Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = gas sorption/separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3610 KiB  
Review
Metal–Organic Frameworks as Fillers in Porous Organic Polymer-Based Hybrid Materials: Innovations in Composition, Processing, and Applications
by Victor Durán-Egido, Daniel García-Giménez, Juan Carlos Martínez-López, Laura Pérez-Vidal and Javier Carretero-González
Polymers 2025, 17(14), 1941; https://doi.org/10.3390/polym17141941 - 15 Jul 2025
Viewed by 679
Abstract
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety [...] Read more.
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety of defined crystalline structures and enhanced separation characteristics. The combination (or hybridization) with PIMs gives rise to mixed-matrix membranes (MMMs) with improved permeability, selectivity, and long-term stability. However, interfacial compatibility remains a key limitation, often addressed through polymer functionalization or controlled dispersion of the MOF phase. MOF/COF hybrids are more used as biochemical sensors with elevated sensitivity, catalytic applications, and wastewater remediation. They are also very well known in the gas sorption and separation field, due to their tunable porosity and high electrical conductivity, which also makes them feasible for energy storage applications. Last but not less important, hybrids with other POPs, such as hyper-crosslinked polymers (HCPs), covalent triazine frameworks (CTFs), or conjugated microporous polymers (CMPs), offer enhanced functionality. MOF/HCP hybrids combine ease of synthesis and chemical robustness with tunable porosity. MOF/CTF hybrids provide superior thermal and chemical stability under harsh conditions, while MOF/CMP hybrids introduce π-conjugation for enhanced conductivity and photocatalytic activity. These and other findings confirm the potential of MOF-POP hybrids as next-generation materials for gas separation and carbon capture applications. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials, 4th Edition)
Show Figures

Figure 1

18 pages, 4672 KiB  
Article
Tailoring Porosity and CO2 Capture Performance of Covalent Organic Frameworks Through Hybridization with Two-Dimensional Nanomaterials
by Hani Nasser Abdelhamid
Inorganics 2025, 13(7), 237; https://doi.org/10.3390/inorganics13070237 - 11 Jul 2025
Viewed by 391
Abstract
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity [...] Read more.
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity of COF-1 and the preservation of framework integrity after integrating the 2D nanomaterials. FT-IR spectra exhibited pronounced vibrational fingerprints of imine linkages and validated the functional groups from the COF and the integrated nanomaterials. TEM images revealed the integration of the two components, porous, layered structures with indications of interfacial interactions between COF and 2D nanosheets. Nitrogen adsorption–desorption isotherms revealed the microporous characteristics of the COFs, with hysteresis loops evident, indicating the development of supplementary mesopores at the interface between COF-1 and the 2D materials. The BET surface area of pristine COF-1 was maximal at 437 m2/g, accompanied by significant micropore and Langmuir surface areas of 348 and 1290 m2/g, respectively, offering enhanced average pore widths and hierarchical porous strcuture. CO2 adsorption tests were investigated showing maximum adsorption capacitiy of 1.47 mmol/g, for COF-1, closely followed by COF@BN at 1.40 mmol/g, underscoring the preserved sorption capabilities of these materials. These findings demonstrate the promise of designed COF-based hybrids for gas capture, separation, and environmental remediation applications. Full article
Show Figures

Graphical abstract

16 pages, 1863 KiB  
Review
Environmental Protection in Enhanced Oil Recovery and Its Waste and Effluents Treatment: A Critical Patent-Based Review of BRICS and Non-BRICS (2004–2023)
by Cristina M. Quintella
Sustainability 2025, 17(7), 2896; https://doi.org/10.3390/su17072896 - 25 Mar 2025
Viewed by 510
Abstract
Oil production will remain essential in the coming decades, requiring environmental responsibilities that are aligned with Agenda 2030. Enhanced oil recovery (EOR) increases recovery efficiency with low investment, but environmental protection technologies (EOR and Env), including green EOR (GEOR) and waste treatment (WT), [...] Read more.
Oil production will remain essential in the coming decades, requiring environmental responsibilities that are aligned with Agenda 2030. Enhanced oil recovery (EOR) increases recovery efficiency with low investment, but environmental protection technologies (EOR and Env), including green EOR (GEOR) and waste treatment (WT), must be integrated. The BRICS association, representing half of global oil production, promotes technology transfer in this context. Worldwide patent data (2004–2023) of EOR and Env technologies at TRL 4–5 in BRICS and non-BRICS countries were compared for nine GEOR (1489 patents) and nine WT (2292 patents) methods. China is the global leader (73%, being 98% of BRICS patents), maintaining dominance even when normalized by GDP. Non-BRICS patents are from the USA (41%), Japan (31%), and the Republic of Korea (14%). BRICS countries surpassed non-BRICS in 2014, with a 5.9% growth rate, −13.2% for non-BRICS, with all methods growing, whereas in non-BRICS, only water flocculation treatment is growing. BRICS technological specialization is expanding more rapidly than that of non-BRICS countries. BRICS countries exhibit higher relative technological advantages and distance in surfactants, polymers, macromolecules, sludge treatment, and multistage water treatment devices. Non-BRICS countries are more competitive in in situ combustion, water alternating gas (WAG), re-pressurization, vacuum techniques, flotation, water–oil separation, sorption, or precipitation, flocculation, and oil-contaminated water. China is the primary BRICS leader and is positioned to define BRICS policies regarding technology transfer and innovation. Technological partnerships between BRICS and non-BRICS countries are strongly recommended to enhance synergy and achieve sustainable and efficient production more rapidly. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

19 pages, 2724 KiB  
Article
Carbon Molecular Sieve Membranes from Acenaphthenequinone–Biphenyl Polymer; Synthesis, Characterization, and Effect on Gas Separation and Transport Properties
by Jesús Ortiz-Espinoza, Olivia Hernández-Cruz, Mikhail Zolotukhin, F. Alberto Ruiz-Treviño, María Isabel Loría-Bastarrachea and Manuel Aguilar-Vega
Polymers 2025, 17(4), 541; https://doi.org/10.3390/polym17040541 - 19 Feb 2025
Viewed by 803
Abstract
A rigid, high temperature-resistant aromatic polymer, poly(1,1′-biphenyl)-6,8a-dihydroacenaphthylene-1(2H)-one (BDA) comprising acenaphthenequinone and biphenyl was successfully synthesized by superacid catalyzed polymerization. BDA has a high decomposition temperature (Td = 520 °C) that renders it a viable candidate for carbon molecular sieve membranes (CMSM) formation. [...] Read more.
A rigid, high temperature-resistant aromatic polymer, poly(1,1′-biphenyl)-6,8a-dihydroacenaphthylene-1(2H)-one (BDA) comprising acenaphthenequinone and biphenyl was successfully synthesized by superacid catalyzed polymerization. BDA has a high decomposition temperature (Td = 520 °C) that renders it a viable candidate for carbon molecular sieve membranes (CMSM) formation. BDA precursor pyrolysis at 600 °C (BDA-P600) leads to a carbon turbostratic structure formation with graphene-like amorphous strands in a matrix with micropores and ultramicropores, resulting in a carbon structure with higher diffusion and higher selectivity than dense BDA. When the BDA pyrolysis temperature is raised to 700 °C (BDA-P700), the average stacking number of carbon layers N increases, along with an increase in the crystallite thickness stacking Lc, and layer plane size La, leading to a more compact structure. Pure gas permeability coefficients P are between 3 and 5 times larger for BDA-P600 compared to the BDA precursors. On the other hand, there is a P decrease between 10 and 50% for O2 and CO2 between CMSM BDA-P600 and BDA-P700, while the large kinetic diameter gases N2 and CH4 show a large decrease in permeability of 44 and 67%, respectively. It was found that the BDA-P700 WAXD results show the emergence of a new peak at 2θ = 43.6° (2.1 Å), which effectively hinders the diffusion of gases such O2, N2, and CH4. This behavior has been attributed to the formation of new micropores that become increasingly compact at higher pyrolysis temperatures. As a result, the CMSM derived from BDA precursors pyrolyzed at 700 °C (BDA-P700) show exceptional O2/N2 gas separation performance, significantly surpassing baseline trade-off limits. Full article
Show Figures

Figure 1

21 pages, 3998 KiB  
Article
Solubility and Diffusion of Main Biogas Components in a Glassy Polysulfone-Based Membrane
by Marek Tańczyk, Aleksandra Janusz-Cygan, Anna Pawlaczyk-Kurek, Łukasz Hamryszak, Jolanta Jaschik and Katarzyna Janusz-Szymańska
Molecules 2025, 30(3), 614; https://doi.org/10.3390/molecules30030614 - 30 Jan 2025
Viewed by 1235
Abstract
Biogas, one of the important controllable renewable energy sources, may be split into two streams: bio-CH4 and bio-CO2 using, among others, membrane processes. The proper optimization of such processes requires the knowledge of phenomena accompanying each specific CH4–CO2 [...] Read more.
Biogas, one of the important controllable renewable energy sources, may be split into two streams: bio-CH4 and bio-CO2 using, among others, membrane processes. The proper optimization of such processes requires the knowledge of phenomena accompanying each specific CH4–CO2–membrane system (e.g., competitive sorption or swelling). The phenomena were analyzed for the polysulfone-based membrane used in a developed adsorptive–membrane system for biogas separation. The Dual Mode Sorption and partial immobilization models were used to describe the solubility and diffusion of CO2, CH4 and their mixtures in this material. The parameters of the models were determined based on pure-gas sorption isotherms measured gravimetrically and permeances of CO2/CH4 mixture components from our previous studies. It was found, among other things, that the membrane swelling caused by CO2 was observed for pressures higher than 5 bar. The real selectivity (permselectivity) of CO2 vs. CH4 is significantly lower than the selectivity of pure gases (ideal selectivity), while the solubility selectivity of CO2 vs. CH4 in the mixture is higher than that of pure gases. This is due to the better affinity of CO2 towards the tested polysulfone membrane, making CO2 the dominant component in competitive sorption. The reduction in the permselectivity is mainly due to an approximately two-fold decrease in the CO2 diffusion rate in the presence of CH4. It was also found that the fraction of solubility in the fractional free volume (FFV) is dominant for both gases, pure and mixed, reaching 65–73% of the total solubility. Moreover, in CO2/CH4 mixtures, the mobility of methane in FFV disappears, which additionally confirms the displacement of methane by CO2 from FFV. Full article
Show Figures

Graphical abstract

27 pages, 3994 KiB  
Review
Machine Learning in Computational Design and Optimization of Disordered Nanoporous Materials
by Aleksey Vishnyakov
Materials 2025, 18(3), 534; https://doi.org/10.3390/ma18030534 - 24 Jan 2025
Cited by 8 | Viewed by 1736
Abstract
This review analyzes the current practices in the data-driven characterization, design and optimization of disordered nanoporous materials with pore sizes ranging from angstroms (active carbon and polymer membranes for gas separation) to tens of nm (aerogels). While the machine learning (ML)-based prediction and [...] Read more.
This review analyzes the current practices in the data-driven characterization, design and optimization of disordered nanoporous materials with pore sizes ranging from angstroms (active carbon and polymer membranes for gas separation) to tens of nm (aerogels). While the machine learning (ML)-based prediction and screening of crystalline, ordered porous materials are conducted frequently, materials with disordered porosity receive much less attention, although ML is expected to excel in the field, which is rich with ill-posed problems, non-linear correlations and a large volume of experimental results. For micro- and mesoporous solids (active carbons, mesoporous silica, aerogels, etc.), the obstacles are mostly related to the navigation of the available data with transferrable and easily interpreted features. The majority of published efforts are based on the experimental data obtained in the same work, and the datasets are often very small. Even with limited data, machine learning helps discover non-evident correlations and serves in material design and production optimization. The development of comprehensive databases for micro- and mesoporous materials with low-level structural and sorption characteristics, as well as automated synthesis/characterization protocols, is seen as the direction of efforts for the immediate future. This paper is written in a language readable by a chemist unfamiliar with the data science specifics. Full article
Show Figures

Graphical abstract

18 pages, 2292 KiB  
Article
Modelling Across Multiple Scales to Design Biopolymer Membranes for Sustainable Gas Separations: 2-Multiscale Approach
by Kseniya Papchenko, Eleonora Ricci and Maria Grazia De Angelis
Polymers 2024, 16(19), 2776; https://doi.org/10.3390/polym16192776 - 30 Sep 2024
Cited by 1 | Viewed by 907
Abstract
The majority of materials used for membrane-based separation of gas mixtures are non-renewable and non-biodegradable, and the assessment of alternative bio-based polymers requires expensive and time-consuming experimental campaigns. This effort can be reduced by adopting suitable modelling approaches. In this series of works, [...] Read more.
The majority of materials used for membrane-based separation of gas mixtures are non-renewable and non-biodegradable, and the assessment of alternative bio-based polymers requires expensive and time-consuming experimental campaigns. This effort can be reduced by adopting suitable modelling approaches. In this series of works, we propose various modelling approaches to assess the CO2/CH4 separation performance of eight different copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) using a limited amount of experimental data for model calibration. In part 1, we adopted a fully atomistic approach based on Molecular Dynamics (MD), while, in this work, we propose a multiscale methodology where a molecular description of the polymers is bridged to a macroscopic prediction of its gas sorption behaviour. PHBV structures were simulated using MD to obtain pressure–volume–temperature data, which were used to parametrise the Sanchez–Lacombe Equation of State. This, in turn, allows for the evaluation of the CO2 and CH4 solubility in the copolymers at various pressures and compositions with little computational effort, enabling the estimate of the sorption-based selectivity. The gas separation performance obtained with this multiscale technique was compared to results obtained with a fully atomistic model and experimental data. The solubility–selectivity for the CO2/CH4 mixture is in reasonable agreement between the two models and the experimental data. The multiscale method presented is a time-efficient alternative to fully atomistic methods and detailed experimental campaigns and can accelerate the introduction of renewable materials in different applications. Full article
Show Figures

Figure 1

17 pages, 3234 KiB  
Article
Graphene Oxide Covalently Functionalized with 5-Methyl-1,3,4-thiadiazol-2-amine for pH-Sensitive Ga3+ Recovery in Aqueous Solutions
by Xi Zhu, Yong Guo and Baozhan Zheng
Molecules 2024, 29(16), 3768; https://doi.org/10.3390/molecules29163768 - 9 Aug 2024
Viewed by 1103
Abstract
A novel graphene-based composite, 5-methyl-1,3,4-thiadiazol-2-amine (MTA) covalently functionalized graphene oxide (GO-MTA), was rationally developed and used for the selective sorption of Ga3+ from aqueous solutions, showing a higher adsorption capacity (48.20 mg g−1) toward Ga3+ than In3+ (15.41 [...] Read more.
A novel graphene-based composite, 5-methyl-1,3,4-thiadiazol-2-amine (MTA) covalently functionalized graphene oxide (GO-MTA), was rationally developed and used for the selective sorption of Ga3+ from aqueous solutions, showing a higher adsorption capacity (48.20 mg g−1) toward Ga3+ than In3+ (15.41 mg g−1) and Sc3+ (~0 mg g−1). The adsorption experiment’s parameters, such as the contact time, temperature, initial Ga3+ concentration, solution pH, and desorption solvent, were investigated. Under optimized conditions, the GO-MTA composite displayed the highest adsorption capacity of 55.6 mg g−1 toward Ga3+. Moreover, a possible adsorption mechanism was proposed using various characterization methods, including scanning electron microscopy (SEM) equipped with X-ray energy-dispersive spectroscopy (EDS), elemental mapping analysis, Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Ga3+ adsorption with the GO-MTA composite could be better described by the linear pseudo-second-order kinetic model (R2 = 0.962), suggesting that the rate-limiting step may be chemical sorption or chemisorption through the sharing or exchange of electrons between the adsorbent and the adsorbate. Importantly, the calculated qe value (55.066 mg g−1) is closer to the experimental result (55.60 mg g−1). The well-fitted linear Langmuir isothermal model (R2 = 0.972~0.997) confirmed that an interfacial monolayer and cooperative adsorption occur on a heterogeneous surface. The results showed that the GO-MTA composite might be a potential adsorbent for the enrichment and/or separation of Ga3+ at low or ultra-low concentrations in aqueous solutions. Full article
(This article belongs to the Special Issue Design and Application Based on Versatile Nano-Composites)
Show Figures

Figure 1

16 pages, 5680 KiB  
Article
Mixed-Matrix Organo-Silica–Hydrotalcite Membrane for CO2 Separation Part 1: Synthesis and Analytical Description
by Lucas Bünger, Krassimir Garbev, Angela Ullrich, Peter Stemmermann and Dieter Stapf
Membranes 2024, 14(8), 170; https://doi.org/10.3390/membranes14080170 - 6 Aug 2024
Cited by 2 | Viewed by 2190
Abstract
Hydrotalcite exhibits the capability to adsorb CO2 at elevated temperatures. High surface area and favorable coating properties are essential to harness its potential for practical applications. Stable alcohol-based dispersions are needed for thin film applications of mixed membranes containing hydrotalcite. Currently, producing [...] Read more.
Hydrotalcite exhibits the capability to adsorb CO2 at elevated temperatures. High surface area and favorable coating properties are essential to harness its potential for practical applications. Stable alcohol-based dispersions are needed for thin film applications of mixed membranes containing hydrotalcite. Currently, producing such dispersions without the need for delamination and dispersing agents is a challenging task. This work introduces, for the first time, a manufacturing approach to overcoming the drawbacks mentioned above. It includes a synthesis of hydrotalcite nanoparticles, followed by agent-free delamination of their layers and final dispersion into alcohol without dispersing agents. Further, the hydrotalcite-derived sorption agent is dispersed in a matrix based on organo-silica gels derived from 1,2-bis(triethoxysilyl)ethane (BTESE). The analytical results indicate that the interconnection between hydrotalcite and BTESE-derived gel occurs via forming a strong hydrogen bonding system between the interlayer species (OH groups, CO32−) of hydrotalcite and oxygen and silanol active gel centers. These findings lay the foundation for applications involving incorporating hydrotalcite-like compounds into silica matrices, ultimately enabling the development of materials with exceptional mass transfer properties. In part 2 of this study, the gas separation performance of the organo-silica and the hydrotalcite-like materials and their combined form will be investigated. Full article
(This article belongs to the Special Issue Advanced Membrane Materials for CO2 Capture and Separation)
Show Figures

Figure 1

18 pages, 3579 KiB  
Article
Thermodynamic and Economic Analyses of a Novel Cooling, Heating and Power Tri-Generation System with Carbon Capture
by Linbo Yan, Ziyue Jia, Yang Liu, Cong Geng and Boshu He
Atmosphere 2024, 15(7), 836; https://doi.org/10.3390/atmos15070836 - 15 Jul 2024
Cited by 2 | Viewed by 1212
Abstract
The combined cooling, heating, and power (CCHP) system has attracted increasing attention due to its potential outstanding performance in thermodynamics, economics, and the environment. However, the conventional CCHP systems are carbon-intensive. To solve this issue, a low-carbon-emission CCHP system (LC-CCHP) is firstly proposed [...] Read more.
The combined cooling, heating, and power (CCHP) system has attracted increasing attention due to its potential outstanding performance in thermodynamics, economics, and the environment. However, the conventional CCHP systems are carbon-intensive. To solve this issue, a low-carbon-emission CCHP system (LC-CCHP) is firstly proposed in this work by integrating a sorption-enhanced steam methane reforming (SE-SMR) process. In the LC-CCHP system, CO2 is continuously captured by the calcium loop so that low-carbon energy can be generated. Then, the LC-CCHP system thermodynamic model, mainly consisting of a dual fluidized bed reactor which includes the SE-SMR reactor and a CaCO3 calcination reactor, a hydrogen gas turbine, a CO2 reheater, and a lithium bromide absorption chiller, is built. To prove that the LC-CCHP model is reliable, the system major sub-unit model predictions are compared against data from the literature in terms of thermodynamics and economics. Finally, the effects of reforming temperature (Tref), the steam-to-carbon mole ratio (S/C), the calcium-to-carbon mole ratio (RCC), the equivalent ratio for gas turbine (RAE), and the hydrogen separation ratio (Sfg) on total energy efficiency (ηten), total exergy efficiency (ηtex), and carbon capture capability (Rcm) are detected. It is found that the minimum exergy efficiency of 64.5% exists at the calciner unit, while the maximum exergy efficiency of 78.7% appears at the gas turbine unit. The maximum energy efficiency and coefficient of performance of the absorption chiller are 0.52 and 1.33, respectively. When Tref=600 °C, S/C=4.0, RCC=7.62, RAE=1.20, and Sfg=0.27, the ηten, ηtex, and Rcm of the system can be ~61%, ~68%, and ~96%, and the average specific cost of the system is 0.024 USD/kWh, which is advanced compared with the parallel CCHP systems. Full article
(This article belongs to the Special Issue Advances in CO2 Capture and Absorption)
Show Figures

Figure 1

16 pages, 3321 KiB  
Article
Cationic Imidazolium-Urethane-Based Poly(Ionic Liquids) Membranes for Enhanced CO2/CH4 Separation: Synthesis, Characterization, and Performance Evaluation
by Guilherme Dias, Laura Rocca, Henrique Z. Ferrari, Franciele L. Bernard, Fernando G. Brandão, Leonardo Pereira and Sandra Einloft
Membranes 2024, 14(7), 151; https://doi.org/10.3390/membranes14070151 - 9 Jul 2024
Cited by 3 | Viewed by 2449
Abstract
The escalating emissions of CO2 into the atmosphere require the urgent development of technologies aimed at mitigating environmental impacts. Among these, aqueous amine solutions and polymeric membranes, such as cellulose acetate and polyimide are commercial technologies requiring improvement or substitution to enhance [...] Read more.
The escalating emissions of CO2 into the atmosphere require the urgent development of technologies aimed at mitigating environmental impacts. Among these, aqueous amine solutions and polymeric membranes, such as cellulose acetate and polyimide are commercial technologies requiring improvement or substitution to enhance the economic and energetic efficiency of CO2 separation processes. Ionic liquids and poly(ionic liquids) (PILs) are candidates to replace conventional CO2 separation technologies. PILs are a class of materials capable of combining the favorable gas affinity exhibited by ionic liquids (ILs) with the processability inherent in polymeric materials. In this context, the synthesis of the IL GLYMIM[Cl] was performed, followed by ion exchange processes to achieve GLYMIM variants with diverse counter anions (NTf2, PF6, and BF4). Subsequently, PIL membranes were fabricated from these tailored ILs and subjected to characterization, employing techniques such as SEC, FTIR, DSC, TGA, DMA, FEG-SEM, and CO2 sorption analysis using the pressure decay method. Furthermore, permeability and ideal selectivity assessments of CO2/CH4 mixture were performed to derive the diffusion and solubility coefficients for both CO2 and CH4. PIL membranes exhibited adequate thermal and mechanical properties. The PIL-BF4 demonstrated CO2 sorption capacities of 33.5 mg CO2/g at 1 bar and 104.8 mg CO2/g at 10 bar. Furthermore, the PIL-BF4 membrane exhibited permeability and ideal (CO2/CH4) selectivity values of 41 barrer and 44, respectively, surpassing those of a commercial cellulose acetate membrane as reported in the existing literature. This study underscores the potential of PIL-based membranes as promising candidates for enhanced CO2 capture technologies. Full article
(This article belongs to the Special Issue Advanced Membrane Materials for CO2 Capture and Separation)
Show Figures

Figure 1

23 pages, 4700 KiB  
Article
Environmentally Friendly Bleaching Process of the Cellulose Fibres Materials Using Ozone and Hydrogen Peroxide in the Gas Phase
by Anetta Walawska, Magdalena Olak-Kucharczyk, Anna Kaczmarek and Marcin H. Kudzin
Materials 2024, 17(6), 1355; https://doi.org/10.3390/ma17061355 - 15 Mar 2024
Cited by 19 | Viewed by 3767
Abstract
The paper presents the new eco-friendly method of bleaching process of the cellulose fibre materials. Cellulose materials were bleached using hydrogen peroxide (both in aqueous solution, vapours, ozone and by the combined action of gaseous hydrogen peroxide and ozone. The method using hydrogen [...] Read more.
The paper presents the new eco-friendly method of bleaching process of the cellulose fibre materials. Cellulose materials were bleached using hydrogen peroxide (both in aqueous solution, vapours, ozone and by the combined action of gaseous hydrogen peroxide and ozone. The method using hydrogen peroxide in aqueous solution presents the standard procedure and was used as the comparison technique. The bleaching processes using gaseous oxidants were carried out in a prototype device for dry, low-temperature treatment of fibrous materials with the use of oxidising agents in the gas phase. The influence of the innovative gas-phase bleaching method on the cotton samples’ properties was analysed by Scanning Electron Microscopy (SEM), evaluation of the colour and whiteness, assessment of the polymerisation degree (DP), analysis of the mechanical properties and sorption capacity as well as microbiological assessment against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The comparison of the obtained results led to the conclusion that the bleaching processes using gas-phase agents—vaporised hydrogen peroxide, ozone or their combination—are non-invasive. The applied bleaching processes resulted in a slightly lower whiteness parameters than standard bath bleaching. After the bleaching processes with ozone and vaporised hydrogen peroxide separately, the decrease in the DP and tensile strength was similar to that observed after the bleaching with aqueous H2O2. When both processes were used together, a higher reduction in DP and tensile strength was noticed. Both oxidising agents showed a strong biocidal effect against bacteria. Gas-phase bleaching procedures, due to the lower temperature (35 °C vs. 98 °C) and minimal water consumption, have economic and environmental advantages, which allows their use in semi-industrial applications. It has been shown that the treatment of cotton fabrics using ozone and hydrogen peroxide in the gas phase allows to simultaneously obtain the bleaching and disinfection effect. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

24 pages, 4634 KiB  
Article
Cellulose Acetate–Ionic Liquid Blends as Potential Polymers for Efficient CO2 Separation Membranes
by Giannis Kontos, Costas Tsioptsias and Ioannis Tsivintzelis
Polymers 2024, 16(4), 554; https://doi.org/10.3390/polym16040554 - 18 Feb 2024
Cited by 7 | Viewed by 2397
Abstract
CO2 capture, applied in CO2 separation from natural gas or in CO2/N2 separation from power plant flue gas streams, is of great importance for technical, economic, and environmental reasons. The latter seems important because CO2, as [...] Read more.
CO2 capture, applied in CO2 separation from natural gas or in CO2/N2 separation from power plant flue gas streams, is of great importance for technical, economic, and environmental reasons. The latter seems important because CO2, as a greenhouse gas, is considered the main contributor to global warming. Using polymeric membranes for CO2 separation presents several advantages, such as low energy demand, small equipment volume, and the absence of liquid waste. In this study, two ionic liquids (ILs) were used for the preparation of cellulose acetate (CA)–IL blend membranes for potential CO2 capture applications, namely, 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim+][HSO4]) and choline glycine ([Ch+]Gly), as they present adequate CO2 dissolution ability. The first IL is commercially available, whereas the latter was synthesized by a novel route. Several composite membranes were prepared through the solvent casting technique and characterized by a variety of methods, including thermogravimetry, calorimetry, FTIR spectroscopy, and X-ray diffraction. The CO2 sorption in the composite membranes was experimentally measured using the mass loss analysis (MLA) technique. The results showed that the ILs strongly interacted with the C=O groups of CA, which exhibited high affinity with CO2. In the case of [Bmim+][HSO4], a reduction in the available sites that allow strong intermolecular interactions with CO2 resulted in a decrease in CO2 sorption compared to that of pure CA. In the case of [Ch+]Gly, the reduction was balanced out by the presence of specific groups in the IL, which presented high affinity with CO2. Thus, the CA-[Ch+]Gly blend membranes exhibited increased CO2 sorption capability, in addition to other advantages such as non-toxicity and low cost. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

14 pages, 2298 KiB  
Article
Hydrocarbon Sorption in Flexible MOFs—Part III: Modulation of Gas Separation Mechanisms
by Hannes Preißler-Kurzhöfer, Marcus Lange, Jens Möllmer, Oliver Erhart, Merten Kobalz, Harald Krautscheid and Roger Gläser
Nanomaterials 2024, 14(3), 241; https://doi.org/10.3390/nano14030241 - 23 Jan 2024
Cited by 4 | Viewed by 1393
Abstract
Single gas sorption experiments with the C4-hydrocarbons n-butane, iso-butane, 1-butene and iso-butene on the flexible MOFs Cu-IHMe-pw and Cu-IHEt-pw were carried out with both thermodynamic equilibrium and overall sorption kinetics. Subsequent static binary gas mixture experiments of n-butane and [...] Read more.
Single gas sorption experiments with the C4-hydrocarbons n-butane, iso-butane, 1-butene and iso-butene on the flexible MOFs Cu-IHMe-pw and Cu-IHEt-pw were carried out with both thermodynamic equilibrium and overall sorption kinetics. Subsequent static binary gas mixture experiments of n-butane and iso-butane unveil a complex dependence of the overall selectivity on sorption enthalpy, rate of structural transition as well as steric effects. A thermodynamic separation favoring iso-butane as well as kinetic separation favoring n-butane are possible within Cu-IHMe-pw while complete size exclusion of iso-butane is achieved in Cu-IHEt-pw. This proof-of-concept study shows that the structural flexibility offers additional levers for the precise modulation of the separation mechanisms for complex mixtures with similar chemical and physical properties with real selectivities of >10. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Gas Capture, Separation and Storage)
Show Figures

Figure 1

16 pages, 1627 KiB  
Article
Influence of Type of Cross-Linking Agent on Structure and Transport Properties of Polydecylmethylsiloxane
by Evgenia Grushevenko, Tatiana Rokhmanka, Stepan Sokolov, Andrey Basko, Ilya Borisov, Konstantin Pochivalov and Alexey Volkov
Polymers 2023, 15(22), 4436; https://doi.org/10.3390/polym15224436 - 16 Nov 2023
Cited by 5 | Viewed by 2166
Abstract
The development of membrane materials with high transport and separation properties for the removal of higher hydrocarbons from gas mixtures is an important and complex task. This work examines the effect of a cross-linking agent on the structure and transport properties of polydecylmethylsiloxane [...] Read more.
The development of membrane materials with high transport and separation properties for the removal of higher hydrocarbons from gas mixtures is an important and complex task. This work examines the effect of a cross-linking agent on the structure and transport properties of polydecylmethylsiloxane (C10), a material characterized by high selectivity towards C3+ hydrocarbons. C10 was cross-linked with various diene hydrocarbons, such as 1,7-octadiene (C10-OD), 1,9-decadiene (C10-DD), 1,11-dodecadiene (C10-DdD), and vinyl-terminated polysiloxanes, of different molecular weights: 500 g/mol (C10-Sil500) and 25,000 g/mol (C10-Sil25-OD). Using a number of characterization methods (IR-spectroscopy, WAXS, DSC, toluene sorption, and gas permeability), it was revealed that a change in the type and length of the cross-linking agent (at the same mole concentration of cross-linking agent) led to a significant change in the structure of the polymer material. The nature of cross-linking agent affected the arrangement of the decyl side-groups of the polymer, resulting in noticeable differences in the solubility, diffusivity, permeability, and selectivity of tested gases (N2, CH4, C2H6, and C4H10). For instance, an increase in the length of the hydrocarbon cross-linker was associated with a drop of n-butane permeability from 5510 (C10-OD) to 3000 Barrer (C10-DdD); however, the transition to a polysiloxane cross-linker led to an increase in corresponded permeability up to 8200 Barrer (C10-Sil25-OD). The n-butane/nitrogen selectivity was significantly higher for diene-type cross-linkers, and the maximum value was achieved for 1,7-octadiene (α(C4H10/N2) = 104). Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

Back to TopTop