Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = gas insulated substations (GIS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4290 KiB  
Article
Acoustic Identification Method of Partial Discharge in GIS Based on Improved MFCC and DBO-RF
by Xueqiong Zhu, Chengbo Hu, Jinggang Yang, Ziquan Liu, Zhen Wang, Zheng Liu and Yiming Zang
Energies 2025, 18(7), 1619; https://doi.org/10.3390/en18071619 - 24 Mar 2025
Viewed by 2360
Abstract
Gas Insulated Switchgear (GIS) is a type of critical substation equipment in the power system, and its safe and stable operation is of great significance for ensuring the reliability of power system operation. To accurately identify partial discharge in GIS, this paper proposes [...] Read more.
Gas Insulated Switchgear (GIS) is a type of critical substation equipment in the power system, and its safe and stable operation is of great significance for ensuring the reliability of power system operation. To accurately identify partial discharge in GIS, this paper proposes an acoustic identification method based on improved mel frequency cepstral coefficients (MFCC) and dung beetle algorithm optimized random forest (DBO-RF) based on the ultrasonic detection method. Firstly, three types of typical GIS partial discharge defects, namely free metal particles, suspended potential, and surface discharge, were designed and constructed. Secondly, wavelet denoising was used to weaken the influence of noise on ultrasonic signals, and conventional, first-order, and second-order differential MFCC feature parameters were extracted, followed by principal component analysis for dimensionality reduction optimization. Finally, the feature parameters after dimensionality reduction optimization were input into the DBO-RF model for fault identification. The results show that this method can accurately identify partial discharge of typical GIS defects, with a recognition accuracy reaching 92.2%. The research results can provide a basis for GIS insulation fault detection and diagnosis. Full article
Show Figures

Figure 1

27 pages, 56161 KiB  
Article
Locating Insulation Defects in HV Substations Using HFCT Sensors and AI Diagnostic Tools
by Javier Ortego, Fernando Garnacho, Fernando Álvarez, Eduardo Arcones and Abderrahim Khamlichi
Sensors 2024, 24(16), 5312; https://doi.org/10.3390/s24165312 - 16 Aug 2024
Cited by 2 | Viewed by 1966
Abstract
In general, a high voltage (HV) substation can be made up of multiple insulation subsystems: an air insulation subsystem (AIS), gas insulation subsystem (GIS), liquid insulation subsystem (power transformers), and solid insulation subsystem (power cables), all of them with their grounding structures interconnected [...] Read more.
In general, a high voltage (HV) substation can be made up of multiple insulation subsystems: an air insulation subsystem (AIS), gas insulation subsystem (GIS), liquid insulation subsystem (power transformers), and solid insulation subsystem (power cables), all of them with their grounding structures interconnected and linked to the substation earth. Partial discharge (PD) pulses, which are generated in a HV apparatus belonging to a subsystem, travel through the grounding structures of the others. PD analyzers using high-frequency current transformer (HFCT) sensors, which are installed at the connections between the grounding structures, are sensitive to these traveling pulses. In a substation made up of an AIS, several non-critical PD sources can be detected, such as possible corona, air surface, or floating discharges. To perform the correct diagnosis, non-critical PD sources must be separated from critical PD sources related to insulation defects, such as a cavity in a solid dielectric material, mobile particles in SF6, or surface discharges in oil. Powerful diagnostic tools using PD clustering and phase-resolved PD (PRPD) pattern recognition have been developed to check the insulation condition of HV substations. However, a common issue is how to determine the subsystem in which a critical PD source is located when there are several PD sources, and a critical one is near the boundary between two HV subsystems, e.g., a cavity defect located between a cable end and a GIS. The traveling direction of the detected PD is valuable information to determine the subsystem in which the insulation defect is located. However, incorrect diagnostics are usually due to the constraints of PD measuring systems and inadequate PD diagnostic procedures. This paper presents a diagnostic procedure using an appropriate PD analyzer with multiple HFCT sensors to carry out efficient insulation condition diagnoses. This PD procedure has been developed on the basis of laboratory tests, transient signal modeling, and validation tests. The validation tests were carried out in a special test bench developed for the characterization of PD analyzers. To demonstrate the effectiveness of the procedure, a real case is also presented, where satisfactory results are shown. Full article
Show Figures

Figure 1

19 pages, 5680 KiB  
Review
Trends in Measuring Instrument Transformers for Gas-Insulated Switchgears: A Review
by Dong-Eon Kim, Gyeong-Yeol Lee, Gyung-Suk Kil and Sung-Wook Kim
Energies 2024, 17(8), 1846; https://doi.org/10.3390/en17081846 - 12 Apr 2024
Cited by 5 | Viewed by 2350
Abstract
Voltage and current measurements in high-voltage substations are fundamental for stable operation. Conventional instrument transformers (ITs) face challenges in gas-insulated switchgears (GISs), such as size, weight, accuracy limitations, and behavioral instability at abnormal voltages and currents. Non-conventional instrument transformers (NCITs) have emerged to [...] Read more.
Voltage and current measurements in high-voltage substations are fundamental for stable operation. Conventional instrument transformers (ITs) face challenges in gas-insulated switchgears (GISs), such as size, weight, accuracy limitations, and behavioral instability at abnormal voltages and currents. Non-conventional instrument transformers (NCITs) have emerged to address these issues, complying with International Electrotechnical Commission (IEC) standards and providing millivolt-level signals, enabling downsizing of GIS bays. The transition to digital substations, as mandated by IEC 61850-9-2, requires a shift from the conventional 110 V/5 A outputs to levels ranging from millivolts to volts. Electronic instrument transformers (EITs), compliant with the IEC 60044-7 and 8 standards, offer alternatives to conventional ITs with smaller sizes and wider frequency ranges. However, issues remain with EITs, including limited adoption, the necessity of separate power sources, and susceptibility to electromagnetic interference. Recent standards, transitioning to IEC 61869, focus on low-power instrument transformers (LPITs). Low-power voltage transformers (LPVTs) and low-power current transformers (LPCTs), designed with passive components, present potential solutions by directly connecting to merging units (MUs) for digital signal transmission. This review outlines the current status of various IT standards, covering conventional ITs, EITs based on IEC 60044-7 and 8, and LPITs based on IEC 61869-10 and 11. Advancements in sensor technology relevant to these standards are also explored. The paper provides insights into the evolving landscape of instrument transformers, addressing challenges and offering potential pathways for future developments in digital substations. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

25 pages, 23803 KiB  
Article
Scale Modular Test Platform for the Characterization of PD Measuring Systems Using HFCT Sensors
by Eduardo Arcones, Fernando Álvarez, Abderrahim Khamlichi and Fernando Garnacho
Sensors 2024, 24(5), 1363; https://doi.org/10.3390/s24051363 - 21 Feb 2024
Cited by 5 | Viewed by 2030
Abstract
Today, online partial discharge (PD) measurements are common practice to assess the condition status of dielectrics in high-voltage (HV) electrical grids. However, when online PD measurements are carried out in electrical facilities, several disadvantages must be considered. Among the most important are high [...] Read more.
Today, online partial discharge (PD) measurements are common practice to assess the condition status of dielectrics in high-voltage (HV) electrical grids. However, when online PD measurements are carried out in electrical facilities, several disadvantages must be considered. Among the most important are high levels of changing electrical noise and interferences, signal phase couplings (cross-talk phenomena), and the simultaneous presence of various defects and difficulties in localizing and identifying them. In the last few decades, various PD-measuring systems have been developed to deal with these inconveniences and try to achieve the adequate supervision of electrical installations. In the state of the art, one of the main problems that electrical companies and technology developers face is the difficulty in characterizing the measuring system’s functionalities in laboratory setups or in real-world facilities, where simulated or real defects must be detected. This is mainly due to the complexity and costs that the laboratory setups entail and the fact that the facilities are permanently in service. Furthermore, in the latter scenario, owners cannot assign facilities to carry out the tests, which could cause irreversible damage. Additionally, with the aforementioned installations, a comparison of results over time in various locations is not possible, and noise conditions cannot be controlled to perform the characterizations in a correct way. To deal with the problems indicated, in this article, an affordable scale modular test platform that simulates an HV installation is presented, where real on-site PD measuring conditions are simulated and controlled. In this first development, the HV installation comprises a cable system connected at both ends to a gas-insulated substation (GIS). As the most common acquisition technique in online applications is based on the placement of high-frequency current transformer (HFCT) sensors in the grounding cables of facilities, the test platform is mainly adapted to carry out measurements with this type of sensor. The designed and developed test platform was validated to assess its features and the degree of convergence with a real installation, showing the convenience of its use for the appropriate and standardized characterization of PD-measuring systems. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2023)
Show Figures

Figure 1

22 pages, 3510 KiB  
Article
Carbon Emission Evaluation Method and Comparison Study of Transformer Substations Using Different Data Sources
by Xigang Liu, Jian Zhang, Yiqi Hu, Jiao Liu, Shijun Ding, Gaowen Zhao, Yang Zhang, Jiawei Li and Zhibao Nie
Buildings 2023, 13(4), 1106; https://doi.org/10.3390/buildings13041106 - 21 Apr 2023
Cited by 11 | Viewed by 3756
Abstract
The construction of transformer substations in transmission lines is a systematic, technical, and complex project with the need for numerous materials and resources. Under the development of the green economy, the requirements for energy conservation and carbon reduction have improved; hence, an assessment [...] Read more.
The construction of transformer substations in transmission lines is a systematic, technical, and complex project with the need for numerous materials and resources. Under the development of the green economy, the requirements for energy conservation and carbon reduction have improved; hence, an assessment of carbon emissions in transformer substations is urgently needed. A calculation method was proposed in the present study to analyze the carbon emissions of transformer substations with different kinds of data sources, which were collected from several practical projects in the west-to-east power transmission project. In this study, a detailed comparison and discussion regarding the differences in carbon emissions of 750 kV transformer substations caused by hydrology, geology, engineering quantity, and other factors were conducted. The mean value, standard deviation, and 90% confidence interval of carbon emissions were obtained by Monte Carlo simulation through MATLAB. Results show that the total carbon emissions of the selected 750 kV transformer substations are between [56,000, 68,000] t CO2 eq. Construction engineering accounts for more than 50% of carbon emissions, followed by installation engineering and additional services. In terms of input items, electricity distribution buildings contribute more than 39% of total carbon emissions, followed by cable/earthing systems, which account for 14% of total carbon emissions. Gas insulated switchgear (GIS) and air insulated switchgear (AIS) could adopt different types of equipment foundations, and GIS equipment foundations would generate fewer carbon emissions due to the smaller land area and input materials. This study can provide experience and reference for similar projects and further guide the substation carbon emission reduction work. Full article
Show Figures

Figure 1

10 pages, 13808 KiB  
Article
Partial Discharge Detection and Defect Location Method in GIS Cable Terminal
by Songyuan Li, Pengxian Song, Zhanpeng Wei, Xu Li, Qinghua Tang, Zhengzheng Meng, Ji Li, Songtao Liu, Yuhuai Wang and Jin Li
Energies 2023, 16(1), 413; https://doi.org/10.3390/en16010413 - 29 Dec 2022
Cited by 13 | Viewed by 3311
Abstract
The complex structure of gas-insulated switchgear (GIS) cable terminals leads to serious electric field concentration, which is a frequent fault position of a high-voltage cable system. At present, due to the differences in the frequency bands of sensors, various partial discharge detection technologies [...] Read more.
The complex structure of gas-insulated switchgear (GIS) cable terminals leads to serious electric field concentration, which is a frequent fault position of a high-voltage cable system. At present, due to the differences in the frequency bands of sensors, various partial discharge detection technologies have certain differences in their scope of application and anti-interference performance, resulting in a low defect detection rate in GIS cable terminals. In this paper, a comprehensive diagnosis scheme is proposed, which integrates transient earth voltage (TEV), ultra-high frequency (UHF), high frequency (HF), and ultrasonic methods. Two abnormal discharge defects of GIS terminals in two 220 kV substations in Tianjin were tracked and monitored, and the joint diagnosis was carried out using the proposed scheme; the type of discharge defect and the phase sequence of the defect were determined, and the UHV was employed to precisely locate and analyze the defect source. Finally, through the disassembly analysis and electric field simulation of the GIS cable terminal, the accuracy and effectiveness of the discharge detection and location method were verified, providing a typical detection demonstration for the defect diagnosis of a GIS cable terminal. Full article
Show Figures

Figure 1

18 pages, 8371 KiB  
Article
Development and Experimental Research of VFTO Measuring Sensor
by Zihan Teng, Jun Zhao, Qi Wang, Haonan Lu and Jiangong Zhang
Sensors 2023, 23(1), 264; https://doi.org/10.3390/s23010264 - 27 Dec 2022
Cited by 3 | Viewed by 2917
Abstract
Very fast transient overvoltage (VFTO) generated by an operating disconnector is one of the main reasons for electromagnetic disturbance in gas-insulated switchgear (GIS) substations. Generally, the amplitude of VFTO can be used as one of the references for the insulation design of GIS [...] Read more.
Very fast transient overvoltage (VFTO) generated by an operating disconnector is one of the main reasons for electromagnetic disturbance in gas-insulated switchgear (GIS) substations. Generally, the amplitude of VFTO can be used as one of the references for the insulation design of GIS primary electric power equipment, so it is necessary to obtain its accurate amplitude. In this study, a new VFTO measuring sensor is developed and its measurement performance is demonstrated through hundreds of operations by a disconnector in a 220 kV GIS test circuit. The validation shows that the low cut-off frequency of the new VFTO measuring sensor has been greatly expanded to 0.01 mHz, which is improved by about 50% compared with the old sensor. The measurement accuracy of amplitude of VFTO micro-pulse improves greatly by about 80% compared with the old one. Thus, the new VFTO measuring sensor can fully meet the measurement needs of trapped charge voltage, power frequency voltage, and high-frequency transient voltage in VFTO waveform. It can be used to provide more accurate data support for insulation design of GIS primary power electric equipment in extra-high voltage (EHV) and ultra-high voltage (UHV) GIS substations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

14 pages, 4920 KiB  
Article
Experimental Evaluations on Seismic Performances of Porcelain and GFRP Composite UHV GIS Bushings
by Chang He, Ziwei He and Qiang Xie
Materials 2022, 15(11), 4035; https://doi.org/10.3390/ma15114035 - 6 Jun 2022
Cited by 8 | Viewed by 2378
Abstract
To evaluate the seismic performances of the ultra-high voltage (UHV) gas-insulated switchgear (GIS) bushings made by porcelain and glass fiber reinforced polymer (GFRP) composite materials, shaking table tests were conducted on the two full-scale GIS bushings. The dynamic characteristics and seismic responses of [...] Read more.
To evaluate the seismic performances of the ultra-high voltage (UHV) gas-insulated switchgear (GIS) bushings made by porcelain and glass fiber reinforced polymer (GFRP) composite materials, shaking table tests were conducted on the two full-scale GIS bushings. The dynamic characteristics and seismic responses of the two UHV GIS bushings were obtained. The experimental results indicated that the two UHV GIS bushings meet the seismic requirements in the corresponding standards. The supporting frame and bus canister amplify the seismic responses of the UHV GIS bushings. Under earthquakes, the GFRP composite UHV GIS bushing is safer than the porcelain bushing. In the seismic design of the electrical substation, the large seismic displacement of the GFRP composite UHV GIS bushings should be considered. Full article
Show Figures

Figure 1

13 pages, 4005 KiB  
Article
Research on VFTO Identification of GIS Based on Wavelet Transform and Singular Value Decomposition
by Gang Xiao, Quansen Rong, Miaoran Yang, Peng Xiao, Qihong Chen, Junzhe Fan, Haoran Guo and Haonan Wang
Energies 2022, 15(9), 3367; https://doi.org/10.3390/en15093367 - 5 May 2022
Cited by 5 | Viewed by 2284
Abstract
The accurate identification of Very Fast Transient Overvoltage (VFTO) is the key of overvoltage control in modern smart grids. In order to accurately identify VFTO generated by the operation of a disconnector in Gas Insulated Substation (GIS), a VFTO identification method based on [...] Read more.
The accurate identification of Very Fast Transient Overvoltage (VFTO) is the key of overvoltage control in modern smart grids. In order to accurately identify VFTO generated by the operation of a disconnector in Gas Insulated Substation (GIS), a VFTO identification method based on Wavelet Transform (WT) and Singular Value Decomposition (SVD) is proposed. The simulation model of VFTO is established in ATP-EMTP software first, and then wavelet decomposition is used in MATLAB software for VFTO simulation of the waveform from the ATP-EMTP software. Then, the feature matrix is composed of the coefficients of each frequency layer of the wavelet. The SVD is used to decompose the feature matrix, and finally the characteristic parameters of the VFTO are obtained. The simulation results in Matlab software indicate that the characteristic parameters of VFTO have an obvious difference compared with those of power frequency AC voltage, especially in the load-side, which verifies the effectiveness of the VFTO identification method based on WT and SVD proposed in this paper. Full article
(This article belongs to the Special Issue Integrated Energy Networks and Microgrids)
Show Figures

Figure 1

10 pages, 2280 KiB  
Article
Effect of Aminosilane Coupling Agent-Modified Nano-SiO2 Particles on Thermodynamic Properties of Epoxy Resin Composites
by Gang Lv, Ke Li, Yubing Shi, Ruiliang Zhang, Huadong Tang and Chao Tang
Processes 2021, 9(5), 771; https://doi.org/10.3390/pr9050771 - 28 Apr 2021
Cited by 8 | Viewed by 3327
Abstract
From the perspective of improving the thermodynamic properties of epoxy resin, it has become the focus of research to enhance the operational stability of GIS (Gas Insulated Substation) basin insulators for UHV (Ultra-High Voltage) equipment. In this paper, three aminosilane coupling agents with [...] Read more.
From the perspective of improving the thermodynamic properties of epoxy resin, it has become the focus of research to enhance the operational stability of GIS (Gas Insulated Substation) basin insulators for UHV (Ultra-High Voltage) equipment. In this paper, three aminosilane coupling agents with different chain lengths, (3-Aminopropyl)trimethoxysilane (KH550), Aminoethyl)-γ-aminopropyltrimethoxysilane (KH792) and 3-[2-(2-Aminoethylamino)ethylamino]propyl-trimethoxysilane (TAPS), were used to modify nano-SiO2 and doped into epoxy resin, respectively, using a combination of experimental and molecular dynamics simulations. The experimental results showed that the surface-grafted KH792 model of nano-SiO2 exhibited the most significant improvement in thermal properties compared with the undoped nanoparticle model. The storage modulus increased by 276 MPa and the Tg increased by 61 K. The simulation results also showed that the mechanical properties of the nano-SiO2 surface-grafted KH792 model were about 3 times higher than that of the undoped nanoparticle model, the Tg increased by 36.5 K, and the thermal conductivity increased by 24.5%. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

19 pages, 4434 KiB  
Article
Investigating the Effect of Several Model Configurations on the Transient Response of Gas-Insulated Substation during Fault Events Using an Electromagnetic Field Theory Approach
by Muresan Alexandru, Levente Czumbil, Roberto Andolfato, Hassan Nouri and Dan Doru Micu
Energies 2020, 13(23), 6231; https://doi.org/10.3390/en13236231 - 27 Nov 2020
Cited by 4 | Viewed by 3198
Abstract
Assessment of very fast transient overvoltage (VFTO) requires good knowledge of the behavior of gas-insulated substation when subjected to very high frequencies. The international standards and guidelines generically present only recommendations regarding the VFTO suppression without a technical and mathematical background. Therefore, to [...] Read more.
Assessment of very fast transient overvoltage (VFTO) requires good knowledge of the behavior of gas-insulated substation when subjected to very high frequencies. The international standards and guidelines generically present only recommendations regarding the VFTO suppression without a technical and mathematical background. Therefore, to provide an accurate image regarding the critical locations across a gas-insulated substation (GIS) from a transient response point of view, a suitable modeling technique has to be identified and developed for the substation. The paper aimed to provide an accurate assessment of the GIS holistic transient response through an electromagnetic field theory (EMF) approach. This modeling technique has always been a difficult task when it came to gas-insulated substations. However, recent studies have shown that through suitable Computer-aided design models, representing the GIS metallic ensemble, accurate results can be obtained. The paper investigated several simplifications of the computational domain considering different gas-insulated substation configurations in order to identify a suitable modeling approach without any unnecessary computational effort. The analysis was performed by adopting the partial equivalent element circuit (PEEC) approach embedded into XGSLab software package. Obtained results could provide useful hints for grounding grid designers regarding the proper development and implementation of transient ground potential rise (TGPR) mitigation techniques across a gas-insulated substation. Full article
(This article belongs to the Special Issue Outdoor Insulation and Gas Insulated Switchgears)
Show Figures

Figure 1

18 pages, 6955 KiB  
Article
Electromagnetic Disturbed Mechanism of Electronic Current Transformer Acquisition Card under High Frequency Electromagnetic Interference
by Guanchen Liu, Peng Zhao, Mingmin Zhao, Zhichao Yang and Henglin Chen
Electronics 2020, 9(8), 1293; https://doi.org/10.3390/electronics9081293 - 12 Aug 2020
Cited by 8 | Viewed by 4064
Abstract
The electronic current transformer (ECT) acquisition card is widely used in smart grids with many advantages. However, with the continuous improvement of the power grid and localized intelligent electronic devices, the electromagnetic environment under the operating conditions of gas insulated switchgear (GIS) substations [...] Read more.
The electronic current transformer (ECT) acquisition card is widely used in smart grids with many advantages. However, with the continuous improvement of the power grid and localized intelligent electronic devices, the electromagnetic environment under the operating conditions of gas insulated switchgear (GIS) substations is becoming more complicated. The reliability and safety of the ECT acquisition card will be endangered due to the complicated electromagnetic environment. In order to solve these problems, this paper investigates the electromagnetic disturbed mechanism of the ECT acquisition card. The effects of different grounding methods on the electromagnetic interference of the ECT acquisition card were studied. A platform based on IEC 61000-4-4 was built, and the electromagnetic interference (EMI) of the ECT acquisition card with different grounding methods was measured. The results show that the lower grounding impedance of the ECT acquisition system increased the internal EMI. Further, the high frequency electrical fast transient/burst coupling mechanism was analyzed. The parasitic parameters of the acquisition card were extracted based on the critical circuit by using the finite element method. Then, the high-frequency EMI coupling model of the ECT acquisition card was established. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

27 pages, 7412 KiB  
Article
Power Substation Construction and Ventilation System Co-Designed Using Particle Swarm Optimization
by Jau-Woei Perng, Yi-Chang Kuo, Yao-Tsung Chang and Hsi-Hsiang Chang
Energies 2020, 13(9), 2314; https://doi.org/10.3390/en13092314 - 6 May 2020
Cited by 9 | Viewed by 7098
Abstract
This study discusses a numerical study that was developed to optimize the ventilation system in a power substation prior to its installation. We established a multiobjective particle swarm optimizer to identify the best approach for simultaneously improving, first, the ventilation performance considering the [...] Read more.
This study discusses a numerical study that was developed to optimize the ventilation system in a power substation prior to its installation. We established a multiobjective particle swarm optimizer to identify the best approach for simultaneously improving, first, the ventilation performance considering the most appropriate inlet size and outlet openings and second, the reduction of the synthetic noise of the ventilation and power consumption from the exhaust fan equipment and its operation. The study used building information modeling to construct indoor and outdoor models of the substation building and verified the overall performance using ANSYS FLUENT 18.0 software to simulate the air velocity and air temperature distribution within the building. Results show that the exhaust fan of the B1F cable finishing room and the 23 kV gas insulated switchgear (GIS) room optimize the reduction of horsepower by approximately 1 Hp and 0.5 Hp. The combined noise is reduced by 4 dBA and 2 dBA; the exhaust fan runs for 30 min, and the two equipment rooms can cool down by 2.9 °C and 1.7 °C, respectively. Therefore, it is confirmed that the MOPSO algorithm provides a more energy-efficient and environmentally friendly building ventilation environment. Full article
Show Figures

Graphical abstract

17 pages, 4872 KiB  
Article
Analysis of Very Fast Transients Using Black Box Macromodels in ATP-EMTP
by Jonathan James, Maurizio Albano, David Clark, Dongsheng Guo and Abderrahmane (Manu) Haddad
Energies 2020, 13(3), 698; https://doi.org/10.3390/en13030698 - 6 Feb 2020
Cited by 4 | Viewed by 4179
Abstract
Modelling for very fast transients (VFTs) requires good knowledge of the behaviour of gas insulated substation (GIS) components when subjected to high frequencies. Modelling usually takes the form of circuit-based insulation coordination type studies, in an effort to determine the maximum overvoltages and [...] Read more.
Modelling for very fast transients (VFTs) requires good knowledge of the behaviour of gas insulated substation (GIS) components when subjected to high frequencies. Modelling usually takes the form of circuit-based insulation coordination type studies, in an effort to determine the maximum overvoltages and waveshapes present around the system. At very high frequencies, standard transmission line modelling assumptions may not be valid. Therefore, the approach to modelling of these transients must be re-evaluated. In this work, the high frequency finite element analysis (FEA) was used to enhance circuit-based models, allowing direct computation of parameters from geometric and material characteristics. Equivalent models that replicate a finite element model’s frequency response for bus-spacer and 90° elbow components were incorporated in alternative transients program-electromagnetic transients program (ATP-EMTP) using a pole-residue equivalent circuit derived following rational fitting using the well-established and robust method of vector fitting (VF). A large model order is often required to represent this frequency dependent behaviour through admittance matrices, leading to increased computational burden. Moreover, while highly accurate models can be derived, the data extracted from finite element solutions can be non-passive, leading to instability when included in time domain simulations. A simple method of improved stability for FEA derived responses along with a method for identification of a minimum required model order for stability of transient simulations is proposed. Full article
(This article belongs to the Special Issue Overvoltage Protection of Electrical Networks)
Show Figures

Graphical abstract

23 pages, 10511 KiB  
Article
Research and Experiments on an External Miniaturized VFTO Measurement System
by Lizhe Wang, Wenbin Zhang, Xiangyu Tan, Weiren Chen, Shiqi Liang and Chunguang Suo
Sensors 2020, 20(1), 244; https://doi.org/10.3390/s20010244 - 31 Dec 2019
Cited by 13 | Viewed by 3494
Abstract
Disconnect switch and circuit breakers operations in gas insulated switchgear (GIS) systems may produce very fast transient overvoltage (VFTO). Detecting VFTO is the first step for researchers to reduce the damage to other equipment of the substation caused by VFTO. Most of the [...] Read more.
Disconnect switch and circuit breakers operations in gas insulated switchgear (GIS) systems may produce very fast transient overvoltage (VFTO). Detecting VFTO is the first step for researchers to reduce the damage to other equipment of the substation caused by VFTO. Most of the existing sensors used for VFTO are generally bulky, complex to install, and require modification of the GIS structure. In this paper, a miniaturized measurement system that uses capacitive voltage divider and differentiating–integrating circuit is proposed. A special sensor structure and optimized differentiating–integrating circuit components arrangement were designed to increase the bandwidth of the measurement system. The frequency-domain, time-domain and voltage divide calibration experiment was performed, and a comparison experiment with an internal VFTO sensor was conducted. The measurement system was applied in the 500 kV GIS substation, and the VFTO measurement under specific conditions was carried out. The measured time domain and frequency domain waveforms conformed to the definition of standard VFTO according to IEC 60,071. It was found that the proposed measurement system meets VFTO measurement requirements and can be applied to actual VFTO measurements. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

Back to TopTop