Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,669)

Search Parameters:
Keywords = gas- and liquid chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2733 KB  
Article
Comparative Lipidomics Unveils Species-Specific Lipid Signatures in Three Zanthoxylum Species
by Guangbo Xie, Sijia Xie, Leilei Du and Chu Chen
Foods 2026, 15(2), 372; https://doi.org/10.3390/foods15020372 - 20 Jan 2026
Abstract
Zanthoxylum species, commonly known as Sichuan pepper, are valued as food ingredients for their unique aroma and pungency. However, a comprehensive understanding of their lipid composition, which may serve as both flavor precursors and nutritional components, remains limited. In this study, we performed [...] Read more.
Zanthoxylum species, commonly known as Sichuan pepper, are valued as food ingredients for their unique aroma and pungency. However, a comprehensive understanding of their lipid composition, which may serve as both flavor precursors and nutritional components, remains limited. In this study, we performed a comparative lipidomic analysis of three economically important Zanthoxylum species (Z. bungeanum, Z. schinifolium, and Z. armatum) using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. Fatty acids were concurrently analyzed by gas chromatography. A total of 315 lipid molecules were identified and categorized into 53 fatty acyls, 132 glycerolipids, 50 glycerophospholipids, 46 sphingolipids, and 34 sterol lipids. Triacylglycerols (22.84–54.25%) and free fatty acids (28.07–39.61%) were the most abundant lipid subclasses. Multivariate statistical analysis revealed 44 significantly different lipid molecules among the species, and pathway enrichment analysis indicated glycerolipid metabolism as the most significantly altered pathway. Furthermore, fatty acid profiling showed a nutritionally balanced n-6/n-3 polyunsaturated fatty acid ratio (1.04–1.12). These species-specific lipid signatures not only provide a basis for varietal authentication but also highlight the potential of Zanthoxylum lipids in shaping flavor profiles and contributing to nutritional value, supporting their diversified application in food products. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

44 pages, 510 KB  
Review
Chromatographic Applications Supporting ISO 22002-100:2025 Requirements on Allergen Management, Food Fraud, and Control of Chemical and Packaging-Related Contaminants
by Eftychia G. Karageorgou, Nikoleta Andriana F. Ntereka and Victoria F. Samanidou
Separations 2026, 13(1), 39; https://doi.org/10.3390/separations13010039 - 20 Jan 2026
Abstract
ISO 22002-100:2025 introduces stringent and more technically explicit prerequisite programme (PRP) requirements for allergen management, food fraud mitigation, and the control of chemical and packaging-related contaminants across the food, feed, and packaging supply chain. This review examines how advanced chromatographic methods provide the [...] Read more.
ISO 22002-100:2025 introduces stringent and more technically explicit prerequisite programme (PRP) requirements for allergen management, food fraud mitigation, and the control of chemical and packaging-related contaminants across the food, feed, and packaging supply chain. This review examines how advanced chromatographic methods provide the analytical basis required to meet these requirements and to support alignment with GFSI-recognized certification schemes. Recent applications of liquid and gas chromatography coupled with mass spectrometry for allergen quantification, authenticity assessment, and the determination of packaging migrants, auxiliary chemical residues, lubricants, and indoor pest-control pesticides are presented to demonstrate their relevance as verification tools. Across these PRP-related controls, chromatographic methods enable trace-level detection, structural specificity, and reproducible measurement performance, thereby shifting PRP compliance from a documentation-based activity to a process verified through measurable analytical evidence. The review highlights significant progress in method development and simultaneous multi-target analytical approaches while also identifying remaining challenges related to matrix-appropriate validation, harmonization, and analytical coverage for chemical contamination, which is now formally defined as a measurable PRP requirement under ISO 22002-100:2025. Overall, the findings demonstrate that chromatographic analysis has become essential to demonstrating PRP effectiveness under ISO 22002-100:2025, supporting the broader shift toward evidence-based, scientifically robust food safety assurance. Full article
21 pages, 998 KB  
Article
Profiling the Aroma of Grape Spirits for Port Wine Using a Multi-Analytical GC Approach and Sensory Analysis
by Ilda Caldeira, Maria Loureiro, Nuno Martins, Sílvia Lourenço, Maria João Cabrita, Ricardo Silva, Sílvia M. Rocha and Fernando Alves
Appl. Sci. 2026, 16(2), 941; https://doi.org/10.3390/app16020941 - 16 Jan 2026
Viewed by 86
Abstract
Port wine production involves the addition of grape spirit to halt fermentation and retain natural sweetness. This spirit, produced by distilling wine and its by-products, must comply with legal standards, including a mandatory sensory assessment. Because grape spirit influences Port wine’s volatile composition, [...] Read more.
Port wine production involves the addition of grape spirit to halt fermentation and retain natural sweetness. This spirit, produced by distilling wine and its by-products, must comply with legal standards, including a mandatory sensory assessment. Because grape spirit influences Port wine’s volatile composition, this study investigated the odour-active compounds present in several grape spirits intended for fortification. Volatile compounds were extracted by liquid–liquid extraction, concentrated, and analysed using gas chromatography–olfactometry (GC-O) and gas chromatography–mass spectrometry (GC-MS). In GC-O, based on frequency detection, a panel of assessors sniffed the extracts to determine the presence of aroma compounds. The results revealed a wide range of odour-active compounds in grape spirits, belonging to several chemical families such as esters, alcohols, terpenic compounds and acids. These compounds exhibited both pleasant aromas, such as fruity, floral and caramel notes as well as undesirable ones like cheese and foot odour. Most of these compounds originate from the fermentation process and are also found in other unaged distilled beverages, including young Cognac, Calvados and fruit spirits. This research highlights the aromatic complexity of grape spirits and, for the first time, determined the aroma thresholds for 25 of 36 the compounds studied at an ethanol content of 20%. Full article
Show Figures

Figure 1

28 pages, 3256 KB  
Article
Comparative Analysis of Sonication, Microfluidics, and High-Turbulence Microreactors for the Fabrication and Scaling-Up of Diclofenac-Loaded Liposomes
by Iria Naveira-Souto, Roger Fabrega Alsina, Elisabet Rosell-Vives, Eloy Pena-Rodríguez, Francisco Fernandez-Campos, Jessica Malavia, Xavier Julia Camprodon, Maximilian Schelden, Nazende Günday-Türeli, Andrés Cruz-Conesa and Maria Lajarin-Reinares
Pharmaceutics 2026, 18(1), 105; https://doi.org/10.3390/pharmaceutics18010105 - 13 Jan 2026
Viewed by 246
Abstract
Background: Liposomes are attractive topical carriers, yet translating laboratory fabrication to scalable, well-controlled processes remains challenging. Objectives: We compared three manufacturing methods for diclofenac-loaded liposomes: probe sonication, microfluidic mixing, and a high-turbulence microreactor, under a Quality-by-Design framework. Methods: Differential scanning [...] Read more.
Background: Liposomes are attractive topical carriers, yet translating laboratory fabrication to scalable, well-controlled processes remains challenging. Objectives: We compared three manufacturing methods for diclofenac-loaded liposomes: probe sonication, microfluidic mixing, and a high-turbulence microreactor, under a Quality-by-Design framework. Methods: Differential scanning calorimetry (DSC) was used to define a processing-relevant liquid-crystalline temperature window for the lipid excipients. For sonication scale-up, a Plackett-Burman screening design identified key process factors and supported an energy-density (W·s·L−1) control approach. For microfluidics, the effects of flow-rate ratio (FRR) and total flow rate (TFR) were mapped and optimized using a desirability function. Microreactor trials were performed at elevated throughput. Residual ethanol during post-processing was monitored at-line by Raman spectroscopy calibrated against gas chromatography (GC). Particle size and dispersity were measured by DLS and morphology assessed by cryo-TEM. Results: DSC supported a 70–85 °C processing window. Sonication scale-up using an energy-density target (~11,000 W·s·L−1) reproduced lab-scale quality at 8 L (Z-average ~87–92 nm; PDI 0.16–0.23; %EE 86–94%). Microfluidics optimization selected FRR 3:1/TFR 4 mL·min−1, yielding ~64 nm liposomes with PDI ~0.13 and %EE ~93%. The microreactor achieved ~50 nm liposomes with %EE ~95% at 50 mL·min−1. Cryo-TEM corroborated size trends and showed no evident aggregates. Conclusions: All three routes met topical CQAs (~50–100 nm; PDI ≤ 0.30; high %EE). Method selection should be guided by target size/dispersity and operational constraints: sonication enables energy-based scale-up, microfluidics offers precise size control, and microreactors provide higher throughput. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

16 pages, 1437 KB  
Article
Inhibitory Effect of Trichoderma longibrachiatum on Growth of Fusarium Species and Accumulation of Fumonisins
by Ruiqing Zhu, Ying Li, María Viñas, Qing Kong, Manlin Xu, Xia Zhang, Xinying Song, Kang He and Zhiqing Guo
J. Fungi 2026, 12(1), 49; https://doi.org/10.3390/jof12010049 - 10 Jan 2026
Viewed by 256
Abstract
Fusarium spp. cause devastating crop diseases and produce carcinogenic mycotoxins such as fumonisins, threatening global food safety and human health. In this study, Trichoderma longibrachiatum A25011, isolated from apples in Aksu, Xinjiang, exhibited significant antagonistic activity with mycelial growth inhibition rates of 54.52% [...] Read more.
Fusarium spp. cause devastating crop diseases and produce carcinogenic mycotoxins such as fumonisins, threatening global food safety and human health. In this study, Trichoderma longibrachiatum A25011, isolated from apples in Aksu, Xinjiang, exhibited significant antagonistic activity with mycelial growth inhibition rates of 54.52% against F. verticillioides 48.62% against F. proliferatum, and 58.22% against F. oxysporum in confrontation assays. Enzyme activity detection revealed high chitinase (583.21 U/mg protein) and moderate cellulase (43.92 U/mg protein) production, which may have the capacity to degrade fungal cell walls. High-Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS/MS) analyses enabled the quantification of fungal hormones including gibberellin A3 (GA3, 2.44 mg/L), cytokinins (cis-zeatin riboside (CZR): 0.69 mg/L; trans-zeatin riboside (TZR): 0.004 mg/L; kinetin: 0.006 mg/L), and auxins (indole-3-acetic acid (IAA): 0.35 mg/L; abscisic acid: 0.06 mg/L). Application of a T. longibrachiatum A25011 spore suspension around the roots of peanut plants enhanced growth by 13.20% (height), 5.65% (stem and leaf biomass), and 39.13% (root biomass). Notably, A25011 reduced F. proliferatum-derived fumonisin accumulation in rice-based cultures by 93.58% (6 d) and 99.35% (10 d), suggesting biosynthetic suppression. The results demonstrated that T. longibrachiatum strain A25011 exhibited excellent biocontrol capability against Fusarium spp., proving its dual role in simultaneously suppressing fungal growth and fumonisin accumulation while promoting plant growth. T. longibrachiatum A25011 could be applied as a multifunctional biocontrol agent in sustainable agriculture in the future. Full article
(This article belongs to the Special Issue Advances in the Control of Plant Fungal Pathogens)
Show Figures

Figure 1

24 pages, 4531 KB  
Article
Combination of GC-IMS and Nano-LC/HRMS Reveals the Mechanism of Superheated Steam Glycosylation Modification in Improving Oyster Peptide Flavor
by Li-Hong Wang, Jun-Wei Zhang, Zong-Cai Tu, Xiao-Mei Sha, Yong-Yan Huang and Zi-Zi Hu
Foods 2026, 15(2), 236; https://doi.org/10.3390/foods15020236 - 9 Jan 2026
Viewed by 196
Abstract
This study investigated the effect of superheated steam (SS) assisted glycosylation modification on the flavor profile of oyster peptides (OP), and explored the correlation between key flavor compounds and glycosylation degree using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) and nano-scale Liquid Chromatography coupled with [...] Read more.
This study investigated the effect of superheated steam (SS) assisted glycosylation modification on the flavor profile of oyster peptides (OP), and explored the correlation between key flavor compounds and glycosylation degree using Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) and nano-scale Liquid Chromatography coupled with High-Resolution Mass Spectrometry (nano-LC/HRMS). The results indicated that SS treatment accelerated the glycosylation process, reduced free amino groups level, and distinguished their unique flavor through E-nose. GC-IMS analysis detected 64 signal peaks including 13 aldehydes, 6 ketones, 7 esters, 6 alcohols, 2 acids, 2 furans and 5 other substances. And it was revealed that SS-mediated glycosylation treatment reduced the levels of fishy odorants like Heptanal and Nonanal, while promoting the pleasant-smelling alcohols and esters. In addition, Pearson correlation showed a positive correlation between excessive glycation and the increase in aldehydes, which might cause the recurrence of undesirable fishy notes. Further nano-LC/HRMS analysis revealed that arginine and lysine acted as the main sites for glycosylation modification. Notably, glycosylated peptides such as KAFGHENEALVRK, DSRAATSPGELGVTIEGPKE, generated by mild SS treatment could convert into ketones and pyrazines in subsequent reactions, thereby contributing to overall sensory enhancement. In conclusion, SS treatment at 110 °C for 1 min significantly improved the flavor quality of OP and sustains improvement in subsequent stages, providing theoretical support for flavor optimization of oyster peptides. Full article
Show Figures

Graphical abstract

30 pages, 6438 KB  
Article
The Role of Zinc Oxide Nanoparticles in Boosting Tomato Leaf Quality and Antimicrobial Potency
by Mostafa Ahmed, Sally I. Abd-El Fatah, Abdulrhman Sayed Shaker, Zoltán Tóth and Kincső Decsi
Oxygen 2026, 6(1), 2; https://doi.org/10.3390/oxygen6010002 - 8 Jan 2026
Viewed by 183
Abstract
Salt stress is a major agricultural issue. A promising modern agriculture method is the foliar treatment of zinc oxide nanoparticles (ZnONPs). This approach has shown promise in boosting challenged tomato yields, fruit quality, and leaf extract antibacterial activity against pathogens. A greenhouse experiment [...] Read more.
Salt stress is a major agricultural issue. A promising modern agriculture method is the foliar treatment of zinc oxide nanoparticles (ZnONPs). This approach has shown promise in boosting challenged tomato yields, fruit quality, and leaf extract antibacterial activity against pathogens. A greenhouse experiment was conducted. The previously synthesized and characterized ZnONPs were used to alleviate the harmful effects of NaCl stress. Tomato fruit weight from different treatments was determined, and the gas–liquid chromatography device was used to observe the changes in fatty acid production. The antimicrobial activities of the aqueous and diethyl ether extracts from tomato leaves were determined against six bacterial and six fungal strains. The plants that were salinity-stressed and sprayed with 0.075 and 0.15 g/L ZnONPs showed a better improvement compared to the salinity-stressed plants. Also, the sprayed plants that were not stressed at all showed promising results compared to the control and the other different treatments. Through the process of molecular docking, it was shown that caffeic acid, ferulic acid, p-coumaric acid, sinapic acid, and apigenin-7-glucoside are essential chemicals that possess antibacterial and antifungal effects against the DNA Gyrase inhibitor and the sterol 14-alpha demethylase (CYP51) enzyme, respectively. It is concluded that salt stress can negatively affect the growth, quality, and variant plant features. However, the foliar application of ZnONPs is able to overcome those adverse effects in the stressed plants, and enhance the non-stressed as well. Full article
Show Figures

Figure 1

21 pages, 435 KB  
Systematic Review
Design Implications of Headspace Ratio VHS/Vtot on Pressure Stability, Gas Composition and Methane Productivity—A Systematic Review
by Meneses-Quelal Orlando
Energies 2026, 19(1), 193; https://doi.org/10.3390/en19010193 - 30 Dec 2025
Viewed by 346
Abstract
Headspace (HS) in anaerobic batch biodigesters is a critical design parameter that modulates pressure stability, gas–liquid equilibrium, and methanogenic productivity. This systematic review, guided by PRISMA 2020, analyzed 84 studies published between 2015 and 2025, of which 64 were included in the qualitative [...] Read more.
Headspace (HS) in anaerobic batch biodigesters is a critical design parameter that modulates pressure stability, gas–liquid equilibrium, and methanogenic productivity. This systematic review, guided by PRISMA 2020, analyzed 84 studies published between 2015 and 2025, of which 64 were included in the qualitative and quantitative synthesis. The interplay between headspace volume fraction VHS/Vtot, operating pressure, and normalized methane yield was assessed, explicitly integrating safety and instrumentation requirements. In laboratory settings, maintaining a headspace volume fraction (HSVF) of 0.30–0.50 with continuous pressure monitoring P(t) and gas chromatography reduces volumetric uncertainty to below 5–8% and establishes reference yields of 300–430 NmL CH4 g−1 VS at 35 °C. At the pilot scale, operation at 3–4 bar absolute increases the CH4 fraction by 10–20 percentage points relative to ~1 bar, while maintaining yields of 0.28–0.35 L CH4 g COD−1 and production rates of 0.8–1.5 Nm3 CH4 m−3 d−1 under OLRs of 4–30 kg COD m−3 d−1, provided pH stabilizes at 7.2–7.6 and the free NH3 fraction remains below inhibitory thresholds. At full scale, gas domes sized to buffer pressure peaks and equipped with continuous pressure and flow monitoring feed predictive models (AUC > 0.85) that reduce the incidence of foaming and unplanned shutdowns, while the integration of desulfurization and condensate management keep corrosion at acceptable levels. Rational sizing of HS is essential to standardize BMP tests, correctly interpret the physicochemical effects of HS on CO2 solubility, and distinguish them from intrinsic methanogenesis. We recommend explicitly reporting standardized metrics (Nm3 CH4 m−3 d−1, NmL CH4 g−1 VS, L CH4 g COD−1), absolute or relative pressure, HSVF, and the analytical method as a basis for comparability and coupled thermodynamic modeling. While this review primarily focuses on batch (discontinuous) anaerobic digesters, insights from semi-continuous and continuous systems are cited for context where relevant to scale-up and headspace dynamics, without expanding the main scope beyond batch systems. Full article
(This article belongs to the Special Issue Research on Conversion for Utilization of the Biogas and Natural Gas)
Show Figures

Figure 1

23 pages, 2953 KB  
Article
Green Valorization of Parapenaeus longirostris By-Products Through Ultrasound-Assisted Extraction of Astaxanthin with Extra Virgin Olive Oil: Application in Functional Trahanas with Enhanced Stability and Consumer Acceptability
by Ioannis Panagiotakopoulos, Haralabos C. Karantonis, Ioannis Geraris Kartelias and Constantina Nasopoulou
Sustainability 2026, 18(1), 272; https://doi.org/10.3390/su18010272 - 26 Dec 2025
Viewed by 268
Abstract
Astaxanthin, a potent antioxidant, has attracted growing interest for its applications in the food, pharmaceutical, and cosmetic industries. This study aims to optimize the green extraction of astaxanthin from shrimp (Parapenaeus longirostris) by-products using ultrasound-assisted extraction (UAE) with extra virgin olive [...] Read more.
Astaxanthin, a potent antioxidant, has attracted growing interest for its applications in the food, pharmaceutical, and cosmetic industries. This study aims to optimize the green extraction of astaxanthin from shrimp (Parapenaeus longirostris) by-products using ultrasound-assisted extraction (UAE) with extra virgin olive oil (EVOO) as a sustainable solvent, and explore its application in trahana fortification, a traditional Greek fermented cereal-based product. Response Surface Methodology (RSM) was applied to optimize astaxanthin extraction conditions (extraction time, liquid-to-solid (L/S) ratio, and ultrasound amplitude). Fatty acid analysis was performed with gas chromatography (GC-FID), and sensory analysis was conducted using a 7-point hedonic scale for sensory attributes. The optimal UAE conditions for astaxanthin, determined by RSM, were 228 min extraction time, a 65:1 liquid-to-solid ratio, and 41% ultrasound amplitude, predicting 83.50 μg astaxanthin/g by-product. At the optimal conditions, the experimentally obtained yield of 76.75 ± 1.17 μg astaxanthin/g by-product fell within the 95% confidence interval of the predicted value. The enriched trahanas retained nutritionally relevant levels after cooking (46.35 ± 0.60 μg astaxanthin per 60 g serving). Accelerated storage testing at 65 °C for six days was used to assess the thermal stability of astaxanthin in enriched trahanas. Based on first-order degradation kinetics and Arrhenius-based extrapolation of literature-derived activation energy values, astaxanthin retention above 80% at 25 °C was estimated to be maintained for approximately 27–51 days. Thereafter, progressive degradation is expected, with the estimated half-life ranging from 85 to 159 days. GC-FID analysis revealed favorable incorporation of bioactive lipids, including omega-3 fatty acids (EPA and DHA). Sensory evaluation demonstrated enhanced consumer acceptability, with enriched samples scoring significantly higher in appearance, aroma, and overall acceptance compared to traditional trahanas. These findings highlight UAE as an efficient and environmentally friendly strategy for recovering astaxanthin from seafood by-products and for developing functional cereal-based foods that align with sustainability. This work demonstrates the effective use of extra virgin olive oil as a green extraction solvent that also serves as a nutritional carrier, enabling the enrichment of trahanas with astaxanthin. The approach ensures both nutritional stability and consumer acceptability, providing a practical pathway for the development of sustainable, functional cereal-based foods. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

22 pages, 3316 KB  
Article
Integrating Genome Mining and Untargeted Metabolomics to Uncover the Chemical Diversity of Streptomyces galbus I339, a Strain from the Unique Brazilian Caatinga Biome
by Edson Alexandre Nascimento-Silva, André Luiz Leocádio de Souza Matos, Thalisson Amorim de Souza, Anauara Lima e Silva, Lucas Silva Abreu, Monalisa Mota Merces, Renata Priscila Almeida Silva, Ubiratan Ribeiro da Silva Filho, Adrielly Silva Albuquerque de Andrade, Josean Fechine Tavares, Celso José Bruno de Oliveira, Patrícia Emilia Naves Givisiez, Demetrius Antonio Machado de Araújo, Valnês da Silva Rodrigues-Junior and Samuel Paulo Cibulski
DNA 2026, 6(1), 1; https://doi.org/10.3390/dna6010001 - 24 Dec 2025
Viewed by 365
Abstract
Background/Objectives: The escalating antimicrobial resistance crisis underscores the urgent need to explore underexplored ecological niches as reservoirs of novel bioactive compounds. The Brazilian Caatinga, a unique semi-arid biome, represents a promising reservoir for microbial discovery. Methods: In this study, we report [...] Read more.
Background/Objectives: The escalating antimicrobial resistance crisis underscores the urgent need to explore underexplored ecological niches as reservoirs of novel bioactive compounds. The Brazilian Caatinga, a unique semi-arid biome, represents a promising reservoir for microbial discovery. Methods: In this study, we report the polyphasic characterization of Streptomyces galbus I339, a strain isolated from Caatinga soil. Whole-genome sequencing and phylogenomic analysis confirmed its taxonomic identity. In silico mining of the genome was conducted to assess biosynthetic potential. This genetic promise was experimentally validated through an integrated metabolomic approach, including liquid chromatography-tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS) profiling. The anti-mycobacterial activity of the crude extract was evaluated against Mycobacterium tuberculosis. Results: The strain S. galbus I339 possesses a 7.55 Mbp genome with a high GC content (73.17%). Genome mining uncovered a remarkable biosynthetic potential, with 45 biosynthetic gene clusters (BGCs) predicted, including those for known antibiotics like actinomycins, as well as numerous orphan clusters. Genome mining uncovered a remarkable biosynthetic potential, with 45 biosynthetic gene clusters (BGCs) predicted, including those for known antibiotics like actinomycins, as well as numerous orphan clusters. Metabolomic analyses confirmed the production of actinomycins and identified abundant diketopiperazines. Furthermore, the crude extract exhibited antimycobacterial activity, with a potent MIC of 0.625 µg/mL. Conclusions: The convergence of genomic and metabolomic data not only validates the expression of a fraction of this strain’s biosynthetic arsenal but also highlights a significant untapped potential, with the majority of BGCs remaining silent under the tested conditions. Our work establishes S. galbus I339 as a compelling candidate for biodiscovery and underscores the value of integrating genomics and metabolomics to unlock the chemical diversity of microbes from extreme environments. Full article
Show Figures

Graphical abstract

15 pages, 1130 KB  
Article
Determination of Energy Interaction Parameters for the UNIFAC Model Based on Solvent Activity Coefficients in Benzene–D2EHPA and Toluene–D2EHPA Systems
by Vladimir Glebovich Povarov, Olga Vladimirovna Cheremisina and Daria Artemovna Alferova
Chemistry 2026, 8(1), 2; https://doi.org/10.3390/chemistry8010002 - 23 Dec 2025
Viewed by 294
Abstract
This study examines the activity coefficients of benzene, toluene, and di-(2-ethylhexyl)phosphoric acid (D2EHPA) in binary benzene–D2EHPA and toluene–D2EHPA systems, as well as the ternary n-hexane–toluene–D2EHPA system, using gas chromatography at 293.0 K. The primary objective was to determine UNIFAC model interaction parameters and [...] Read more.
This study examines the activity coefficients of benzene, toluene, and di-(2-ethylhexyl)phosphoric acid (D2EHPA) in binary benzene–D2EHPA and toluene–D2EHPA systems, as well as the ternary n-hexane–toluene–D2EHPA system, using gas chromatography at 293.0 K. The primary objective was to determine UNIFAC model interaction parameters and validate their accuracy for predicting thermodynamic behavior in these systems. Experimental measurements revealed activity coefficient maxima for benzene and toluene at mole fractions of 0.8–0.9, decreasing to 0.46–0.67 in dilute solutions. The UNIFAC interaction parameters were calculated as follows: ACH–HPO4 (−334, 4605), ACCH3–HPO4 (680, 467), and refined CH2–HPO4 (54, 1199). The UNIFAC model achieved deviations of less than 2% from experimental data in both binary and ternary systems. A novel methodology incorporating intermediate standards for gas chromatography was developed to overcome challenges in measuring volatile solvent concentrations, enhancing measurement precision. These findings enable accurate prediction of activity coefficients in mixtures of alkanes, cycloalkanes, and monoaromatic hydrocarbons with D2EHPA, offering significant implications for optimizing metal liquid–liquid extraction processes. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

20 pages, 439 KB  
Article
Phytochemical Profile of Convolvulus cantabrica Extracts and Their Biological Activity
by Khaled Ben Elwalid Mahdadi, Zina Allaoua, Mohamed Sabri Bensaad, Fatima Belahssini, Chawki Bensouici, Diana C. G. A. Pinto, Yavuz Selim Cakmak, Hamada Haba, Dimitris Mossialos, Dimitrios Stagos and Salah Akkal
Molecules 2026, 31(1), 58; https://doi.org/10.3390/molecules31010058 - 23 Dec 2025
Viewed by 444
Abstract
The present work provides a detailed study of Convolvulus cantabrica L., a plant belonging to the family Convolvulaceae and the genus Convolvulus. The selection of this plant was based on the long-standing ethnobotanical relevance of its genus, which was attributed to the [...] Read more.
The present work provides a detailed study of Convolvulus cantabrica L., a plant belonging to the family Convolvulaceae and the genus Convolvulus. The selection of this plant was based on the long-standing ethnobotanical relevance of its genus, which was attributed to the richness of its species in phenolic and flavonoids compounds. Moreover, this species as remained unexplored to date. Our investigation includes both chemical and biological aspects. To assess the chemical composition of the hydroalcoholic extract of the plant, High-Performance Liquid Chromatography (HPLC) analysis was performed. Rosmarinic Acid (161.9 ppm) and Chlorogenic Acid (153.8 ppm) had the highest concentrations. Gas Chromatography–Mass Spectrometry (GC-MS) analysis demonstrated the presence of Fatty Acids and Esters (70.81%), sesquiterpene and diterpenes (19.51%) and fatty alcohols (6.02%). In addition, the ethyl acetate extract exhibited the highest phenolic contents (606.42 µg/mL) and flavonoid contents (363.75 µg/mL). The tested extracts, especially the ethyl acetate and butanol extracts, exhibited strong antioxidant capacity in DPPH (IC50: 13.60 ± 1.30 µg/mL for ethyl acetate extract and 17.69 ± 1.17 µg/mL for butanol extract), ABTS (IC50: 7.26 ± 0.01 µg/mL for ethyl acetate extract and 6.90 ± 0.18 µg/mL for butanol extract) and FRP (IC50: 14.89 ± 0.90 µg/mL for ethyl acetate extract and 23.14 ± 0.60 µg/mL for butanol extract) assays compared with extracts from other species of this genus. Moreover, the petroleum ether extract demonstrated anti-inflammatory activity (IC50: 419.30 ± 4.48 µg/mL). Regarding antibacterial activity, the plant extracts, especially the ethyl acetate, hydroalcoholic and petroleum ether extracts, inhibited the growth of Bacillus cereus. Overall, our data indicate that Convolvulus cantabrica L., is rich in secondary metabolites, particularly polyphenols, and exhibits significant biological activities, especially antioxidant properties. These results validate the traditional use of C. cantabrica and position it as a promising source of natural antioxidants with potential pharmaceutical and nutraceutical applications. Full article
(This article belongs to the Special Issue Chemopreventive Activity of Natural Products)
Show Figures

Figure 1

33 pages, 1248 KB  
Review
Gas Chromatography–Mass Spectrometry (GC-MS) in the Plant Metabolomics Toolbox: Sample Preparation and Instrumental Analysis
by Nadezhda Frolova, Anastasia Orlova, Veronika Popova, Tatiana Bilova and Andrej Frolov
Biomolecules 2026, 16(1), 16; https://doi.org/10.3390/biom16010016 - 22 Dec 2025
Viewed by 911
Abstract
Metabolomics, which is typically referred to as the post-genomic methodology addressing low-molecular-weight metabolites, became a powerful tool in post-genomic research over the last two decades. Indeed, the state-of-the-art metabolomics relies on several well-established complementary platforms—nuclear magnetic resonance (NMR) spectroscopy, liquid and gas chromatography [...] Read more.
Metabolomics, which is typically referred to as the post-genomic methodology addressing low-molecular-weight metabolites, became a powerful tool in post-genomic research over the last two decades. Indeed, the state-of-the-art metabolomics relies on several well-established complementary platforms—nuclear magnetic resonance (NMR) spectroscopy, liquid and gas chromatography coupled on-line with mass spectrometry (LC- and GC-MS, respectively), and capillary electrophoresis–mass spectrometry (CE-MS). Among them, GC-MS represents one of the oldest and most well-established techniques currently employed in the metabolomics of volatile compounds and non-volatiles—polar low-molecular-weight metabolites, which can be efficiently converted in volatile form by comprehensive derivatization of polar functional groups. Currently, GC-MS is established as the principal analytical method for characterizing primary plant metabolism, although other methods also contribute significantly to determining the complete metabolite profile. Therefore, here, we address the role of GC-MS in plant metabolomics and its potential for the profiling of low-molecular-weight metabolites. Further, we comprehensively review the methods of sample preparation with special emphasis on extraction and derivatization approaches, which are currently employed to improve the method performance and its metabolome coverage. Full article
Show Figures

Figure 1

15 pages, 2839 KB  
Article
Comprehensive Characterization of Organic Pollutants in Wastewater from Acrylic Fiber Production
by Laizhen Xie, Mengting Cheng and Xianliang Qiao
Water 2026, 18(1), 24; https://doi.org/10.3390/w18010024 - 21 Dec 2025
Viewed by 349
Abstract
China is the world’s largest producer of acrylic fiber, and the wastewater generated from its production contains a significant amount of biologically refractory organic pollutants. However, comprehensive screening studies on organic compounds in such wastewater remain limited, which hampers effective wastewater treatment and [...] Read more.
China is the world’s largest producer of acrylic fiber, and the wastewater generated from its production contains a significant amount of biologically refractory organic pollutants. However, comprehensive screening studies on organic compounds in such wastewater remain limited, which hampers effective wastewater treatment and ecological risk management to some extent. In this study, high-resolution mass spectrometry (HRMS) was combined with comprehensive two-dimensional gas chromatography (GC×GC) and ultra-performance liquid chromatography, along with multiple characterization techniques—including proton nuclear magnetic resonance spectroscopy, infrared spectroscopy, and fluorescence spectroscopy—to qualitatively analyze organic compounds present in wastewater from four stages of wet-spun acrylic fiber production: acrylonitrile mixed wastewater, polymerization wastewater, spinning wastewater, and final mixed wastewater. The results indicated that sulfonate esters, various other esters, alkanes, heterocyclic compounds, aromatic compounds, and substances containing multiple conjugated systems were commonly present across all four sample types, potentially contributing to the poor biodegradability of the wastewater. Additionally, a higher abundance of volatile organic compounds was detected in the mixed wastewater, while acrylonitrile appeared to be more concentrated in the spinning wastewater. The complementary use of spectral analysis, proton nuclear magnetic resonance, and HRMS provided a robust analytical foundation for identifying organic pollutants in acrylic fiber production wastewater. Full article
Show Figures

Figure 1

19 pages, 4844 KB  
Article
Comparison of Flavor Characteristics and Metabolite Basis of Oolong Tea from Six Different Tea Plant Cultivars Under High- and Low-Altitude Conditions
by Yuting Li, Shuaibo Shao, Siwei Deng, Zhendong Zhang, Yu Pan, Xingyuan Yao, Chengzhe Zhou, Zhong Wang and Yuqiong Guo
Plants 2026, 15(1), 23; https://doi.org/10.3390/plants15010023 - 21 Dec 2025
Viewed by 544
Abstract
Oolong tea presents notable variations in taste profile and aroma characteristics under different cultivation conditions, particularly across altitudes. However, systematic investigations into the altitude-induced differences in key taste compounds and aroma composition remain limited. In this study, we examined six oolong tea cultivars, [...] Read more.
Oolong tea presents notable variations in taste profile and aroma characteristics under different cultivation conditions, particularly across altitudes. However, systematic investigations into the altitude-induced differences in key taste compounds and aroma composition remain limited. In this study, we examined six oolong tea cultivars, comparing their taste-related chemical constituents and aroma profiles under high- and low-altitude cultivation. Sensory evaluation, high-performance liquid chromatography (HPLC) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were employed to characterize these differences. Sensory evaluation revealed that high-altitude oolong teas exhibited enhanced umami, sweetness, and floral intensity. In most cultivars, the levels of free amino acids, polyphenols, and soluble sugar were relatively higher under high-altitude conditions. HS-SPME-GC-MS identified 55 common volatile organic compounds (VOCs), with terpenes and esters comprising the largest number of compounds. Identification by partial least squares discriminant analysis (PLS-DA) combined with relative odor activity value (rOAV) screening yielded 22 candidate differential volatile organic compounds. Floral monoterpenes, including linalool, linalool oxide II and geraniol, were consistently higher in high-altitude teas, whereas most other volatiles varied primarily with cultivar rather than altitude. These chemical patterns are consistent with the sensory finding of stronger floral intensity in high-altitude samples. This study provides theoretical insights for cultivar selection and quality improvement of oolong tea grown in high-altitude regions. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

Back to TopTop