Influence of Type of Cross-Linking Agent on Structure and Transport Properties of Polydecylmethylsiloxane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Procedure
2.3. Study of the Physicochemical Properties of the Polymer
2.4. Study of the Gas Transport Properties of Polymer Film
3. Results and Discussion
3.1. Structure and Physico-Chemical Properties of Cross-Linked Polydecylmethylsiloxanes (C10)
3.1.1. IR-Spectroscopy
3.1.2. Differential Scanning Calorimetry (DSC)
3.1.3. Wide Angle X-ray Scattering (WAXS)
3.1.4. Cross-Linking Density
3.2. Gas Transport Properties of Cross-Linked Polydecylmethylsiloxanes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulbricht, M. Advanced Functional Polymer Membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef]
- Alentiev, D.A.; Nikiforov, R.Y.; Rudakova, M.A.; Zarezin, D.P.; Topchiy, M.A.; Asachenko, A.F.; Alentiev, A.Y.; Bolshchikov, B.D.; Belov, N.A.; Finkelshtein, E.S.; et al. Polynorbornenes Bearing Ether Fragments in Substituents: Promising Membrane Materials with Enhanced CO2 Permeability. J. Memb. Sci. 2022, 648, 120340. [Google Scholar] [CrossRef]
- Stern, S.A.; Shah, V.M.; Hardy, B.J. Structure-Permeability Relationships in Silicone Polymers. J. Polym. Sci. B Polym. Phys. 1987, 25, 1263–1298. [Google Scholar] [CrossRef]
- Senthilkumar, U.; Reddy, B.S.R. Polysiloxanes with Pendent Bulky Groups Having Amino-Hydroxy Functionality: Structure–Permeability Correlation. J. Memb. Sci. 2007, 292, 72–79. [Google Scholar] [CrossRef]
- Suleman, M.S.; Lau, K.K.; Yeong, Y.F. Enhanced Gas Separation Performance of PSF Membrane after Modification to PSF/PDMS Composite Membrane in CO2/CH4 Separation. J. Appl. Polym. Sci. 2018, 135, 45650. [Google Scholar] [CrossRef]
- Bondar, V.I.; Freeman, B.D.; Pinnau, I. Gas Transport Properties of Poly(Ether-b-Amide) Segmented Block Copolymers. J. Polym. Sci. B Polym. Phys. 2000, 38, 2051–2062. [Google Scholar] [CrossRef]
- Rostovtseva, V.; Pulyalina, A.; Dubovenko, R.; Faykov, I.; Subbotina, K.; Saprykina, N.; Novikov, A.; Vinogradova, L.; Polotskaya, G. Enhancing Pervaporation Membrane Selectivity by Incorporating Star Macromolecules Modified with Ionic Liquid for Intensification of Lactic Acid Dehydration. Polymers 2021, 13, 1811. [Google Scholar] [CrossRef] [PubMed]
- Dmitrenko, M.; Chepeleva, A.; Liamin, V.; Mazur, A.; Semenov, K.; Solovyev, N.; Penkova, A. Novel Mixed Matrix Membranes Based on Polyphenylene Oxide Modified with Graphene Oxide for Enhanced Pervaporation Dehydration of Ethylene Glycol. Polymers 2022, 14, 691. [Google Scholar] [CrossRef]
- Banihashemi, F.; Pakizeh, M.; Ahmadpour, A. CO2 Separation Using PDMS/ZSM-5 Zeolite Composite Membrane. Sep. Purif. Technol. 2011, 79, 293–302. [Google Scholar] [CrossRef]
- Akhmetshina, A.; Yanbikov, N.; Atlaskin, A.; Trubyanov, M.; Mechergui, A.; Otvagina, K.; Razov, E.; Mochalova, A.; Vorotyntsev, I. Acidic Gases Separation from Gas Mixtures on the Supported Ionic Liquid Membranes Providing the Facilitated and Solution-Diffusion Transport Mechanisms. Membranes 2019, 9, 9. [Google Scholar] [CrossRef]
- Alentiev, D.A.; Egorova, E.S.; Bermeshev, M.V.; Starannikova, L.E.; Topchiy, M.A.; Asachenko, A.F.; Gribanov, P.S.; Nechaev, M.S.; Yampolskii, Y.P.; Finkelshtein, E.S. Janus Tricyclononene Polymers Bearing Tri(n-Alkoxy)Silyl Side Groups for Membrane Gas Separation. J. Mater. Chem. A Mater. 2018, 6, 19393–19408. [Google Scholar] [CrossRef]
- Rao, H.-X.; Liu, F.-N.; Zhang, Z.-Y. Preparation and Oxygen/Nitrogen Permeability of PDMS Crosslinked Membrane and PDMS/Tetraethoxysilicone Hybrid Membrane. J. Memb. Sci. 2007, 303, 132–139. [Google Scholar] [CrossRef]
- Zhmakin, V.V.; Teplyakov, V.V. The Evaluation of the C1–C4 Hydrocarbon Permeability Parameters in the Thin Film Composite Membranes. Sep. Purif. Technol. 2017, 186, 145–155. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, H.; Zong, C.; Li, Y.; Jin, W. Study on Membrane Performance in Vapor Permeation of VOC/N2 Mixtures via Modified Constant Volume/Variable Pressure Method. Sep. Purif. Technol. 2018, 200, 273–283. [Google Scholar] [CrossRef]
- Sohn, W.-I.; Ryu, D.-H.; Oh, S.-J.; Koo, J.-K. A Study on the Development of Composite Membranes for the Separation of Organic Vapors. J. Memb. Sci. 2000, 175, 163–170. [Google Scholar] [CrossRef]
- Khan, F.I.; Ghoshal, A.K. Removal of Volatile Organic Compounds from Polluted Air. J. Loss Prev. Process Ind. 2000, 13, 527–545. [Google Scholar] [CrossRef]
- Lin, D.; Ding, Z.; Liu, L.; Ma, R. Experimental Study of Vapor Permeation of C5C7 Alkane through PDMS Membrane. Chem. Eng. Res. Des. 2012, 90, 2023–2033. [Google Scholar] [CrossRef]
- Lue, S.J.; Chen, W.W.; Wang, S.F. Vapor Permeation of Toluene, m-Xylene, and Methanol Vapors on Poly(Dimethylsiloxane) Membranes. Sep. Sci. Technol. 2009, 44, 3412–3434. [Google Scholar] [CrossRef]
- Raharjo, R.D.; Freeman, B.D.; Paul, D.R.; Sarti, G.C.; Sanders, E.S. Pure and Mixed Gas CH4 and N-C4H10 Permeability and Diffusivity in Poly(Dimethylsiloxane). J. Memb. Sci. 2007, 306, 75–92. [Google Scholar] [CrossRef]
- Grushevenko, E.A.; Borisov, I.L.; Knyazeva, A.A.; Volkov, V.V.; Volkov, A.V. Polyalkylmethylsiloxanes Composite Membranes for Hydrocarbon/Methane Separation: Eight Component Mixed-Gas Permeation Properties. Sep. Purif. Technol. 2020, 241, 116696. [Google Scholar] [CrossRef]
- Sokolov, S.E.; Grushevenko, E.A.; Volkov, V.V.; Borisov, I.L.; Markova, S.Y.; Shalygin, M.G.; Volkov, A.V. A Composite Membrane Based on Polydecylmethylsiloxane for the Separation of Hydrocarbons Mixtures at Reduced Temperatures. Membr. Membr. Technol. 2022, 4, 377–384. [Google Scholar] [CrossRef]
- Berean, K.; Ou, J.Z.; Nour, M.; Latham, K.; McSweeney, C.; Paull, D.; Halim, A.; Kentish, S.; Doherty, C.M.; Hill, A.J.; et al. The Effect of Crosslinking Temperature on the Permeability of PDMS Membranes: Evidence of Extraordinary CO2 and CH4 Gas Permeation. Sep. Purif. Technol. 2014, 122, 96–104. [Google Scholar] [CrossRef]
- Gu, J.; Bai, Y.; Zhang, L.; Deng, L.; Zhang, C.; Sun, Y.; Chen, H. VTOS Cross-Linked PDMS Membranes for Recovery of Ethanol from Aqueous Solution by Pervaporation. Int. J. Polym. Sci. 2013, 2013, 529474. [Google Scholar] [CrossRef]
- Zhan, X.; Li, J.; Huang, J.; Chen, C. Enhanced Pervaporation Performance of Multi-Layer PDMS/PVDF Composite Membrane for Ethanol Recovery from Aqueous Solution. Appl. Biochem. Biotechnol. 2010, 160, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, Y.; Ding, Q.; Xiao, T.; Yang, X. High-Performance Silicone Membranes for VOC/N 2 Separation: A New Crosslinking Strategy via Octyl-Grafted Poly(Hydromethylsiloxane). Ind. Eng. Chem. Res. 2023, 62, 13974–13987. [Google Scholar] [CrossRef]
- Borisov, I.L.; Grushevenko, E.A.; Volkov, A.V. Effect of Crosslinking Agent Length on the Transport Properties of Polydecylmethylsiloxane-Based Membranes. Membr. Membr. Technol. 2020, 2, 318–324. [Google Scholar] [CrossRef]
- Borisov, I.L.; Grushevenko, E.A.; Anokhina, T.S.; Bakhtin, D.S.; Levin, I.S.; Bondarenko, G.N.; Volkov, V.V.; Volkov, A.V. Influence of Side Chains Assembly on the Structure and Transport Properties of Comb-like Polysiloxanes in Hydrocarbon Separation. Mater. Today Chem. 2021, 22, 100598. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A General-Purpose Peak Fitting Program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Zevin, L.S.; Kimmel, G. Quantitative X-ray Diffractometry; Mureinik, I., Ed.; Springer US: New York, NY, USA, 1995; ISBN 9781461395379. [Google Scholar]
- Yushkin, A.; Grekhov, A.; Matson, S.; Bermeshev, M.; Khotimsky, V.; Finkelstein, E.; Budd, P.M.; Volkov, V.; Vlugt, T.J.H.; Volkov, A. Study of Glassy Polymers Fractional Accessible Volume (FAV) by Extended Method of Hydrostatic Weighing: Effect of Porous Structure on Liquid Transport. React. Funct. Polym. 2015, 86, 269–281. [Google Scholar] [CrossRef]
- Flory, P.J. Statistical Mechanics of Swelling of Network Structures. J. Chem. Phys. 1950, 18, 108–111. [Google Scholar] [CrossRef]
- Tan, Z.; Jaeger, R.; Vancso, G.J. Crosslinking Studies of Poly(Dimethylsiloxane) Networks: A Comparison of Inverse Gas Chromatography, Swelling Experiments and Mechanical Analysis. Polymer 1994, 35, 3230–3236. [Google Scholar] [CrossRef]
- Bokobza, L. Some New Developments in Rubber Reinforcement. Compos. Interfaces 2006, 13, 345–354. [Google Scholar] [CrossRef]
- Rim, P.B.; Rasoul, H.A.A.; Hurley, S.M.; Orler, E.B.; Scholsky, K.M. Rheological and Thermal Properties of Poly(Methylalkylsiloxane). Macromolecules 1987, 20, 208–211. [Google Scholar] [CrossRef]
- Kim, B.G.; Moon, J.-K.; Sohn, E.-H.; Lee, J.-C.; Yeo, J.-K. Polysiloxanes Containing Alkyl Side Groups: Synthesis and Mesomorphic Behavior. Macromol. Res. 2008, 16, 36–44. [Google Scholar] [CrossRef]
- Yang, H.; Nguyen, Q.T.; Ding, Y.; Long, Y.; Ping, Z. Investigation of Poly(Dimethyl Siloxane) (PDMS)–Solvent Interactions by DSC. J. Memb. Sci. 2000, 164, 37–43. [Google Scholar] [CrossRef]
- Platé, N.A.; Shibaev, V.P. Comb-like Polymers. Structure and Properties. J. Polym. Sci. Macromol. Rev. 1974, 8, 117–253. [Google Scholar] [CrossRef]
- Lund, R.; Alegría, A.; Goitandía, L.; Colmenero, J.; González, M.A.; Lindner, P. Dynamical and Structural Aspects of the Cold Crystallization of Poly(Dimethylsiloxane) (PDMS). Macromolecules 2008, 41, 1364–1376. [Google Scholar] [CrossRef]
- Raharjo, R.D.; Freeman, B.D.; Sanders, E.S. Pure and Mixed Gas CH4 and N-C4H10 Sorption and Dilation in Poly(Dimethylsiloxane). J. Memb. Sci. 2007, 292, 45–61. [Google Scholar] [CrossRef]
Membrane Abbreviation | Cross-Linking Agent (CA) | Ratio 1-Decene/CA, mol/mol |
---|---|---|
C10-OD | 1,7-octadiene | 20 |
C10-DD | 1,9-decadiene | 20 |
C10-DdD | 1,11-dodecadiene | 20 |
C10-Sil500 | PDMS (Mn = 500 g/mol) | 15 |
C10-Sil25-OD | PDMS (Mn = 25,000 g/mol) 1,7-octadiene | 15 |
Membrane Abbreviation | Tm, °C | ΔH, J·g−1 |
---|---|---|
C10-OD | −39.2 | −26.7 |
C10-DD | −41.5 | −20.9 |
C10-DdD | −40.9 | −22.8 |
C10-Sil500 | −43.3 | −22.0 |
C10-Sil25-OD | −38.9 1 −44.0 2 | −28.6 |
Membrane Abbreviation | d1, Å | d2, Å | d3, Å | dm, Å | Crystallinity Degree of Side-Chain Substituents (α), % |
---|---|---|---|---|---|
C10-OD | 16.2 | 8.0 | 5.6 | 4.1 | 5.7 |
C10-DD | 14.7 | 7.7 | - | 4.1 | 6.2 |
C10-DdD | 18.1 | 8.6 | 7.0 | 4.1 | 6.9 |
C10-Sil500 | - | 9.7 | 6.1 | 4.0 | 7.1 |
C10-Sil25-OD | - | 7.1 | - | 4.1 | 7.6 |
Membrane Abbreviation | Sorption, g/g | Swelling, cm3/cm3 | Density, g/cm3 | Apparent Cross-Linking Density, 10−4 mol/g |
---|---|---|---|---|
C10-OD | 0.862 ± 0.009 | 0.928 ± 0.020 | 0.985 ± 0.096 | 3.14 ± 0.06 |
C10-DD | 1.221 ± 0.007 | 1.382 ± 0.016 | 0.966 ± 0.097 | 2.44 ± 0.06 |
C10-DdD | 1.262 ± 0.006 | 1.490 ± 0.024 | 0.928 ± 0.093 | 2.35 ± 0.17 |
C10-Sil500 | 2.749 ± 0.009 | 2.892 ± 0.018 | 0.929 ± 0.093 | 1.49 ± 0.09 |
C10-Sil25-OD | 2.577 ± 0.007 | 2.461 ± 0.029 | 0.922 ± 0.092 | 1.79 ± 0.04 |
C10-Sil25 * | 3.752 ± 0.005 | 3.287 ± 0.031 | 0.929 ± 0.093 | 1.38 ± 0.02 |
Membrane | Diffusion Coefficient, 10−8 cm2/s | Diffusion Selectivity (X/N2) | |||||
---|---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C4H10 | CH4 | C2H6 | C4H10 | |
C10-OD | 520 ± 26 | 490 ± 25 | 260 ± 13 | 160 ± 8 | 1.0 ± 0.10 | 0.5 ± 0.05 | 0.3 ± 0.03 |
C10-DD | 230 ± 10 | 180 ± 9 | 120 ± 6 | 55 ± 3 | 0.8 ± 0.08 | 0.5 ± 0.05 | 0.2 ± 0.02 |
C10-DdD | 260 ± 10 | 200 ± 10 | 110 ± 6 | 55 ± 3 | 0.8 ± 0.08 | 0.4 ± 0.04 | 0.2 ± 0.02 |
C10-Sil500 | 660 ± 30 | 490 ± 25 | 240 ± 10 | 135 ± 7 | 0.7 ± 0.07 | 0.4 ± 0.04 | 0.2 ± 0.02 |
C10-Sil25-OD | 1010 ± 50 | 420 ± 20 | 220 ± 10 | 125 ± 6 | 0.4 ± 0.04 | 0.2 ± 0.02 | 0.1 ± 0.01 |
Membrane | Solubility Coefficient, 10−2 cm3/(cm3cm.Hg) | Solubility Selectivity (X/N2) | |||||
---|---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C4H10 | CH4 | C2H6 | C4H10 | |
C10-OD | 0.1 ± 0.01 | 0.4 ± 0.02 | 2.8 ± 0.14 | 34 ± 2 | 3.9 ± 0.4 | 28 ± 3 | 344 ± 30 |
C10-DD | 0.2 ± 0.01 | 0.7 ± 0.04 | 3.8 ± 0.20 | 62 ± 3 | 4.6 ± 0.5 | 25 ± 3 | 416 ± 40 |
C10-DdD | 0.2 ± 0.01 | 0.7 ± 0.04 | 3.5 ± 0.18 | 57 ± 3 | 4.4 ± 0.4 | 23 ± 2 | 379 ± 40 |
C10-Sil500 | 0.1 ± 0.01 | 0.5 ± 0.03 | 3.0 ± 0.15 | 36 ± 2 | 4.6 ± 0.5 | 27 ± 3 | 327 ± 30 |
C10-Sil25-OD | 0.1 ± 0.01 | 0.9 ± 0.05 | 5.3 ± 0.27 | 65 ± 3 | 7.8 ± 0.8 | 44 ± 4 | 542 ± 50 |
Membrane | Permeability Coefficient, Barrer | Permselectivity (X/N2) | |||||
---|---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C4H10 | CH4 | C2H6 | C4H10 | |
C10-OD | 53 ± 3 | 194 ± 10 | 723 ± 40 | 5510 ± 280 | 3.7 ± 0.4 | 13.6 ± 1.4 | 104 ± 10 |
C10-DD | 35 ± 2 | 123 ± 6 | 395 ± 20 | 3170 ± 160 | 3.6 ± 0.4 | 11.4 ± 1.1 | 92 ± 9 |
C10-DdD | 39 ± 2 | 133 ± 7 | 340 ± 20 | 3000 ± 150 | 3.4 ± 0.3 | 10.2 ± 1.0 | 77 ± 8 |
C10-Sil500 | 75 ± 4 | 250 ± 10 | 712 ± 40 | 4780 ± 240 | 3.3 ± 0.3 | 9.5 ± 1.0 | 63 ± 6 |
C10-Sil25-OD | 120 ± 6 | 400 ± 20 | 1180 ± 60 | 8200 ± 410 | 3.3 ± 0.3 | 9.8 ± 1.0 | 68 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grushevenko, E.; Rokhmanka, T.; Sokolov, S.; Basko, A.; Borisov, I.; Pochivalov, K.; Volkov, A. Influence of Type of Cross-Linking Agent on Structure and Transport Properties of Polydecylmethylsiloxane. Polymers 2023, 15, 4436. https://doi.org/10.3390/polym15224436
Grushevenko E, Rokhmanka T, Sokolov S, Basko A, Borisov I, Pochivalov K, Volkov A. Influence of Type of Cross-Linking Agent on Structure and Transport Properties of Polydecylmethylsiloxane. Polymers. 2023; 15(22):4436. https://doi.org/10.3390/polym15224436
Chicago/Turabian StyleGrushevenko, Evgenia, Tatiana Rokhmanka, Stepan Sokolov, Andrey Basko, Ilya Borisov, Konstantin Pochivalov, and Alexey Volkov. 2023. "Influence of Type of Cross-Linking Agent on Structure and Transport Properties of Polydecylmethylsiloxane" Polymers 15, no. 22: 4436. https://doi.org/10.3390/polym15224436
APA StyleGrushevenko, E., Rokhmanka, T., Sokolov, S., Basko, A., Borisov, I., Pochivalov, K., & Volkov, A. (2023). Influence of Type of Cross-Linking Agent on Structure and Transport Properties of Polydecylmethylsiloxane. Polymers, 15(22), 4436. https://doi.org/10.3390/polym15224436