Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (450)

Search Parameters:
Keywords = gas storage reservoir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2344 KiB  
Article
Study on the Risk of Reservoir Wellbore Collapse Throughout the Full Life Cycle of the Qianmiqiao Bridge Carbonate Rock Gas Storage Reservoir
by Yan Yu, Fuchun Tian, Feixiang Qin, Biao Zhang, Shuzhao Guo, Qingqin Cai, Zhao Chi and Chengyun Ma
Processes 2025, 13(8), 2480; https://doi.org/10.3390/pr13082480 - 6 Aug 2025
Abstract
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress [...] Read more.
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress in the Bs8 well (Qianmiqiao carbonate UGS) during drilling, acidizing, and injection-production operations, establishing a quantitative risk assessment model based on the Mohr–Coulomb criterion. Results indicate a significantly higher wellbore instability risk during drilling and initial gas injection stages, primarily manifested as shear failure, with greater severity observed in deeper well sections (e.g., 4277 m) due to higher in situ stresses. During acidizing, while the wellbore acid column pressure can reduce principal stress differences, the process also significantly weakens rock strength (e.g., by approximately 30%), inherently increasing the risk of wellbore instability, though the primary collapse mode remains shallow shear breakout. In the injection-production phase, increasing formation pressure is identified as the dominant factor, shifting the collapse mode from initial shallow shear failure to predominant wide shear collapse, notably at 90°/270° from the maximum horizontal stress direction, thereby significantly expanding the unstable zone. This dynamic assessment method provides crucial theoretical support for full life cycle integrity management and optimizing safe operation strategies for carbonate gas storage wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 12136 KiB  
Article
Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach
by Alberto Manuel Garcia Navarro, Celine Eid, Vera Rocca, Christoforos Benetatos, Claudio De Luca, Giovanni Onorato and Riccardo Lanari
Remote Sens. 2025, 17(15), 2645; https://doi.org/10.3390/rs17152645 - 30 Jul 2025
Viewed by 288
Abstract
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human [...] Read more.
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human activities (e.g., ground water production and underground gas storage—UGS). We apply a multidisciplinary approach integrating subsurface geology, ground water production, advanced differential interferometry synthetic aperture radar—DInSAR, gas storage data, and land use information to characterize and analyze the spatial and temporal variations in vertical ground deformations. Seasonal and trend decomposition using loess (STL) and cluster analysis techniques are applied to historical DInSAR vertical time series, targeting three representatives areas close to the city of Bologna. The main contribution of the study is the attempt to correlate the lateral extension of ground water bodies with seasonal ground deformations and water production data; the results are validated via knowledge of the geological characteristics of the uppermost part of the Po Plain area. Distinct seasonal patterns are identified and correlated with ground water production withdrawal and UGS operations. The results highlight the influence of superficial aquifer characteristics—particularly the geometry, lateral extent, and hydraulic properties of sedimentary bodies—on the ground movements behavior. This case study outlines an effective multidisciplinary approach for subsidence characterization providing critical insights for risk assessment and mitigation strategies, relevant for the future development of CO2 and hydrogen storage in depleted reservoirs and saline aquifers. Full article
Show Figures

Figure 1

38 pages, 6652 KiB  
Review
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
by Aleksandra Kaczmarek and Jan Blachowski
Remote Sens. 2025, 17(15), 2628; https://doi.org/10.3390/rs17152628 - 29 Jul 2025
Viewed by 344
Abstract
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, [...] Read more.
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, leakage, seismic activity, and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage, while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods, distinguishing geodetic surveys and remote sensing techniques. Remote sensing, including active methods such as InSAR and LiDAR, and passive methods of multispectral and hyperspectral imaging, provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS, with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

20 pages, 6495 KiB  
Article
Fractal Characterization of Pore Structures in Marine–Continental Transitional Shale Gas Reservoirs: A Case Study of the Shanxi Formation in the Ordos Basin
by Jiao Zhang, Wei Dang, Qin Zhang, Xiaofeng Wang, Guichao Du, Changan Shan, Yunze Lei, Lindong Shangguan, Yankai Xue and Xin Zhang
Energies 2025, 18(15), 4013; https://doi.org/10.3390/en18154013 - 28 Jul 2025
Viewed by 353
Abstract
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, [...] Read more.
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, high-pressure mercury intrusion, N2 adsorption, and CO2 adsorption techniques, combined with fractal geometry modeling, were employed to characterize the pore structure of the Shanxi Formation marine–continental transitional shale. The shale exhibits generally high TOC content and abundant clay minerals, indicating strong hydrocarbon-generation potential. The pore size distribution is multi-modal: micropores and mesopores dominate, contributing the majority of the specific surface area and pore volume, whereas macropores display a single-peak distribution. Fractal analysis reveals that micropores have high fractal dimensions and structural regularity, mesopores exhibit dual-fractal characteristics, and macropores show large variations in fractal dimension. Characteristics of pore structure is primarily controlled by TOC content and mineral composition. These findings provide a quantitative basis for evaluating shale reservoir quality, understanding gas storage mechanisms, and optimizing strategies for sustainable of oil and gas development in marine–continental transitional shales. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

20 pages, 5871 KiB  
Article
Carbon Management and Storage for Oltenia: Tackling Romania’s Decarbonization Goals
by Liviu Dumitrache, Silvian Suditu, Gheorghe Branoiu, Daniela Neagu and Marian Dacian Alecu
Sustainability 2025, 17(15), 6793; https://doi.org/10.3390/su17156793 - 25 Jul 2025
Viewed by 427
Abstract
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir [...] Read more.
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir engineering data for the formations of the Bibești-Bulbuceni structure, which is part of the western Moesian Platform. The static model incorporated realistic petrophysical inputs for the Meotian reservoirs. Dynamic simulations were performed using Eclipse compositional simulator with Peng–Robinson equation of state for a CH4-CO2 system. The model was initialized with natural gas initially in place at 149 bar reservoir pressure, then produced through depletion to 20.85 bar final pressure, achieving 80% recovery factor. CO2 injection simulations modeled a phased 19-well injection program over 25 years, with individual well constraints of 100 bar bottom-hole pressure and 200,000 Sm3/day injection rates. Results demonstrate successful injection of a 60 Mt CO2, with final reservoir pressure reaching 101 bar. The modeling framework validates the technical feasibility of transforming Turceni’s power generation into a net-zero process through CCS implementation. Key limitations include simplified geochemical interactions and relying on historical data with associated uncertainties. This study provides quantitative evidence for CCS viability in depleted hydrocarbon reservoirs, supporting industrial decarbonization strategies. The strategy not only aligns with the EU’s climate-neutral policy but also enhances local energy security by repurposing existing geological resources. The findings highlight the potential of CCS to bridge the gap between current energy systems and a sustainable, climate-neutral future. Full article
Show Figures

Figure 1

31 pages, 14609 KiB  
Article
Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China
by Xianglong Fang, Feng Qiu, Longyong Shu, Zhonggang Huo, Zhentao Li and Yidong Cai
Energies 2025, 18(15), 3987; https://doi.org/10.3390/en18153987 - 25 Jul 2025
Viewed by 249
Abstract
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal [...] Read more.
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal seam in the Yulin area of Ordos basin as the research subject. Based on the test results from core drilling wells, a comprehensive analysis of the characteristics and variation patterns of coal reservoir properties and a comparative analysis of the exploration and development potential of deep CBM are conducted, aiming to provide guidance for the development of deep CBM in the Ordos basin. The research results indicate that the coal seams are primarily composed of primary structure coal, with semi-bright to bright being the dominant macroscopic coal types. The maximum vitrinite reflectance (Ro,max) ranges between 1.99% and 2.24%, the organic is type III, and the high Vitrinite content provides a substantial material basis for the generation of CBM. Longitudinally, influenced by sedimentary environment and plant types, the lower part of the coal seam exhibits higher Vitrinite content and fixed carbon (FCad). The pore morphology is mainly characterized by wedge-shaped/parallel plate-shaped pores and open ventilation pores, with good connectivity, which is favorable for the storage and output of CBM. Micropores (<2 nm) have the highest volume proportion, showing an increasing trend with burial depth, and due to interlayer sliding and capillary condensation, the pore size (<2 nm) distribution follows an N shape. The full-scale pore heterogeneity (fractal dimension) gradually increases with increasing buried depth. Macroscopic fractures are mostly found in bright coal bands, while microscopic fractures are more developed in Vitrinite, showing a positive correlation between fracture density and Vitrinite content. The porosity and permeability conditions of reservoirs are comparable to the Daning–Jixian block, mostly constituting oversaturated gas reservoirs with a critical depth of 2400–2600 m and a high proportion of free gas, exhibiting promising development prospects, and the middle and upper coal seams are favorable intervals. In terms of resource conditions, preservation conditions, and reservoir alterability, the development potential of CBM from the Carboniferous deep 8# coal seam is comparable to the Linxing block but inferior to the Daning–Jixian block and Baijiahai uplift. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

15 pages, 2689 KiB  
Article
The Influence of Variable Operating Conditions and Components on the Performance of Centrifugal Compressors in Natural Gas Storage Reservoirs
by Hua Chen, Gang Li, Shengping Wang, Ning Wang, Lifeng Zhou, Hao Zhou, Yukang Sun and Lijun Liu
Energies 2025, 18(15), 3930; https://doi.org/10.3390/en18153930 - 23 Jul 2025
Viewed by 219
Abstract
The inlet operating conditions of centrifugal compressors in natural gas storage reservoirs, as well as the natural gas composition, continuously vary over time, significantly impacting compressor performance. To analyze the influence of these factors on centrifugal compressors, a method for converting the performance [...] Read more.
The inlet operating conditions of centrifugal compressors in natural gas storage reservoirs, as well as the natural gas composition, continuously vary over time, significantly impacting compressor performance. To analyze the influence of these factors on centrifugal compressors, a method for converting the performance curves of centrifugal compressors under actual operating conditions has been established. This performance conversion process is implemented through a custom-developed program, which incorporates the polytropic index and exhaust temperature calculations. Verification results show that the conversion error of this method is within 2%. Based on the proposed performance prediction method for non-similar operating conditions, the effects of varying inlet temperatures, pressures, and natural gas compositions on compressor performance are investigated. It is observed that an increase in inlet temperature results in a decrease in compressor power and pressure ratio; an increase in inlet pressure leads to higher power consumption, while the pressure ratio varies with the flow rate at the operating point; and as the average molar mass of natural gas decreases, both the pressure ratio and power exhibit a certain degree of reduction. Full article
Show Figures

Figure 1

10 pages, 4132 KiB  
Article
Numerical Simulation on Carbon Dioxide Geological Storage and Coalbed Methane Drainage Displacement—A Case Study in Middle Hunan Depression of China
by Lihong He, Keying Wang, Fengchu Liao, Jianjun Cui, Mingjun Zou, Ningbo Cai, Zhiwei Liu, Jiang Du, Shuhua Gong and Jianglun Bai
Processes 2025, 13(7), 2318; https://doi.org/10.3390/pr13072318 - 21 Jul 2025
Viewed by 285
Abstract
Based on a detailed investigation of the geological setting of coalbed methane by previous work in the Xiangzhong Depression, Hunan Province, numerical simulation methods were used to simulate the geological storage of carbon dioxide and displacement gas production in this area. In this [...] Read more.
Based on a detailed investigation of the geological setting of coalbed methane by previous work in the Xiangzhong Depression, Hunan Province, numerical simulation methods were used to simulate the geological storage of carbon dioxide and displacement gas production in this area. In this simulation, a 400 m × 400 m square well group was constructed for coalbed methane production, and a carbon dioxide injection well was arranged in the center of the well group. Injection storage and displacement gas production simulations were carried out under the conditions of original permeability and 1 mD permeability. At the initial permeability (0.01 mD), carbon dioxide is difficult to inject, and the production of displaced and non-displaced coalbed methane is low. During the 25-year injection process, the reservoir pressure only increased by 7 MPa, and it is difficult to reach the formation fracture pressure. When the permeability reaches 1 mD, the carbon dioxide injection displacement rate can reach 4000 m3/d; the cumulative production of displaced and non-displaced coalbed methane is 7.83 × 106 m3 and 9.56 × 105 m3, respectively, and the average daily production is 1430 m3/d and 175 m3/d. The displacement effect is significantly improved compared to the original permeability. In the later storage stage, the carbon dioxide injection rate can reach 8000 m3/d, reaching the formation rupture pressure after 3 years, and the cumulative carbon dioxide injection volume is 1.17 × 107 m3. This research indicates that permeability has a great impact on carbon dioxide geological storage. During the carbon dioxide injection process, selecting areas with high permeability and choosing appropriate reservoir transformation measures to enhance permeability are key factors in increasing the amount of carbon dioxide injected into the area. Full article
Show Figures

Figure 1

26 pages, 11154 KiB  
Article
The Pore Structure and Fractal Characteristics of Upper Paleozoic Coal-Bearing Shale Reservoirs in the Yangquan Block, Qinshui Basin
by Jinqing Zhang, Xianqing Li, Xueqing Zhang, Xiaoyan Zou, Yunfeng Yang and Shujuan Kang
Fractal Fract. 2025, 9(7), 467; https://doi.org/10.3390/fractalfract9070467 - 18 Jul 2025
Viewed by 347
Abstract
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were [...] Read more.
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were systematically analyzed through field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion, and gas adsorption experiments to characterize pore structures and calculate multi-scale fractal dimensions (D1D5). Key findings reveal that reservoir pores are predominantly composed of macropores generated by brittle fracturing and interlayer pores within clay minerals, with residual organic pores exhibiting low proportions. Macropores dominate the total pore volume, while mesopores primarily contribute to the specific surface area. Fractal dimension D1 shows a significant positive correlation with clay mineral content, highlighting the role of diagenetic modification in enhancing the complexity of interlayer pores. D2 is strongly correlated with the quartz content, indicating that brittle fracturing serves as a key driver of macropore network complexity. Fractal dimensions D3D5 further unveil the synergistic control of tectonic activity and dissolution on the spatial distribution of pore-fracture systems. Notably, during the overmature stage, the collapse of organic pores suppresses mesopore complexity, whereas inorganic diagenetic processes (e.g., quartz cementation and tectonic fracturing) significantly amplify the heterogeneity of macropores and fractures. These findings provide multi-scale fractal theoretical insights for evaluating coal-bearing shale gas reservoirs and offer actionable recommendations for optimizing the exploration and development of Upper Paleozoic coal-bearing shale gas resources in the Yangquan Block of the Qinshui Basin. Full article
Show Figures

Figure 1

14 pages, 9007 KiB  
Article
A High-Resolution Spectral Analysis Method Based on Fast Iterative Least Squares Constraints
by Yanyan Ma, Haixia Kang, Weifeng Luo, Yunxiao Zhang and Lintao Luo
Appl. Sci. 2025, 15(14), 8034; https://doi.org/10.3390/app15148034 - 18 Jul 2025
Viewed by 274
Abstract
The prediction of reservoir and caprock thickness is important in geological evaluations for site selection for aquifer underground gas storage. Therefore, high-resolution seismic identification of reservoirs and caprocks is crucial. High-resolution time–frequency decomposition is one of the key methods for identifying sedimentary layers. [...] Read more.
The prediction of reservoir and caprock thickness is important in geological evaluations for site selection for aquifer underground gas storage. Therefore, high-resolution seismic identification of reservoirs and caprocks is crucial. High-resolution time–frequency decomposition is one of the key methods for identifying sedimentary layers. Based on this, we propose a least squares constrained spectral analysis method using a greedy fast shrinkage algorithm. This method replaces the traditional Tikhonov regularization objective function with an L1-norm regularized objective function and employs a greedy fast shrinkage algorithm. By utilizing shorter window lengths to segment the data into more precise series, the method significantly improves the computational efficiency of spectral analysis while also enhancing its accuracy to a certain extent. Numerical models demonstrate that compared to the time–frequency spectra obtained using traditional methods such as wavelet transform, short-time Fourier transform, and generalized S-transform, the proposed method can achieve high-resolution extraction of the dominant frequencies of seismic waves, with superior noise resistance. Furthermore, its application in a research area in southern China shows that the method can effectively predict thicker sedimentary layers in low-frequency ranges and accurately identify thinner sedimentary layers in high-frequency ranges. Full article
Show Figures

Figure 1

27 pages, 7109 KiB  
Article
The Long-Term Surface Deformation Monitoring and Prediction of Hutubi Gas Storage Reservoir in Xinjiang Based on InSAR and the GWO-VMD-GRU Model
by Wang Huang, Wei Liao, Jie Li, Xuejun Qiao, Sulitan Yusan, Abudutayier Yasen, Xinlu Li and Shijie Zhang
Remote Sens. 2025, 17(14), 2480; https://doi.org/10.3390/rs17142480 - 17 Jul 2025
Viewed by 353
Abstract
Natural gas storage is an effective solution to address the energy supply–demand imbalance, and underground gas storage (UGS) is a primary method for storing natural gas. The overarching goal of this study is to monitor and analyze surface deformation at the Hutubi underground [...] Read more.
Natural gas storage is an effective solution to address the energy supply–demand imbalance, and underground gas storage (UGS) is a primary method for storing natural gas. The overarching goal of this study is to monitor and analyze surface deformation at the Hutubi underground gas storage facility in Xinjiang, China, which is the largest gas storage facility in the country. This research aims to ensure the stable and efficient operation of the facility through long-term monitoring, using remote sensing data and advanced modeling techniques. The study employs the SBAS-InSAR method, leveraging Synthetic Aperture Radar (SAR) data from the TerraSAR and Sentinel-1 sensors to observe displacement time series from 2013 to 2024. The data is processed through wavelet transformation for denoising, followed by the application of a Gray Wolf Optimization (GWO) algorithm combined with Variational Mode Decomposition (VMD) to decompose both surface deformation and gas pressure data. The key focus is the development of a high-precision predictive model using a Gated Recurrent Unit (GRU) network, referred to as GWO-VMD-GRU, to accurately predict surface deformation. The results show periodic surface uplift and subsidence at the facility, with a notable net uplift. During the period from August 2013 to March 2015, the maximum uplift rate was 6 mm/year, while from January 2015 to December 2024, it increased to 12 mm/year. The surface deformation correlates with gas injection and extraction periods, indicating periodic variations. The accuracy of the InSAR-derived displacement data is validated through high-precision GNSS data. The GWO-VMD-GRU model demonstrates strong predictive performance with a coefficient of determination (R2) greater than 0.98 for the gas well test points. This study provides a valuable reference for the future safe operation and management of underground gas storage facilities, demonstrating significant contributions to both scientific understanding and practical applications in underground gas storage management. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

19 pages, 6394 KiB  
Article
Effect of Water Content and Cementation on the Shear Characteristics of Remolded Fault Gouge
by Weimin Wang, Hejuan Liu, Haizeng Pan and Shengnan Ban
Appl. Sci. 2025, 15(14), 7933; https://doi.org/10.3390/app15147933 - 16 Jul 2025
Viewed by 213
Abstract
The strength parameters of fault gouge are critical factors that influence sealing capacity and fault reactivation in underground gas storage reservoirs. This study investigates the shear characteristics of remolded fault gouge under varying hydro-mechanical conditions, focusing on the coupled influence of water content [...] Read more.
The strength parameters of fault gouge are critical factors that influence sealing capacity and fault reactivation in underground gas storage reservoirs. This study investigates the shear characteristics of remolded fault gouge under varying hydro-mechanical conditions, focusing on the coupled influence of water content and cementation. Sixty fault gouge samples are prepared using a mineral mixture of quartz, montmorillonite, and kaolinite, with five levels of water content (10–30%) and three cementation degrees (0%, 1%, 3%). Direct shear tests are conducted under four normal stress levels (100–400 kPa), and microstructural characteristics are examined using SEM. The results show that shear strength and cohesion exhibit a non-monotonic trend with water content, increasing initially and then decreasing, while the internal friction angle decreases continuously. Higher cementation degrees not only enhance shear strength and reduce the softening effect caused by water but also shift the failure mode from ductile sliding to brittle, cliff-type rupture. Moreover, clay content is found to modulate the degree—but not the trend—of strength parameter responses to water and cementation variations. Based on the observed mechanical behavior, a semi-empirical shear strength prediction model is developed by extending the classical Mohr–Coulomb criterion with water–cementation coupling terms. The model accurately predicts cohesion and internal friction angle as functions of water content and cementation degree, achieving strong agreement with experimental results (R2 = 0.8309 for training and R2 = 0.8172 for testing). These findings provide a practical and interpretable framework for predicting the mechanical response of fault gouge under complex geological conditions. Full article
Show Figures

Figure 1

17 pages, 3524 KiB  
Article
Experimental Study on Microseismic Monitoring of Depleted Reservoir-Type Underground Gas Storage Facility in the Jidong Oilfield, North China
by Yuanjian Zhou, Cong Li, Hao Zhang, Guangliang Gao, Dongsheng Sun, Bangchen Wu, Chaofeng Li, Nan Li, Yu Yang and Lei Li
Energies 2025, 18(14), 3762; https://doi.org/10.3390/en18143762 - 16 Jul 2025
Viewed by 329
Abstract
The Jidong Oilfield No. 2 Underground Gas Storage (UGS), located in an active fault zone in Northern China, is a key facility for ensuring natural gas supply and peak regulation in the Beijing–Tianjin–Hebei region. To evaluate the effectiveness of a combined surface and [...] Read more.
The Jidong Oilfield No. 2 Underground Gas Storage (UGS), located in an active fault zone in Northern China, is a key facility for ensuring natural gas supply and peak regulation in the Beijing–Tianjin–Hebei region. To evaluate the effectiveness of a combined surface and shallow borehole monitoring system under deep reservoir conditions, a 90-day microseismic monitoring trial was conducted over a full injection cycle using 16 surface stations and 1 shallow borehole station. A total of 35 low-magnitude microseismic events were identified and located using beamforming techniques. Results show that event frequency correlates positively with wellhead pressure variations instead of the injection volume, suggesting that stress perturbations predominantly control microseismic triggering. Events were mainly concentrated near the bottom of injection wells, with an average location error of approximately 87.5 m and generally shallow focal depths, revealing limitations in vertical resolution. To enhance long-term monitoring performance, this study recommends deploying geophones closer to the reservoir, constructing a 3D velocity model, applying AI-based phase picking, expanding array coverage, and developing a microseismic-injection coupling early warning system. These findings provide technical guidance for the design and deployment of long-term monitoring systems for deep reservoir conversions into UGS facilities. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

28 pages, 5586 KiB  
Article
Vertical Equilibrium Model Analysis for CO2 Storage
by Mohammadsajjad Zeynolabedini and Ashkan Jahanbani Ghahfarokhi
Gases 2025, 5(3), 16; https://doi.org/10.3390/gases5030016 - 16 Jul 2025
Viewed by 235
Abstract
This work uses the MATLAB Reservoir Simulation Toolbox (MRST) to reduce the 3D reservoir model into a 2D version in order to investigate CO2 storage in the Aurora model using the vertical equilibrium (VE) model. For this purpose, we used an open-source [...] Read more.
This work uses the MATLAB Reservoir Simulation Toolbox (MRST) to reduce the 3D reservoir model into a 2D version in order to investigate CO2 storage in the Aurora model using the vertical equilibrium (VE) model. For this purpose, we used an open-source reservoir simulator, MATLAB Reservoir Simulation Toolbox (MRST). MRST is an open-source reservoir simulator, with supplementary modules added to enhance its versatility in addition to a core set of procedures. A fully implicit discretization is used in the numerical formulation of MRST-co2lab enabling the integration of simulators with vertical equilibrium (VE) models to create hybrid models. This model is then compared with the Eclipse model in terms of properties and simulation results. The relative permeability of water and gas can be compared to verify that the model fits the original Eclipse model. Comparing the fluid viscosities used in MRST and Eclipse also reveals comparable tendencies. However, reservoir heterogeneity is the reason for variations in CO2 plume morphologies. The upper layers of the Eclipse model have lower permeability than the averaged MRST model, which has a substantial impact on CO2 transport. According to the study, after 530 years, about 17 MT of CO2 might be stored, whereas 28 MT might escape the reservoir, since after 530 years CO2 plume reaches completely the open northern boundary. Additionally, a sensitivity analysis study has been conducted on permeability, porosity, residual gas saturation, rock compressibility, and relative permeability curves which are the five uncertain factors in this model. Although plume migration is highly sensitive to permeability, porosity, and rock compressibility variation, it shows a slight change with residual gas saturation and relative permeability curve in this study. Full article
Show Figures

Figure 1

20 pages, 7127 KiB  
Article
Comparative Study on Full-Scale Pore Structure Characterization and Gas Adsorption Capacity of Shale and Coal Reservoirs
by Mukun Ouyang, Bo Wang, Xinan Yu, Wei Tang, Maonan Yu, Chunli You, Jianghai Yang, Tao Wang and Ze Deng
Processes 2025, 13(7), 2246; https://doi.org/10.3390/pr13072246 - 14 Jul 2025
Viewed by 255
Abstract
Shale and coal in the transitional marine–continental facies of the Ordos Basin serve as unconventional natural gas reservoirs, with their pore structures controlling gas adsorption characteristics and occurrence states. To quantitatively characterize the pore structure features and differences between these two reservoirs, this [...] Read more.
Shale and coal in the transitional marine–continental facies of the Ordos Basin serve as unconventional natural gas reservoirs, with their pore structures controlling gas adsorption characteristics and occurrence states. To quantitatively characterize the pore structure features and differences between these two reservoirs, this study takes the Shanxi Formation shale and coal in the Daning–Jixian area on the eastern margin of the Ordos Basin as examples. Field-emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion, low-temperature N2 adsorption, and low-pressure CO2 adsorption experiments were employed to analyze and compare the full-scale pore structures of the shale and coal reservoirs. Combined with methane isothermal adsorption experiments, the gas adsorption capacity and its differences in these reservoirs were investigated. The results indicate that the average total organic carbon (TOC) content of shale is 2.66%, with well-developed organic pores, inorganic pores, and microfractures. Organic pores are the most common, typically occurring densely and in clusters. The average TOC content of coal is 74.22%, with organic gas pores being the dominant pore type, significantly larger in diameter than those in transitional marine–continental facies shale and marine shale. In coal, micropores contribute the most to pore volume, while mesopores and macropores contribute less. In shale, mesopores dominate, followed by micropores, with macropores being underdeveloped. Both coal and shale exhibit a high SSA primarily contributed by micropores, with organic matter serving as the material basis for micropore development. The methane adsorption capacity of coal is 8–29 times higher than that of shale. Coal contains abundant organic micropores, providing a large SSA and numerous adsorption sites for methane, facilitating gas adsorption and storage. This study comprehensively reveals the similarities and differences in pore structures between transitional marine–continental facies shale and coal reservoirs in the Ordos Basin at the microscale, providing a scientific basis for the precise evaluation and development of unconventional oil and gas resources. Full article
Show Figures

Figure 1

Back to TopTop