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Abstract: Single gas sorption experiments with the C4-hydrocarbons n-butane, iso-butane, 1-butene
and iso-butene on the flexible MOFs Cu-IHMe-pw and Cu-IHEt-pw were carried out with both thermo-
dynamic equilibrium and overall sorption kinetics. Subsequent static binary gas mixture experiments
of n-butane and iso-butane unveil a complex dependence of the overall selectivity on sorption en-
thalpy, rate of structural transition as well as steric effects. A thermodynamic separation favoring
iso-butane as well as kinetic separation favoring n-butane are possible within Cu-IHMe-pw while
complete size exclusion of iso-butane is achieved in Cu-IHEt-pw. This proof-of-concept study shows
that the structural flexibility offers additional levers for the precise modulation of the separation
mechanisms for complex mixtures with similar chemical and physical properties with real selectivities
of >10.

Keywords: metal–organic frameworks; gas mixture separation; flexible materials

1. Introduction

Flexible MOFs or porous coordination polymers represent a unique but large family
of crystalline 3D solids built by coordinative bonds between inorganic nodes and organic
linkers [1–3]. Since their first discovery, an enormous amount of research has been con-
ducted on this material class, utilizing the vast degrees of freedom for the synthesis of
new materials, analyzing their properties towards, e.g., gas storage [4–7], catalysis and
even sensor design [8,9] or drug delivery [10,11]. However, given the industrial relevance,
energy-efficient gas separation via sorption using MOFs is one of the focus topics within the
research community [12–16]. Due to the modularity of the material class, pore geometries
are envisioned to be tailored to the specific requirements to achieve good selectivities via
size/shape exclusion or kinetic separation as well as for a thermodynamic separation based
on differences in adsorbate–surface interactions of at least two concurring gases.

In recent years, remarkable progress was made, e.g., using ultramicroporous MOFs for
the separation of propane and propene [15], reaching almost complete exclusion of propane
due to size effects and thus a kinetic separation. Another example of the same separation
is the MOF ZIF-8, in which the tight pore apertures lead to an enormously decreased
diffusivity towards propane as compared to propene [17,18]. In the last two decades, a new
subclass of MOFs displaying structurally flexible behavior was found, showing hysteresis
in the adsorption isotherm with a large increase in pore volume within a narrow pressure
range. Some studies also showcase their potential for separation.

Early work on one of the most prominent flexible MOFs, Mil-53, already showed
the potential of this novel material class for CH4/CO2 gas mixture separations due to the
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higher affinity towards CO2 [19–23]. However, within these studies, it was found that
these capabilities are merely based on thermodynamic separation as the species opening
the framework (CO2) also allows the second, less preferred species (CH4) to enter due
to the wide pore apertures in the MOF. Similar observations were also made by other
groups for other materials [18,24–26]. While several groups focused on the ability of flex-
ible MOFs to chemically separate very different adsorptives like N2, CH4 and CO2 or
specific alkynes [26–30], only a small number of publications deal with the separation
of hydrocarbons on flexible MOFs. Van den Bergh et al. analyzed the flexible ZIF-7, a
zeolite imidazolate framework, for alkane–alkene separation for C2 and C3 hydrocarbons.
It was shown for the first time that flexible MOFs have the ability to separate entirely
within breakthrough curve experiments, herein based on the ability to find optimal sites
within the pore apertures [31]. On the same material, Chen et al. conducted detailed
breakthrough curve analysis for the separation of ethane and ethylene, further verify-
ing the potential of the material class while also proving that experimental results can
be sufficiently simulated via DFT calculations [23]. Couck et al. investigated the MOF
COMOC-2 for separation of ethane and propane via breakthrough curve experiments with
propane selectivity of 2–3 due to the higher affinity for adsorption on the material [32]. The
MOFs NJU-Bai8 and NKU-FlexMOF-1 were investigated by Krishna’s group for the sepa-
ration of propane/propene gas mixtures [33,34] with both showing promising results by
experimental breakthrough curves based on a thermodynamic separation mechanism. Cui
et al. utilized the ultramicroporous materials MnINA and CuINA, which display flexible
behavior, and showed a molecular sieving effect that prefers n-butane over iso-butane via
experimental breakthrough curves [35].

Generally, high focus in the literature is placed on the impact of modifications of the
linker or the SBU on the thermodynmic equilibrium but less so on the overall sorption
kinetics or potential separation mechanism [35–39]. Furthermore, only a few studies have
contributed to a consistent view on the specific kinetics of structural transitions in flexible
materials to date with a range of different MOFs and sorptives [40–43]. The possibility for
kinetic separations of similar hydrocarbons, even up to practical size exclusion, has only
been shown by Cui et al. [35] so far and should be investigated in more detail.

Therefore, the goal of this study is to investigate the governing thermodynamic and
kinetic factors for gas separations on flexible MOFs by the individual study of them for a set
of MOFs and different hydrocarbon sorptives. The subsequent analysis of static gas mixture
experiments allows deeper insights into the molecular mechanism than break-through
curves or theoretical assumptions on sorption isotherms only. Furthermore, key indicators
for competitive gas separations on flexible materials will be derived in order to promote
future research on the topic.

As probe molecules, the C4-hydrocarbons n-butane, iso-butane, 1-butene and iso-
butene were used, enabling the analysis of both olefins and paraffins with different spatial
demands (kinetical diameters of 4.32–4.72 Å). The gases were probed on the MOFs [Cu2(H-
Me-trz-Ia)2] and [Cu2(H-Et-trz-Ia)2], with two isoreticular frameworks which are hereafter
referred to as Cu-IHMe-pw and Cu-IHEt-pw for simplicity. These MOF systems have been
previously investigated for their thermodynamic [44] and kinetic properties [45]. The
linkers are based on triazolyl-isophthalate and only deviate in the alkyl side-chain at
the 2-position of the triazol ring. The deviating names thus refer to a methyl and ethyl
group, respectively. This further allows the investigation of the impact of the linker size
on the separation mechanism. The bridging coordination of the carboxylate groups of
the linkers results in a square planar CuO4 environment of the metal ions, leading to the
well-known dinuclear paddle-wheel motif. Through coordination of a nitrogen atom of the
triazolyl group in the apical positions of the metal centers, a three-dimensional network
is assembled. Crystallographic data and CO2 adsorption isotherms were reported by
Kobalz et al. [46]. Cu-IHMe-pw exists in three stable phases with two distinct gate-openings
while Cu-IHEt-pw exhibits one structural transition only. Crystal structure details for
all three phases of Cu-IHMe-pw, denoted as narrow pore (np-phase), medium pore (mp-
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phase) and large pore phase (lp-phase), were resolved by single-crystal and powder X-ray
diffraction experiments. Based on these experiments, Cu-IHMe-pw was shown to have a
pore size of around 3–5 Å [46] and thus is within the range of the kinetic diameters of the
chosen adsorptives of 4.3 to 5.3 Å [47]. The corresponding crystal structure data of the np-
and mp-phases are shown in the Supplementary Materials, Section S4.

2. Materials and Methods
2.1. Synthesis of MOFs

The metal–organic frameworks [Cu2(H-Me-trz-Ia)2] and [Cu2(H-Et-trz-Ia)2] (herein
called Cu-IHMe-pw and Cu-IHEt-pw, respectively, for simplicity) were synthesized accord-
ing to the original procedure reported elsewhere [46].

2.2. Measurement of Equilibrium Sorption Isotherms

The adsorption and desorption isotherms of the C4-hydrocarbons n-butane, iso-
butane, 1-butene and iso-butene on the MOF systems were measured in a temperature
range from 283 K to 313 K and at pressures up to 300 kPa using a magnetic suspen-
sion balance (Fa. Rubotherm GmbH, Bochum, Germany). Three pressure transducers
(MKS Instruments Deutschland GmbH, Munich, Germany, Omega Engineering GmbH,
Deckenpfronn, Germany) were used to gather accurate data for the whole pressure range
up to 300 kPa. In the preparation of the sorption experiments, typically a stainless-steel
sample holder was filled with around 0.2 g of a MOF sample. The sample cell was evacu-
ated for at least 12 h at 373 K and a minimum pressure of 0.3 Pa was applied until constant
mass was achieved. Subsequently, the gas was dosed into the balance and the pressure was
increased stepwise after reaching the equilibrium. Sorption equilibrium was assumed to
be reached when no further weight increase and pressure change of less than 1 Pa within
15 min were observed. The temperature was kept constant with an accuracy of 0.5 K. The
gases were purchased from Linde (Linde AG, Munich, Germany) with purities of 99.5%. In
order to calculate the surface excess mass from the measured weight values, a buoyancy
correction was carried out. Furthermore, absolute gas loadings were calculated. Detailed
descriptions for these procedures can be found elsewhere [48]. The densities for each gas
were calculated with the program FLUIDCAL [49].

2.3. Measurement of Static Gas Mixtures

The static sorption equilibria of gas mixtures were determined by means of a hybrid
manometric–gravimetric system built by Lange [50], the schematic structure is shown in
Figure S6. Herein, the sample chamber of the magnetic suspension balance was integrated
into a manometric arrangement. The manometric part consists of pressure vessels and their
piping. The modular design of the apparatus allows three distinct take-aways: First, the
gravimetric measurements allow the precise mass calculation of the adsorbent during both
activation as well as gas uptake. Second, by deploying mass balance calculations for the
manometry, the partial molar loadings of both components on the adsorbent can be calcu-
lated. This requires knowledge of the gas phase composition, which was determined exter-
nally in a gas chromatograph (GC) with a flame ionization detector (FID). A more detailed
description of the approach is provided in the Supplementary Materials, Section S3.3.

3. Results
3.1. Single-Gas Thermodynamic Analysis

For the analysis of the equilibrium sorption isotherms of the studied systems, the
Dubinin approach [51,52] is used as in previous studies for the MOF systems under in-
vestigation [44,45]. It has the advantage of enabling the analysis of sorption equilibria at
different temperatures at once, enabling an easy and quick identification of key differences
in sorption equilibria for different sorptive–sorbent systems. Figure 1 presents the band of
isotherms for the ad- and desorption of the studied C4-hydrocarbons on Cu-IHMe-pw and
Cu-IHEt-pw for the temperatures 283, 298 and 313 K in a characteristic Dubinin plot, each
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showing the specific pore volume W in dependence of the sorption potential A. Further-
more, every resulting characteristic curve for each pair of adsorbent and adsorptive as well
as adsorption and desorption was fit with a dual-volume Dubinin–Asthakov approach,
as was carried out previously [44,45]. These fits build the basis for the analysis in the
following. A more detailed description of the fitting equation and methodology is given in
the ESI, Supplementary Materials, Section S1.
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Figure 1. Characteristic patterns for adsorption (left) and desorption (right) of the C4-hydrocarbons 

n-butane, iso-butane, 1-butene and iso-butene on Cu-IHMe-pw (top) and Cu-IHEt-pw (bottom) meas-

ured at temperatures of 283, 298 and 313 K. The gate-opening end (GOE) and gate-closing start 

(GCS) potentials are individually marked. All isotherm patterns are modeled with the Dubinin–

Asthakov approach [51,52]. Please note two idiosyncrasies here: (1) The adsorption from iso-butane 

Figure 1. Characteristic patterns for adsorption (left) and desorption (right) of the C4-hydrocarbons
n-butane, iso-butane, 1-butene and iso-butene on Cu-IHMe-pw (top) and Cu-IHEt-pw (bottom) mea-
sured at temperatures of 283, 298 and 313 K. The gate-opening end (GOE) and gate-closing start (GCS)
potentials are individually marked. All isotherm patterns are modeled with the Dubinin–Asthakov
approach [51,52]. Please note two idiosyncrasies here: (1) The adsorption from iso-butane at Cu-IHMe-
pw (top left) could not be entirely conducted due to very slow uptakes and thus, only one data-point
is provided. (2) The desorption fit of n-butane on Cu-IHEt-pw (bottom right) was derived from a
previous work based on the D-UAT and the desorption of propane on the same material [44].

Overall, the measured points of sorption converge into mostly sharp characteristic
curves for every single adsorptive–adsorbent system. Three deviations from the expected
patterns are observable within the MOF systems. Iso-butane is very slow to open the
framework in Cu-IHMe-pw (points in Figure 1 upper left do not resemble equilibrium) and
it is not able at all to open Cu-IHEt-pw within a reasonable timeframe (<1 week), indicating
that the visualized datapoints do not represent equilibrium states. Thus, this phenomenon
is of a kinetic nature and analyzed in more detail within the next section. Furthermore,
n-butane does not show a distinct gate-closing within Cu-IHEt-pw, which is an outlier in
the dataset and likely due to steric blocking effects of the adsorptive within the framework.

The specific boundaries of the structural transition, meaning the gate-opening end
AGOE for adsorption and the gate-closing start AGCS for desorption, can be determined by
applying the ESW theory as described by Adolphs [53] and previous work [44]. All data
regarding the gate-opening end and gate-closing start points as sorption potentials as well
as the corresponding pressures at 298 K are displayed in Table 1.
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Table 1. Sorption potentials and pressures at 298 K for all gate-opening end (GOE) and gate-closing
start (GCS) points for the C4 adsorption on Cu-IHMe-pw and Cu-IHEt-pw.

MOF Adsorptive AGOE

in kJ mol−1
pGOE

in kPa
AGCS

in kJ mol−1
pGCS

in kPa

Cu-IHMe-pw

n-butane 11,000 2.9 14,700 0.6
iso-butane 7200 19.2 16,500 0.5
1-butene 12,000 2.4 18,700 0.2

iso-butene 16,600 0.4 21,400 0.1

Cu-IHEt-pw

n-butane 3700 54.3 12,800 1.4
iso-butane - - - -
1-butene 9900 5.6 15,300 0.6

iso-butene 11,400 3.0 19,700 0.1

Due to the flexibility of the frameworks, the characteristic ad- and desorption curves
show two distinct sorption regimes: Low sorptive loading within the np-phase and high
sorptive loading within the mp-phase of the respective MOF. Furthermore, the sorption
patterns show a distinct hysteresis for all the sorptive–sorbent systems studied, which is
common for flexible MOFs [1,54,55].

In a previous study, the sorption thermodynamics in both Cu-IHMe-pw and Cu-IHEt-
pw were investigated. It was concluded that the desorption pattern resembles the actual
thermodynamic equilibrium more closely [44], an interpretation that is in line with other
authors [56,57]. Therefore, the desorption patterns are taken for the thermodynamic
analysis of the interaction potentials and energy differences between the two phases.

When the adsorption potential tends to zero, the specific pore volume of the solid
occupied by the fluid can be derived at the point of intersection with the y-axis (Figure 1).
From Cu-IHMe-pw to Cu-IHEt-pw, the specific pore volume is reduced by one third due
to the larger linker size and the resulting smaller pore in the opened mp-form. Regarding
Cu-IHMe-pw individually, the accessible pore volume shows a preference firstly towards
the branched hydrocarbons and secondly to the paraffins (overall order iso-butane > iso-
butene > n-butane > 1-butene). This is likely due to steric reasons as the more compact
hydrocarbons may find a denser packing within the opened pores. For Cu-IHEt-pw, the
overall loadings of n-butane, iso-butene and 1-butene are almost equal, showing no specific
steric preferences while iso-butane is not able to open the framework.

The relative positions of the desorption patterns can give insights into the interaction
potentials between the different sorptive–sorbent systems. Generally, the further the pattern
is shifted to higher sorption potentials, the higher the specific sorption enthalpy and thus
the interaction between guest and host. Herein, both olefins show a much higher interaction
potential towards both Cu-IHMe-pw and Cu-IHEt-pw as compared to the paraffins. This is
likely due to a stronger interaction of their diffused π-orbitals with the polarizing surfaces.
Both the higher affinity and denser packing of olefins in MOFs are commonly observed in
the literature and a key reason why this material class is considered as promising separation
material [58–61].

A recently published method to normalize gas properties and to subsequently enable
the calculation of normalized interaction potentials called D-UAT can be furthermore theo-
retically confirmed [44]. The reduced interaction potentials of the eight different systems
under study are shown in the ESI, emphasizing the higher affinity of both 1-butene and
iso-butene towards the MOFs even more (e.g., on Cu-IHEt-pw, iso-butene 103 J mol−1 K−1,
n-butane 91 J mol−1 K−1 at half coverage). In order to derive the total energy difference
between the np- and mp-phases within the MOFs (∆FHost), the same approach as utilized in
a previous work [44] based on a method by Coudert et al. [62] was applied. Overall, the
values of ∆FHost are very consistent within the MOF systems with 17.1 and 19.5 J mol−1

for Cu-IHMe-pw and Cu-IHEt-pw, respectively, and in the same range as calculated within
Ref. [44].
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3.2. Single-Gas Kinetic Analysis

In a further analysis step, the individual uptake curves of each pressure increase
during the isotherm recordings were derived. These were investigated by means of uptake
fitting with an LDF approach [63] and, subsequently, effective transport diffusivities via
a simplified methodology were derived as was carried out in a previous work of the
group [45]. The diffusivities in dependence of the sorptive loading show three distinct
regions as can be seen in Figure 2. Fast uptakes were recorded within the bare np- as
well as mp-phases, leading to diffusivities of around 5·10−13 m2 s−1 and above, which is
comparable to other measurements for, e.g., n-butane in microporous solids [64]. However,
much slower uptakes are recorded during the structural transition, dropping the diffusivity
to values of 1·10−14 and 1·10−16 m2 s−1 for n-butane on Cu-IHMe-pw and Cu-IHEt-pw,
respectively, further exemplifying the kinetic hindrance of the overall process [43,57,65].
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Figure 2. Transport diffusivities calculated from the individual pressure steps during the gravimetric
adsorption measurements for n-butane, 1-butene and iso-butene at 298 K on Cu-IHMe-pw (left) and
Cu-IHEt-pw (right). Please note that the adsorption for iso-butane was too slow to be evaluated in
both MOFs.

Furthermore, the differences between the two MOFs are significant, most likely caused
by the tighter pore space of Cu-IHEt-pw which may slow down the diffusion to the active
sites as well as hinder the molecular reorientation of the framework itself.

Within the different adsorptives, it becomes evident that n-butane does open the
framework slower as compared to both olefins within both MOFs. While no big difference
between the olefins is recognizable in Cu-IHMe-pw, iso-butene seems to trigger the overall
process the fastest of all adsorptives within Cu-IHEt-pw. An evaluation of the transport
diffusivities of iso-butane was not possible as the process is too time-intensive to ensure a
proper measurement in either MOF. This is exemplified by the uptake curves for a larger
pressure step on Cu-IHMe-pw as shown in Figure 3. Herein, the uptake curves for pressure
jumps up to 20 kPa and thus beyond the respective gate-opening points were recorded.
The iso-butane uptake takes more than 1000 times longer as compared to n-butane, while
both olefin uptakes are completed much quicker.

In a previous study of the system n-butane/Cu-IHMe-pw [45] and a recent publication
by Miura et al. [43], it was concluded that the overall rate of structural transition is de-
pendent on the difference of the sorption potential A at the gate-opening pressure and the
pressure point being set. Herein, the points of the gate-closing starts (GCSs) from the des-
orption patterns are taken as reference points and the corresponding potential is set as the
minimum potential that has to be overshot to ensure a nearly complete structural transition.
The calculated potential difference for each adsorptive can be defined as the driving force
of the structural transition as a guide (please see Supplementary Materials Section S3.2 for
further detail).

However, given the desorption patterns of n- and iso-butane, the latter has a larger
potential difference for the described pressure step but has a much slower rate of structural
transition. This effect can likely be ascribed to steric effects of iso-butane within the
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framework, with two potential explanations that have to be further analyzed. As evident by
the equilirbium data, iso-butane can enter the opened framework but the diffusion through
the opened pores might be hampered due to the larger spatial demand of the sorptive with
5.3 Å.
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Figure 3. Individual gas uptakes of C4-hydrocarbons on Cu-IHMe-pw at 298 K for pressure jumps
of 0–20 kPa. Please note that due to the slow uptake of iso-butane, another gravimetric set-up was
used with a temporal resolution of 1 min as compared to the other measurements with a resolution of
0.77 s.

However, it is also possible that the re-orientation of the framework is sterically
blocked by the sorptive, leading to a very high framework energy of the intermediate state.
This activation energy within the free energy profile would make the overall transition
become less likely and thus requires more time to complete. While both hypotheses may
hold true, a more in-depth explanation can be found within the Supplementary Materials,
Section S3.3. Thus, there stands the question whether these kinetic observations can be
utilized for potential gas separations.

3.3. Binary Gas Mixture—Static Measurements

Within this section, the general applicability of Cu-IHMe-pw and Cu-IHEt-pw for
the separation of binary C4-hydrocarbons is investigated. By utilizing a novel hybrid
manometric–gravimetric apparatus set-up [50], it is possible to analyze both the overall
kinetic gas uptake as well as the gas composition within the sample chamber in dependence
of time. This allows the precise investigation of the complex interplay of thermodynamic
and kinetic relations between both gases and the host under static conditions, which has
not been conducted so far to the best of our knowledge. The investigation was conducted
as follows:

(1) The overall gas uptakes recorded via the gravimetric suspension balance of the gas
mixture on the MOFs were fit with the aid of the kinetic gate-opening model (“GO”
model) by Tanaka et al. [66].

(2) A coupled mass balance incorporating the pre-determined overall available gas vol-
ume as well as the gas composition monitored during the experiment via gas chro-
matography enables the calculation of the mass of the adsorbed phase per gas species.

(3) An additional fit for the uptake of the slower gas species allows the detailed mod-
eling of the gas phase composition over time as well and thus the evaluation of the
selectivity over the whole measurement time.

The overall modeling approach is explained in more detail within the Supplementary
Materials, Section S3.2. Given the idiosyncrasies of iso-butane, the paraffin separation
of n-butane and iso-butane is examined first. For this experiment, a molar 50:50 mix of
n-butane and iso-butane was released to the sample chamber leading to a final pressure of
40 kPa after adsorption. The subsequent partial pressures of 20 kPa each are identical to
the single-gas uptakes presented in Figure 3, thus both are overshooting the minimum nec-
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essary pressure for a complete gate-opening considerably with 0.6 and 0.5 kPa, respectively.
The resulting kinetic gas uptakes, the gas phase composition and separation selectivity are
shown in Figure 4.
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Figure 4. Kinetic gas uptake (top), gas phase composition (bottom, left axis) and separation selectivity
(bottom, right axis) in dependence of time for a “50:50” mixture1 of n-butane and iso-butane on
Cu-IHMe-pw for a pressure jump of 0–40 kPa. Additionally, the overall gas phase compositions and
sorption kinetics are modeled via the “GO” model [66] and a mass balance. Within the bottom graph,
a selectivity larger than 1 indicates a preference for n-butane as indicated by the additional colored
ribbons. 1. Please note that a 50:50 molar mixture was aimed for, but actual results show slight
deviations with 48.8:51.2.

Herein, it becomes evident that the overall gas uptake is slower for the gas mixture
as compared to the single-gas uptake of n-butane with the same partial pressure step,
although much faster than compared to the bare iso-butane adsorption (half coverage is
reached after 40 min for the mixture, 1 min for n-butane and ~1000 min for iso-butane
individually). From the evolution of the gas phase composition, it can be seen that n-butane
is predominantly adsorbed at the beginning, reducing the total gas phase fraction to about
33%, resulting in a total separation factor of a maximum of 10 (at time 200 min). Beyond
that, iso-butane does continously enter the opened framework, exchanges the adsorbed
n-butane and incorporates itself within the framework. This leads to a subsequent increase
in the gas phase fraction of n-butane and a final separation factor after 10,000 min (~7 days)
of 0.9 for n-butane, meaning iso-butane is slightly preferred.

It can be concluded that, although iso-butane is preferentially adsorbed under equilib-
rium conditions (see thermodynamic section), n-butane is predominantly adsorbed first and
initiates the structural transition. Thus, n-butane simultaneously forces a penetration on
its part into the first opened pore regions of the mp-phase and occupies them immediately,
indicating a cascading effect that continuously discriminates the slower species. This is the
first time that such a complex interplay of thermodynamic and kinetic separation mech-
anisms has been observed within flexible MOFs to the best of our knowledge. However,
as the maximum separation factor reaches 10, a complete exclusion of iso-butane is not
observed. This is probably due to the preferential adsorption of iso-butane in the pore
entries of the particles. The consequent slow re-exchange also shows that the pores are
wide enough to enable such a counter diffusion. It can therefore be concluded that the
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framework offers both the potential for a thermodynamic separation as well as a kinetic
separation, whilst the structural flexibility offers the fine-tuning of both.

Based on these results, it needs to be clarified whether the effect of kinetic preference
could be even more harnessed utilizing Cu-IHEt-pw with its tighter pore spaces. Therefore,
a similar experiment was conducted for the same mixtures albeit with the latter MOF.
Herein, the overall pressure step was set to 0–200 kPa, a pressure that largely overshoots
the minimum pressure necessary to open the framework for n-butane to ensure a complete
uptake within an acceptable timeframe. The results can be seen in Figure 5 (please note that
the overall sample masses between the experiments presented in Figures 4 and 5 deviate
and, thus, the bare gas phase compositions cannot be compared).
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Figure 5. Kinetic gas uptake (top), gas phase composition (bottom, left axis) and separation selectivity
(bottom, right axis) in dependence of time for a “50:50” mixture1 of n-butane and iso-butane on
Cu-IHEt-pw for a pressure jump of 0–200 kPa. Within the bottom graph, a selectivity larger than
1 indicates a preference for n-butane as indicated by the additional colored ribbons. 1. Please note
two observations: (1) the fit for the overall uptake as well as for n-butane are overlapping as almost
no iso-butane is adsorbed. (2) A 50:50 molar mixture was aimed for, but actual results show slight
deviations with 52.4:47.6.

Overall, similar observations can be made as for the previous experiment. The sorptive
n-butane is overall kinetically preferred within this binary mixture, leading to a separation
factor of around 11. However, the re-exchange of iso-butane cannot be observed even after
around 5000 min. This is likely caused by the tighter pore space within Cu-IHEt-pw and the
subsequent kinetic hindrance of the exchange.

This clearly shows that the overall separation mechanism switches herein from a
kinetic separation towards a size exclusion effect and the overall dependence on the linker
size. An additional experimental set-up includes a mixture of iso-butane and iso-butene.
The latter is both thermodynamically and kinetically preferred considering single-gas
equilibrium and uptake data. The gas composition and the subsequent separation factor
are displayed in Figure 6. Herein, an almost complete exclusion of iso-butane can be
observed, leading to a separation factor of above 50 since the adsorption sites on the pore
entries and particle surface also seem to have a higher affinity towards iso-butene.
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Figure 6. Gas phase composition (left axis) and separation factor (right axis) in dependence of time
for a “50:50” mixture1 of iso-butene and iso-butane on Cu-IHEt-pw for a pressure jump of 0–20 kPa.
Within the bottom graph, a selectivity larger than 1 indicates a preference for iso-butene as indicated
by the additional colored ribbons. 1. Please note that a 50:50 molar mixture was aimed for but actual
results show slight deviations with 49.6:50.4.

In order to show that a sufficient separation of a gas mixture with much similar
thermodynamic affinities and rates of sorption, a 50:50 mixture of 1-butene and iso-butene
is shown in Figure S8. Herein, a separation factor of 4–5 was reached without a subsequent
re-exchange of gases, which can likely also be ascribed to a hybrid thermodynamic as well
as kinetic separation pathway with iso-butene having both higher sorption enthalpy and a
higher rate of structural transition.

However, there stands the question to what degree the latter is dependent on the
former. A high sorption enthalpy per mole of adsorbate may trigger a faster provision of
energy to close the energetic gap between both structures. Additional parameters like the
framework energy of the intermediate state as well as size exclusion effects may play a
pivotal role in the precise modulation of separation mechanisms. These thermodynamic
relations are intrinsically dependent on the precise energy profile of the host–guest system.
Although computationally very expensive, the calculations of such profiles are major
focus topics of the MOF community now [67–69]. A subsequent calculation of the rate
of structural transition via the transition state theory (TST, more detailed description
within Supplementary Materials S3.3) may be possible in similar ways as conducted by
Camp et al. [70], which would subsequently allow a complete in silico screening of the
separation ability of flexible porous solids. Indeed, computational studies concerning
large-scale screenings of a vast number of potential porous solids have shown to be very
promising, taking into account pore geometries as well as molecular interactions [71–75].

4. Conclusions

Within this study, the potential of flexible MOFs for gas separations was investigated
by analyzing the governing thermodynamic and kinetic properties individually during
static gas mixture experiments. The model adsorbents Cu-IHMe-pw and Cu-IHEt-pw both
show flexible behavior, with the latter having higher equilibrium pressures for the gate-
opening and -closing of the structural transition than the former. This is due to a slightly
higher energy difference between the two concurring structural conformations (np- and
mp-phase). Probing both frameworks with C4-hydrocarbons in single-gas experiments
individually shows a strong preference for the olefins while experiments with iso-butane
inidicate steric effects with slow diffusion or even size exclusion due to the tight pore
widths. To gain deeper insights into the precise interplay of sorption enthalpy and rate
of structural transition in dependence of the pressure step, computational methods could
be applied in the future. Recent advances in the development of free-energy profiles
coupled with the transition state theory could be harnessed in order to allow for large-scale
screenings of MOFs for specific separation purposes.
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The proof of concept presented here shows that the structural flexibility provides an
additional tool for the design of selective adsorbents and the modulation of the separation
mechanism from thermodynamic to kinetic or even size exclusion with the alteration of the
linker size and pore width. Further investigations will focus on the influence of different
pressure steps as well as breakthrough curve analysis in order to verify the effective
potential regarding olefin/paraffin separation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano14030241/s1. The supporting material is structured as follows:
Section S1—Thermodynamic Analysis, Section S2—Kinetic Analysis, Section S3—Static Gas Mixture
Measurements and Model Development, Section S4—Structure Information. References [76,77] are
cited in the Supplementary Materials.
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