gases (H2, CH4, CO and CO2). Bio-oil contains
an organic phase and a watery phase. The organic phase of bio-oil consists of tar and
hydrocarbon-rich heavier compounds that can be upgraded to obtain clean transportation
fuels. Bio-oil requires upgrading through catalytic and non-catalytic processes to remove
oxygen, nitrogen and sulfur compounds, which lower the heating value of the fuel and
could lead to NOx and SOx emissions upon combustion [48]. The watery phase of the
bio-oil contains water, esters, ethers, aldehydes, ketones, phenols, alcohols, acids and
other biochemicals [8]. The gas phase especially H2 and CO can be converted to liquid
hydrocarbons through catalytic Fischer-Tropsch synthesis.

A variety of lignocellulosic biomass is utilized by the technology of pyrolysis for
attaining sustainable energy. Characteristics of the products of pyrolysis vary consider-
ably depending upon the process temperature, heating rate, composition of biomass and
residence time. Microwave heating has been established as a fast and energy-efficient
means of heating. The heating caused by microwaves takes place via direct absorption of
microwave energy by components of the material. Microwave radiation can be defined as
an electromagnetic wave having a wavelength in the range of 300 MHz to 300 GHz. The
introduction of microwave heating into the pyrolysis process has been recognized as a
capable solution [49]. There are various advantages of using microwave-assisted pyrolysis
over traditional pyrolysis such as faster heating rate, quicker and consistent heating of
voluminous feedstocks, increased energy efficiency, bio-oil with low aqueous content and
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prompt response of pyrolyzer for start-up and shut down. Table 3 summarizes some recent
studies on the pyrolysis of biomass.
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Table 3. Summary of notable works on pyrolysis of waste biomass.

Feedstock Catalyst Reactor Temperature (◦C) Observations Reference

Bamboo and pigeon pea
stalk biomass No catalyst Muffle furnace 400–600

• The yield and characteristics of
biochar from both biomasses were
significantly influenced by the
biomass composition.

• Due to higher lignin content in
bamboo biomass, more biochar
was produced compared to that
from pigeon pea stalk.

Sahoo et al. [50]

Coconut shell, palm
kernel shell, rice husk,

cotton stalk, wheat
straw, sugarcane

bagasse and biomass
model compounds

(hemicellulose, cellulose
and lignin)

10 wt.% NiAl2O3
Two-stage fixed bed

reactor 550

• The existence of steam and
catalyst notably elevated the
percentage of gas production
(specifically H2).

• Lignin was responsible to
generate maximum H2 when
compared to hemicellulose
and cellulose.

Akubo et al. [51]

Food waste, canola hull
and oat hull No catalyst Tubular reactor 300–600

• The highest yield of biochar was
obtained from oat hull (29.1 wt.%)
followed by canola hull
(28.8 wt.%) and food waste
(28.4 wt.%).

• High-temperature biochar also
demonstrated increased carbon
aromaticity and thermal stability.

• The phenolic and aromatic
chemicals were found in bio-oil
produced at higher temperatures.

Patra et al. [24]
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Table 3. Cont.

Feedstock Catalyst Reactor Temperature (◦C) Observations Reference

Hinoki cypress No catalyst Fixed bed reactor 350–600

• Biochar yield decreased from
33 wt.% at 350 ◦C to 20 wt.%
at 600 ◦C.

• Biochar attained a microporous
structure at 500 ◦C.

Yu et al. [52]

Miscanthus 5 wt.% Pd/C Fluidized bed and fixed
bed reactor 350–550

• Oxygen and sulfur contents in the
bio-oil reduced significantly while
the heating value augmented.

• A maximum degree of
deoxygenation of bio-oil was
noticed with improved viscosity.

• The bio-oil revealed the potential
to replace traditional
combustion fuels.

Wang and Lee [53]

Peanut shell, corncob
Jatropha seeds de-oiled

cake and bagasse

Org-CaO/Nano-
ZSM-5

A dual-catalyst
fixed-bed reactor

system
50–320

• The percentage of aromatics in the
pyrolysis liquid product from
Jatropha cake (after removal of oil)
with Org-CaO/NZSM-5
augments to 93%.

• The yield of benzene, toluene and
xylene (BTX) along with
naphthalene (70%) nearly doubled
than that obtained with the
traditional CaO/ZSM-5.

• The thermal cracking ability of
biomass was better with Org-CaO.

• When compared with the
pyrolysis of corncob, peanut shell
and bagasse, de-oiled Jatropha
cake generated more aromatics
with Org-CaO/NZSM-5.

Yi et al. [54]

Pinewood, peanut shell
and rice straw K2CO3 Fixed bed reactor 300–700

• The fraction of liquids in
pinewood and peanut shells
drastically decreased, whereas
that of rice straw showed the least
decline.

• Pinewood had the highest
catalytic effect followed by peanut
shell and rice straw.

Fan et al. [55]

Sugarcane bagasse,
straw and acid-treated

biomass
No catalyst Fixed bed reactor 450–650

• Sugarcane bagasse produced
more biochar (50 wt.%) and
bio-oil (26 wt.%) at 450 ◦C.

• The elemental analysis of biochar
produced from various feedstocks
revealed a higher carbon content
(65–81 wt.%) and a lower oxygen
content (23–31%) than
sugarcane bagasse.

de Almeida
et al. [56]

Switchgrass and
Miscanthus Trace minerals Fast pyrolysis reactor 500

• The fraction of product varied
from 12–18 wt.% for biochar and
ash, 45–53 wt.% for bio-oil and
24–27 wt.% for gases.

Zaimes et al. [47]

Wheat straw 1–10 wt.% coal
fly ash 450–750

• With the increase in fly ash
content (1–10 wt.%) in wheat
straw, the alteration of biomass
augmented.

• Methylene blue was removed by
the use of heterogeneous wheat
straw fly ash biochar.

• Fly ash could be a cost-effective
catalyst for biomass pyrolysis
concurrently fabricating
heterogeneous sorbents with
improved adsorption capacities
for organic pollutants.

Gao et al. [57]
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Table 3. Cont.

Feedstock Catalyst Reactor Temperature (◦C) Observations Reference

Willow, sugarcane
bagasse, Ugu plant and

rice straw

10 wt.%
Ni/Al2O3

Two-stage
pyrolysis-catalytic

hydrogenation reactor
500

• CH4 yield was augmented with
the use of catalysts.

• CH4 yield produced from
hemicellulose and cellulose was
higher than that obtained
from lignin.

Jaffar et al. [58]

3.3. Liquefaction

Liquefaction is another thermochemical process for biomass conversion that predom-
inantly produces bio-crude oil. Bio-crude oil is formed because of hydrogenation and
high-pressure thermal disintegration of biomass. Hydrothermal liquefaction (HTL) re-
quires the usage of water and catalysts to transform high-moisture containing solid waste
into bio-crude oil. Figure 3 shows the process flow diagram for liquefaction. Liquefaction
generally operates at a temperature range of 240–380 ◦C and pressures of 5–30 MPa. The
reaction mechanism of liquefaction can be summarized by the following basic routes [59]:
(i) Hydrolysis of biomass→ smaller monomer
(ii) Smaller monomer→ smaller compounds (by cleavage and decarboxylation)
(iii) Recombination of the smaller fragments→ new compounds (by condensation, poly-

merization)
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Ethanol and subcritical water are some commonly used solvents in liquefaction. The
role of solvents is critical in the dissolution of biomass by breaking hemicellulose, cellulose,
and lignin into the volatile matter [59]. Thereafter, two phases are formed, i.e., the tar
phase and the watery phase similar to pyrolysis. The watery phase containing water
and biochemicals (as discussed earlier) can be recycled back and utilized as a solvent
in the process [60]. Bio-crude obtained from liquefaction requires minimal upgrading
by hydrotreating unlike pyrolysis-derived bio-oil because of low oxygen content, more
hydrocarbon yields, better energy density and flowability. Table 4 shows some promising
studies on the liquefaction of biomass to bio-crude oil.
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Table 4. Summary of notable works on liquefaction of waste biomass.

Feedstock Catalyst Reactor Temperature (◦C) Observations Reference

Cellulose
and lignin KOH High pressure

autoclave 280

• The yield of bio-crude oil and cellulose
conversion was affected by an alkaline catalyst.

• Low molecular weight compounds were found
in the liquid products due to the hydrolysis of
cellulose and lignin.

Singh et al. [61]

Corn stover - Autoclave
reactor 250–375

• The yield of hydrocarbons was highest
at 350 ◦C.

• The rise in pressure negatively affected
hydrochar yield while retention time has
negligible effects.

• The formation of agglomerates at
higher temperatures was due to
repolymerization reactions.

Mathanker
et al. [62]

Loblolly pine,
sewage sludge and

cow manure
- Bench-top

reactor 250–300

• Wet feedstocks have the potential to be utilized
to generate bio-crude which can further be
utilized as liquid fuels and other
value-added products.

Saba et al. [63]

Microbial biomass - - 200–300

• Effective conversion of wastewater sludge,
fast-growing algae and bacteria having a
low fraction of lipids into biofuels
was demonstrated.

Goswami
et al. [64]

Potato starch,
Casein and

sunflower oil
- Stainless-steel

batch reactors 350–600

• Energy content and nutrients in food waste can
be recovered via HTL.

• HTL proved to be an efficient method to
turn food waste into bio-crude which is dense
in energy.

Gollakota and
Savage [65]

Spruce wood
Potassium

fluoride doped
alumina catalyst

Bench-top
reactor 250–350

• Homogeneous alkali catalysts proved suitable
for biofuel production and impede the
formation of char.

• Heterogeneous catalysts were preferred for HTL
of lignocellulosic biomass.

Alper et al. [66]

Tomato plant waste H2SO4 and KOH Autoclave
reactor 220–280

• Wet food waste demonstrated potential as
a bioresource to produce liquid fuels
through HTL.

Zhang et al. [67]

Wood biomass
(larch and

Mongolian oak)
K2CO3 Batch reactor 300

• The quantity of hydrochar obtained was highest
when no catalyst was used.

• With the addition of catalysts, the conversion of
biomass to bio-crude oil notably increased.

Hwang et al. [68]

3.4. Gasification

Gasification is termed a thermochemical process that has the potential to transform
any carbonaceous material into syngas [69]. Gasification provides flexibility for using a
variety of feedstocks to generate gaseous products (e.g., H2, CO, CO2 and CH4) and char.
Using syngas, several different forms of energy such as heat, power, biofuel, biomethane,
chemicals and hydrogen can be generated [70]. Figure 4 illustrates a simplistic process flow
diagram for gasification. While thermal gasification of coal and complex biomass uses high
temperatures (800–1200 ◦C), hydrothermal gasification can operate at relatively moderate
temperatures (400–700 ◦C). Apart from the main gaseous products, gasification also results
in condensable liquids rich in water and biochemicals. Due to higher temperature, there
is restricted tar formation, making cleaning and recovery of the gas fairly simple [69].
Moreover, high temperatures in gasification contribute to a faster reaction rate favored by
endothermic reactions such as water-gas shift, methanation and steam reforming leading
to near-complete decomposition of biomass to gases. The syngas can be converted to clean
fuels and value-added products by Fischer-Tropsch catalysis [71].
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Hydrothermal gasification (HTG) utilizes subcritical or supercritical water as a reaction
media to produce syngas. Subcritical and supercritical water occur below and beyond the
critical temperature (374 ◦C) and critical pressure (22.1 MPa) of water, respectively. The chief
benefit of using HTG is that it can efficiently transform biomass comprising high moisture,
which would otherwise involve cost-intensive and energy-intensive drying steps before
gasification [72]. In contrast, converting wet biomass through pyrolysis, liquefaction and
gasification tends to be inefficient as the heat of moisture evaporation generally surpasses
the heat of combustion of biomass. The product of HTG has several different applications
such as chemical synthesis, power generation and fuel cells related to hydrogen production.

It is a challenge to enhance the levels of H2 and CO in the syngas. However, several
strategies that can address this issue are the application of catalysts that can promote water-
gas shift, steam reforming, tar reforming and syngas redox reactions [73,74]. In addition,
optimizing the gasification process conditions such as temperature, pressure, reaction time,
reaction medium, feedstock concentration, equivalence ratio and catalyst loading can result
to improve gasification efficiency, carbon conversion efficiency, hydrogen selectivity and
calorific value of syngas [75]. Table 5 summarizes some recent studies on the gasification of
waste biomass to syngas.

Table 5. Summary of notable works on gasification of waste biomass.

Feedstock Catalyst Reactor Temperature (◦C) Observations Reference

Cotton stalks, corn
stalks and
rice straw

Marly clay, calcium
hydroxide, dolomite,
and cement kiln dust

Bench-scale
fixed-bed reactor 700–850

• Ca(OH)2 and cement kiln dust
were effective in increasing the
yield of gas and decreasing tar
and char yields.

• Cotton stalks contributed a
greater percentage of gases
compared to rice straw and
corn stalks.

Hamad et al. [76]

MSW and
wastepaper

K2CO3, Li2CO3,
Rb2CO3, CaCO3,

CsCO3,
CaSO4 and

Na2CO3

- 800–950

• Catalytic activity was enhanced
by using CaCO3, Li2CO3 and
Na2CO3 for the gasification of
sewage sludge, wastepaper and
MSW, respectively.

Vamvuka et al. [77]

Poplar wood chips

Ru/activated carbon,
Ni/activated carbon,

KOH, Dolomite, Trona
and Borax

Batch reactor 300–600

• All the catalysts irrespective
of their type improved
gasification yields.

• KOH resulted in a high gas
yield and low residue yield.

• Ru/activated carbon had the
best activity for increasing
H2 yields.

Gökkaya et al. [78]

Willow wood chips - Bubbling fluidized
bed reactor 600–850

• High thermal stability and high
carbon conversion efficiency of
willow chips were observed.

Hai et al. [79]

3.5. Transesterification

Transesterification is the process by which non-edible oils react with alcohols (methanol
and ethanol) to produce biodiesel. These alcohols are widely used since they are easily
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available and inexpensive. Transesterification is known to decrease the viscosity of non-
edible oils and facilitate the formation of triglycerides into esters with easy miscibility in
diesel [80]. Figure 5 represents the process flow diagram for biodiesel production through
transesterification. The waste fat and oil are mixed with alcohol to produce methyl esters
and methanol. The methyl esters can be catalytically converted into glycerol and biodiesel.
The biodiesel methanol mixture can be further separated and re-used, whereas methyl ester
can be catalytically converted to glycerol and biodiesel [81].
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Biodiesel can be produced using homogeneous and heterogeneous acid and alkaline
catalysts. Due to their high activity, homogeneous catalysts are typically used in chemical
reactions. However, due to the difficulty in recovering the spent homogeneous catalysts,
the operating cost of the process could increase. Heterogeneous catalysts are relatively
easier for recovery and subsequent recyclability [82]. Additionally, mineral acids and
heterogeneous base catalysts are combined in solid acids catalysts of Brønsted type (e.g.,
materials containing sulfonic acid) and Lewis type (e.g., mixed sulfated oxides). How-
ever, the production of soap during transesterification using heterogeneous catalysts is a
drawback leading to challenges in product purification and separation [83].

The application of alkali catalysts can make the transesterification process faster with
better yields and product selectivity. Catalytic conversion of oil to biodiesel consists of acid-
catalyzed esterification and base-catalyzed transesterification. Acid catalysts are utilized
for esterification or free fatty acids (FFA). Some examples of acid catalysts are phosphoric
acid, sulfuric acid, organic sulfonic acids and hydrochloric acid [84]. Even though the use
of acid catalysts for transesterification makes it slower in comparison to alkali catalysis,
they are appropriate for glycerides that contain more water and FFAs. Some of the alkali
catalysts used for transesterification are NaOH, KOH, carbonates and alkoxides such as
sodium methoxide (CH3NaO) and sodium ethoxide (C2H5ONa) [85]. The alkali-catalyzed
transesterification is rapid as compared to acid catalysts. Regardless of catalytic or non-
catalytic routes, transesterification requires the separation of alcohol, oil, applied catalyst
and other impurities from the liquid products.

Some of the benefits of using solid acid catalysts include recyclability, product selectiv-
ity, regeneration and minimization of reactor corrosion [86]. Nevertheless, heterogeneous
catalytic processes can produce high-quality oils due to their sensitivity toward high FFAs.
Heteropoly acids (HPAs) are among the several solid acid catalysts effective for biodiesel
production due to their strong acidity and elevated tolerance to high FFA levels and water
content [87]. Some other advantages of HPAs are their elastic structure, exceptional dis-
persion and appropriate interaction with support materials. The surface area and thermal
stability of the catalyst are increased when HPAs are immobilized on a suitable support
material [88]. Careful consideration should be given to the support material’s surface area
and porosity, which can increase the catalyst’s effectiveness and activity.
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In enzyme-catalyzed transesterification, lipase enzyme acts as a bio-catalyst for trans-
esterification reactions [89]. Enzymes have a huge possibility for dropping the necessity
of high energy requirements and reducing the environmental complications in biodiesel
refineries. Enzymatic transesterification takes place at a comparatively lower temperature
as compared to other acid and base-catalyzed transesterification reactions to avoid the
loss of lipase activity. Since the lipase-catalyzed reactions require moderate temperature,
enzymatic transesterification is less energy-intensive. There are several benefits of enzy-
matic transesterification such as high selectivity, mild reaction conditions and availability
of a wide range of substrates. Nevertheless, the cost, stability and low recyclability of
enzymes are some of the limitations that require more research [90]. Table 6 summarizes
some notable work on the conversion of waste oils to biodiesel via transesterification.

Table 6. Summary of notable works on transesterification of waste oil and biomass to biodiesel.

Feedstock Catalyst Reactor Temperature (◦C) Observations Reference

Biomass from the
oleaginous yeast
Yarrowia lipolytica

cultivated on waste
cooking oil

H2SO4 - 65–110

• The optimized conditions for
transesterification involved the
temperature of 50 ◦C, reaction time of
8 h, sonication time of 5 min, 100 mL
methanol, 10 mL chloroform, 1 mL/g
catalyst and 4 g biomass.

Katre et al. [91]

Soyabean oil NaOH Stirred tank reactor 50

• The rate of reaction was strongly
influenced by catalyst loading,
reaction rate, oil-to-methanol ratio
and temperature.

Bashiri and
Pourbeiram [92]

Waste cooking oil CaO and Clay Heater equipped with
a magnetic agitator 45–55

• The conversion rate of 97% was
obtained under optimal conditions
such as a temperature of 55 ◦C, the
oil-to-methanol ratio of 1.94, catalyst
loading of 9.6 wt.%, toluene
concentration of 16.1 wt.% and
reaction time of 74 min.

• The catalyst was reusable up to
5 times.

Mohadesi et al. [93]

Waste frying oil NaOH Shake flask 55

• The blending of biodiesel with
commercial diesel was an effective
method to reduce its viscosity for
direct use in diesel engines.

Duti et al. [94]

Wet sewage sludge H2SO4 Hydrothermal reactor 70–160

• A high percentage of biodiesel was
obtained implying that the
hydrothermal process can stimulate
the transfer of lipids from feedstock to
the separating solvent.

Hu et al. [95]

4. Major Biofuel Products
4.1. Biochar

Biochar, a solid co-product of pyrolysis and high-temperature torrefaction, is rich in
carbon and can be prepared from several kinds of raw materials such as crop residues,
woody biomass and other solid wastes. Biochar is primarily composed of carbon and
smaller fractions of minerals based on the precursor or feedstock. It has been revealed that
the higher yields of biochar are inversely proportional to the pyrolysis temperatures. Hence,
the low pyrolysis temperature contributes to high yields of biochar, electrical conductivity
and cation-exchange capacity in addition to high levels of volatiles [96]. In contrast, biochar
obtained at higher temperatures has a greater surface area as well as carbon content.

Biochar is gaining popularity owing to its exclusive features such as a high percent-
age of carbon and cation exchange capacity, greater surface area and thermally stable
structure [96,97]. Similarly, due to the presence of a high percentage of carbon, the char
encompasses high energy content that in turn can be utilized to produce heat to prepare
activated carbon. Other applications of biochar are as a nutrient for soil remediation and
as a filtrate for pollutants. Biochar is also used as an adsorbent to sequester heavy metals
and organic micro-pollutants. Its ability to be used as an adsorbent results from its physico-
chemical properties such as distribution of pore size, surface area, functional groups and
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cation exchange capacity [98]. Recently, the utilization of biochar as a catalyst supports
particularly for the processes of upgrading bio-oil such as esterification, hydrotreating,
and hydrodeoxygenation is gaining a lot of attention [99]. Biochar is recently being recog-
nized as a promising bioresource as a fuel and reducing agent to replace coal and coke in
metallurgical processes [100].

Hydrochar is a carbon-rich product of hydrothermal conversion processes such as
hydrothermal gasification, hydrothermal liquefaction and hydrothermal carbonization.
They exhibit dissimilar physicochemical properties when compared with biochar due to
different operating conditions involved in their production. The atomic ratios of H/C and
O/C of hydrochar are relatively higher when compared to that of biochar [96]. Moreover,
hydrochar contains more oxygenated functional groups and is slightly acidic compared to
biochar [101]. On the other hand, biochar tends to display alkaline characteristics due to
the presence of alkali and alkaline earth metals [102]. This property of biochar is beneficial
for application to acidic soils for neutralization of the soil pH levels. Hydrochar also
exhibits a relatively low specific surface area and porosity when compared to biochar.
However, the properties of hydrochar could be tailored for various industrial applications
including catalysts support, activated carbon production, wastewater treatment, and soil
remediation [103].

4.2. Bio-Crude Oil

Bio-crude oil is an energy-rich liquid product that can be produced via thermochemical
routes such as hydrothermal liquefaction. Nevertheless, bio-crude oil obtained from both
the above-mentioned routes has some unwanted properties including a high amount of
moisture, high acidity, high tendency to corrode. These undesirable properties should be
eliminated before utilizing the bio-crude oil in refineries for co-processing or to be used as
a commercial fuel in transportation [104].

Algae are considered suitable as a feedstock for bio-crude oil production via HTL ow-
ing to their higher efficiency for photosynthesis, fast growth, no requirement of agricultural
lands, cultivation in wastewater, less dependency on nutrients, CO2 capture and fixation
and higher production of lipids [105]. Nowadays, bio-raw oil production from microalgae
is gaining popularity. The nitrogen recovery from unrefined oil is lower than that from
pure algae [106].

Bio-crude oil and bio-oil have a few unsought characteristics such as a high percentage
of moisture, high viscosity, greater ash content, a high fraction of oxygen, and a tendency to
corrode the reactors due to high acidity. These undesirable properties need remedy before
utilizing the bio-oil in the refineries and the power sectors. This is achieved by catalytic and
non-catalytic upgrading technologies (discussed earlier) that reduce the contents of oxygen,
nitrogen and sulfur from bio-crude and bio-oil along with enhancing their fuel properties
such as heating value, viscosity, reduced corrosivity, reduced polymerization and lower
emissions [107]. Therefore, it is imperative to enhance the bio-crude oil properties to make
it commercially viable via catalytic upgrading or any other economically viable upgrading
technologies. Specifically, a catalyst with high product selectivity, reactive performance,
low cost, durability, reusability and resistance to high temperatures and coking is mostly
preferred for upgrading bio-crude oil and bio-oil.

4.3. Bio-Oil

Bio-oil is defined as the key product derived from the pyrolysis of biomass. The
feature and yield of bio-oil are dependent on the residence time, temperature, heating
rate and biomass composition [108]. The major constituent of bio-oil is water which
generally comprises 30–40 wt.% of bio-oil [109]. The reason for the presence of water
could be attributed to the amount of moisture in the biomass as well as dehydration and
decarboxylation reactions taking place during pyrolysis [110]. Bio-oil also contains phenols,
hydrocarbon derivates and esters, concentrations of which depend on biomass properties
and process parameters. Bio-oil particularly obtained from the lignocellulosic biomass is a
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combination of the degraded product obtained from the hemicellulose, cellulose and lignin.
The specific degraded product from the cellulose and hemicellulose that are present in
bio-oil are acids, furans, sugars, aldehydes, esters and oxygenates [111].

The chemical composition of the biomass feedstock also performs a key role in the
characteristic and yield of bio-oil during thermochemical conversion processes. The major
issues related to the utilization of bio-oil are its low energy density, tendency to corrode the
reactor, high viscosity, thermal instability, polymerization and presence of a high percentage
of heteroatoms (e.g., oxygen, nitrogen and sulfur) [110]. In addition, bio-oil is known to be
chemically unstable and highly oxygenated in its raw form, thus requiring upgrading as
discussed earlier.

4.4. Syngas

Syngas is a major product of biomass to gas technologies such as gasification. It
comprises gaseous mixtures such as H2, CO2, CO and CH4 as the key components. Syngas
is an important intermediate in the chemical industry that can be used for the manufacture
of transportation fuels and green chemicals [70]. Another application of syngas is its direct
use as a fuel for generating electricity [112]. Hydrogen is an important constituent of
syngas. Owing to its exceptional properties has appeared as an ideal renewable future
energy carrier. Hydrogen is used in a variety of industrial applications including fuel cells,
synthesis of platform chemicals, medicines, aerospace, maritime purposes, metallurgy and
electrical devices.

The hydrogen economy is an anticipated system where hydrogen produced is widely
utilized as an energy carrier. The effective deployment of hydrogen economy will result in
several benefits concerning profitability, energy security, environment and end-users [113].
Although hydrogen energy is considered substitute energy, currently, its usage is restricted
only to small-scale operations. The major challenge associated with the large-scale pro-
duction of hydrogen energy is difficulty in the distribution and commercial application
of hydrogen energy [114]. As competition is absent in, hydrogen energy currently, the
governments are recommended to execute policies to promote the portable, stationary and
transportation applications of hydrogen energy.

4.5. Biodiesel

Biodiesel is one of the extensively recognized sustainable biofuels. The crucial fact for
the industrial manufacturing of biodiesel is the low cost of its feedstock, i.e., non-edible oils
as well as waste fats and oils. Biodiesel is preferred over traditional petrol and diesel due to
its characteristics such as non-toxicity, biodegradability and negligible levels of aromatics
and sulfur. With these properties, biodiesel or its blended counterparts can also perform
better than ultra-low sulfur fuel [115]. In most countries, B20 biodiesel blended fuel is
used, which is made of 6–20 vol.% biodiesel in fossil-based diesel fuel. The low biodiesel
fraction in B20 blended fuel makes it suitable for direct use in many diesel-fueled vehicles
worldwide without engine modification.

The commonly used precursors for generating biodiesel are triglyceride-based ma-
terials such as animal fat, vegetable oil (edible and non-edible), waste cooking oil, waste
industrial oil and algal oil. A variety of oilseed crops contribute to biodiesel production
such as mustard, soybean, camelina, cottonseed, canola, sunflower seed, peanuts and
rapeseeds as discussed earlier. Oilseeds have adequate quantities of fat that make their
extraction easy.

Biodiesel can be produced via transesterification using homogeneous and hetero-
geneous catalysts. Potassium methoxide (KOCH3), sodium hydroxide (NaOH), sodium
methoxide (NaOCH3), hydrochloric acid (HCl), sulfonic acid, organic sulfonic acid, sulfuric
acid (H2SO4) and iron sulfate are some common homogeneous alkali catalysts used for
biodiesel production. Some of the heterogeneous catalysts used are CaO, Ca(OH)2 and
CaCO3. Heterogeneous catalysts are recyclable, non-corrosive and more effective as com-
pared to homogenous catalysts [116]. It has been observed that biodiesel contributes to
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fewer emissions in comparison to diesel fuel. There are several reasons for biodiesel being
used as a substitute fuel such as sustainable and renewable energy solution, lesser influence
on climate, decrease in GHG emissions and feasible drop-in substitute to petro-diesel. By
replacing traditional fuels with biodiesel, emissions of particulate matter, CO2, CO and
unburned hydrocarbons can also be lessened.

5. Strengths, Weaknesses, Opportunities and Threats Analysis

As discussed in this review, some promising thermochemical technologies for bio-
fuel production from biomass are torrefaction, pyrolysis, liquefaction, gasification and
transesterification. Each of these technologies has advantages and limitations that are criti-
cal to understanding to determine their performance, commercialization aspects, techno-
economics and marketability of the products. The key summary of this review in the form of
strengths, weaknesses, opportunities and threats of these thermochemical waste-to-energy
technologies are shown in Table 7.

Table 7. Summary of strengths, weaknesses, opportunities and threats of thermochemical biomass
conversion technologies.

Technology Strengths Weaknesses Opportunities Threats

Torrefaction

• It can be used both as a
pretreatment and biomass
conversion technology.

• High energy content per
unit volume.

• Improves the calorific value
of biomass.

• Pelletizing torrefied
biomass makes its
transportation easy for
long-distance.

• Reduces moisture content.
• Low energy input.
• Reduced operating costs.

• Lower overall efficiency.
• Optimization of

torrefaction reactors is
essential to meet the
end-use necessities
financially and reach
product standardization
for the market.

• Torrefaction improves the
characteristics of
feedstock in numerous
ways and can be used as a
direct fuel.

• No catalyst is required.

• Volatilization of phenol,
acetone, and other
contaminants, makes
flue gas cleaning
more challenging.

Pyrolysis

• High efficiency.
• Probable applications of

produced compounds (e.g.,
tar, bio-oil, and char).

• Reduces greenhouse gases
and wastes going to
landfills.

• Requires lower energy
input for slow pyrolysis.

• Requires higher energy
input for fast pyrolysis.

• Complex product stream
• Difficulty in venting out

product gases without
treatment owing to high
concentrations of CO.

• Issues with recyclability
of homogeneous and
carbon-based catalysts.

• Extensive expertise
• Development of the

market for pyrolysis
liquid and char products.

• Feasibility is established
only in large-scale plants

• Not much efficient for
sewage sludge.

• High cost.

Liquefaction

• A promising method for
wet biomass.

• Drying is not necessary.
• Easy recovery of inorganics.
• Lower critical point.
• High-energy bio-crude is

obtained via hydrothermal
liquefaction and the product
is low in oxygen and
moisture content as
compared to pyrolysis
bio-crude.

• Possibility of corrosion.
• Salt deposition in

the reactor.
• No harmful solvents

are involved.
• Issues with recyclability

of homogeneous and
carbon-based catalysts.

• High energy efficiency.
• Apt for generating biofuels.

• The feedstock and the
conditions of the
production frequently
influence the chemical
and physical attributes of
bio-oil.

• Difficulty in eluting
heavy compounds that
remains uncharacterized
in the column.
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Table 7. Cont.

Technology Strengths Weaknesses Opportunities Threats

Gasification

• Syngas can be directly
utilized as a fuel or for
value-added products such
as synthetic natural gas,
chemicals, hydrogen,
kerosene, naphtha, etc.

• High operating cost.
• High maintenance cost.
• Issues with recyclability

of homogeneous and
carbon-based catalysts.

• Largescale operations
are possible.

• High unexploited potential.

• Lack of subsidies
to farmers.

• High cost.

Transesterification

• Short reaction times.
• The cost of the production

process is relatively lower.
• The reaction condition can

be regulated.
• The methanol generated in

the process can be recycled.

• Incidence of unsought
reactions

• Sensitivity of the catalysts
towards the existence of
water in the feedstock.

• High concentrations of
glycerol and methanol are
obtained as wastes.

• Issues with recyclability of
homogeneous catalysts.

• Large-scale production
is possible.

• High conversion of
the feedstocks.

• High biodiesel
blending requires
engine modification.

6. Conclusions

Waste biomass is an exceptional bioresource for valorization to usable forms of energy
carriers such as bio-oil, bio-crude oil, biodiesel, syngas, hydrogen and biochar. As reviewed in
this article, biomass can be categorized into agricultural and forestry biomass, energy crops,
oilseed crops, food waste, municipal solid waste and animal manure. These waste resources
can be converted to biofuel products through thermochemical technologies such as torrefaction,
pyrolysis, gasification, liquefaction and transesterification. Torrefaction results in the production
of torrefied biomass with reduced moisture content and increased heating value in a densified
form factor. Pyrolysis and liquefaction lead to the production of bio-oil and bio-crude oil because
of the thermal cracking of cellulose, hemicellulose, lignin and other organic matter present
in biomass under inert atmospheres and process conditions optimal to produce bio-oil and
bio-crude oil, respectively. Gasification results in the production of syngas, a mixture of H2 and
CO along with CO2 and CH4 under inert, air or hydrothermal conditions (i.e., steam and/or
supercritical water). Biochar is a co-product of pyrolysis and gasification that has a higher
content of fixed carbon. The aromaticity, thermal stability, calorific value, surface area and
porosity of biochar can be improved at higher temperatures. Biodiesel is generated through
transesterification of fatty acids and lipids in waste vegetable oil and/or animal fat mostly in the
presence of chemical or biocatalysts. Nonetheless, the yield and quality of the biofuel products
as well as the process efficiency depend on factors including biomass composition and process
conditions (i.e., temperature, pressure, reaction time, reactor type, applied catalyst, etc.). The
biofuel products can be used as drop-in alternatives to fossil fuels or as blends to reduce GHG
emissions, pollution, global warming and dependency on fossil fuels.
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