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Abstract: Voltage and current measurements in high-voltage substations are fundamental for stable
operation. Conventional instrument transformers (ITs) face challenges in gas-insulated switchgears
(GISs), such as size, weight, accuracy limitations, and behavioral instability at abnormal voltages
and currents. Non-conventional instrument transformers (NCITs) have emerged to address these
issues, complying with International Electrotechnical Commission (IEC) standards and providing
millivolt-level signals, enabling downsizing of GIS bays. The transition to digital substations, as
mandated by IEC 61850-9-2, requires a shift from the conventional 110 V/5 A outputs to levels
ranging from millivolts to volts. Electronic instrument transformers (EITs), compliant with the IEC
60044-7 and 8 standards, offer alternatives to conventional ITs with smaller sizes and wider frequency
ranges. However, issues remain with EITs, including limited adoption, the necessity of separate
power sources, and susceptibility to electromagnetic interference. Recent standards, transitioning to
IEC 61869, focus on low-power instrument transformers (LPITs). Low-power voltage transformers
(LPVTs) and low-power current transformers (LPCTs), designed with passive components, present
potential solutions by directly connecting to merging units (MUs) for digital signal transmission. This
review outlines the current status of various IT standards, covering conventional ITs, EITs based on
IEC 60044-7 and 8, and LPITs based on IEC 61869-10 and 11. Advancements in sensor technology
relevant to these standards are also explored. The paper provides insights into the evolving land-
scape of instrument transformers, addressing challenges and offering potential pathways for future
developments in digital substations.

Keywords: gas insulated switchgears; measuring instrument transformers; conventional instrument
transformers; non-conventional instruments; electronic instrument transformers; low-power instrument
transformers; IEC standard

1. Introduction

Voltage and current measurement are fundamental and crucial for the stable operation
of high-voltage substations. For decades, conventional instrument transformers (ITs) have
been used for measuring and protecting high-voltage power systems [1,2].

ITs for gas-insulated switchgears (GISs) consist of voltage transformers (VTs) and a
current transformer (CT), and transformer designs suitable for GISs have been employed
to measure voltage and current in power systems since 1966 [3,4]. Unlike air-insulated
switchgears (AISs), GISs use sulfur hexafluoride (SF6) as an insulating gas, allowing
higher insulation performance and compact design. Inductive voltage transformers (IVTs)
and inductive current transformers (ICTs) are installed in separate tanks filled with SF6,
overcoming the limitations of conventional transformers [5–7]. However, in IVTs and ICTs,
volume, weight, insulation performance, and cost increase proportionally with voltage
levels. The core becomes magnetically saturated due to excessive primary voltage and

Energies 2024, 17, 1846. https://doi.org/10.3390/en17081846 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17081846
https://doi.org/10.3390/en17081846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2144-3391
https://orcid.org/0000-0001-5990-7983
https://orcid.org/0000-0002-1672-2812
https://orcid.org/0000-0001-9705-3544
https://doi.org/10.3390/en17081846
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17081846?type=check_update&version=1


Energies 2024, 17, 1846 2 of 19

high current, resulting in low accuracy and distorted signals in the secondary output. For
this reason, it is difficult to collect power-quality measurements (PQM) within such power
systems [8]. Despite these disadvantages, IVTs and ICTs widely used in GIS are expected
to provide high accuracy under normal load conditions and endure repetitive vibrations,
overloads, and short-circuit conditions associated with switching operations [9].

With the rapid increase in power demand and the expansion of renewable energy
sources, there is a growing demand for digital substations, and non-conventional instru-
ment transformers (NCITs) are being proposed as a solution in response to the limitations
of conventional ITs. NCITs are current and voltage sensors, satisfying International Elec-
trotechnical Commission (IEC) standards IEC 60044-7 and 8 and IEC 61869-10 and 11 to
replace conventional ITs. These sensors are being developed to offer millivolt-level signal
interfaces for small, lightweight, and digitalized GIS bays and reduce SF6 gas usage [10–13].

The conversion of a conventional substation to a digital substation is a crucial step in
enhancing the quality and stability of power systems [14,15]. One of the challenges encoun-
tered during the transition to digital substations pertains to integrating communication
among diverse devices and systems. Within digital substations, the necessity of seamless
data exchange mandates harmonizing communication protocols among various devices.
However, discrepancies or incompatibilities arise among these protocols, impeding system
deployment and operation and compromising efficiency and interoperability. Therefore,
the communication protocol IEC 61850-9-2 specifies that ITs should be connected to a
digital interface through intelligent electronic devices (IEDs) to monitor and control power
systems [16]. IEC standards offer standardized data models and communication protocols,
ensuring interoperability among devices within digital substations. Consequently, smooth
communication among diverse devices, simplified system deployment and operation, and
enhanced efficiency and stability can be achieved. In compliance with these communication
protocols, the output of an IT for connection to a digital interface should be a few millivolts
to volts, compared to 110 V/5 A for a conventional IT. To align with the era of digital
substations, research has been performed on electronic instrument transformers (EITs) with
small size, light weight, and a wide frequency range according to IEC 60044-7 and 8 to
replace conventional ITs [17,18].

Qing et al. [19] fabricated a combined EIT based on a Rogowski coil and cylindrical
capacitor. It is possible to apply this device to high-voltage lines up to 750 kV with an
accuracy class of 0.2 through an active integrator. Saitoh et al. [20] developed a PCB-type
electronic current transformer (ECT) and an electronic voltage transformer (EVT) utilizing a
high-voltage capacitor with SF6 gas for application in 245 kV AISs. They converted analog
current and voltage to digital signals at the sensing unit and transmitted them to an MU for
the interoperability of digital substations, employing the standard communication protocol
of IEC 61850-9.

EVTs and ECTs have excellent accuracy and dynamic performance compared to IVT
and ICT. However, the number of commercial applications in use for GISs is low, and they
should meet stringent conditions such as electromagnetic compatibility (EMC) as specified
in IEC 60044-7 and 8 due to signal conversion using active components with independent
power sources [21,22]. Furthermore, the integrated circuits (ICs) in signal converters have
critical disturbances for normal operation and measurement accuracy due to switching
operations in high-voltage circuit breakers when they are exposed to a surge [23].

Currently, the IEC 60044 series, excluding IEC 60044-7 (EVTs) and 8 (ECTs), has been
withdrawn and replaced with IEC 61869 as the new IT standard series. For this reason, low-
power instrument transformers (LPITs) have been developed according to IEC 61869-10
and 11 [24–26].

In particular, low-power passive voltage transformers (LPVTs) and low-power passive
current transformers (LPCTs) provide a solution to the disadvantages of EVTs and ECTs,
as they are designed using only passive components, without the need for independent
power sources. In an LPIT, a Rogowski-coil or iron-core current transformer is used for
current measurement, and capacitive, resistive, and capacitive–resistive voltage dividers
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are used for voltage measurement [27]. The sensor of the LPIT is connected to a merging
unit (MU) without additional signal conversion devices. After processing signals, including
ratio and phase error, the unit transforms them into digital signals based on IEC 61850-9-2
for communication with the IED in the substation. Recently, GIS and IT manufacturing
companies have been adapting to the transition from the IEC 60044 series to the IEC 61869
series. An LPIT for the three-phase-in-one-enclosure type of GIS has been developed
actively to enhance miniaturization and digitalization.

The remainder of this manuscript is described as follows. Section 2 contains trends in
IEC standards for ITs. Trends in conventional and non-conventional ITs are presented in
Section 3 and 4 to highlight the focus of this manuscript. Lastly, Section 5 concludes and
summarizes the overall manuscript.

2. Trends in IEC Standards for ITs

In the early stages of IT development, the importance of accuracy in measurement,
insulation, and transients was not considered. However, scientific articles addressed the
theory, performance, and requirements of IT in the early 1900s [28–30]. Currently, standards
for IT measurements are systematically being updated by the IEC.

The international standard for ITs was the IEC 60044 series in 1966, and it was replaced
by IEC 61869-1 as general requirements for all types of ITs since 2007 [31]. Table 1 shows the
IEC 60044 series. In 2011, IEC 60044-2 for additional requirements of IVTs and IEC 60044-5
for additional requirements of capacitor voltage transformers (CVTs) were revised by IEC
61869-3 and IEC 61869-5, respectively [2,32–34]. In 2012, IEC 61869-2 for additional require-
ments of CTs was introduced as a revision to replace IEC 60044-1 and 6, which covered
conventional CTs and protective current transformers for transient performance [1,35,36].
In 2013, IEC 60044-3 for additional requirements of combined transformers was replaced
by IEC 61869-4 [37,38]. IEC 60044-7 and 8 were partially replaced by IEC 61869-10 and
11 for EITs. IEC 61869-10 and 11 are international standards for LPVTs and LPCTs, while
IEC 61869-7 and 8 are currently scheduled to be revised by IEC’s Technical Committee
TC-38 (Instrument Transformer). In 2023, IEC 61869-6 for additional general requirements
of LPITs was merged with IEC 61869-1 [39].

Table 1. The IEC 60044 series replaced by the IEC 61869 series [40].

Old IEC Standard Products New IEC Standard

60044-1
Current transformers 61869-2

61869-1

60044-6

60044-2 Inductive voltage transformers 61869-3

60044-3 Combined transformers 61869-4

60044-5 Capacitor voltage transformers 61869-5

60044-7
Electronic voltage transformers 61869-7

Low-power passive voltage transformers 61869-11

60044-8
Electronic current transformers 61869-8

Low-power passive current transformers 61869-10

As a reference for the individual measuring ITs, IEC 61869 can be matched for conven-
tional ITs, EITs, and LPITs as follows [40]:

• IVTs manufactured since 2011 need to meet IEC 61869-1 and 3;
• ICTs manufactured since 2012 need to meet IEC 61869-1 and 2;
• Single-phase CVTs with Um ≥ 72.5kV manufactured since 2012 need to meet IEC

61869-1 and 5;
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• LPVTs with analog output manufactured since 2017 need to meet IEC 61869-1 and 11;
• LPCTs with analog output manufactured since 2018 need to meet IEC 61869-1 and 10;
• EVTs manufactured since 2017 need to meet IEC 60044-7 as well as IEC 61869-1 and 11;
• ECTs manufactured since 2017 need to meet IEC 60044-8 as well as IEC 61869-1 and 10.

IEC 61869-10 and 11 are voltage and current measurement standards using only
passive components of LPITs. However, the recommendation for technologies involving all
types of active components is to refer to standards IEC 61869-7 and 8, which are scheduled
for release in 2024 [41].

3. Conventional Instrument Transformers

Accuracy measurements in high-voltage and high-current conditions are essential for
the stability of a power system and the proper operation of protective devices. Conventional
ITs for GISs are composed of IVTs and ICTs based on iron-core technology, and they are
installed within an enclosure filled with an insulating gas as shown in Figure 1 due to high
insulation performance under high-voltage and high-current conditions. IVTs and ICTs
should be manufactured to comply with IEC 61869-2 and 3 for primary and secondary
rated voltages, currents, and accuracy.
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Figure 1. A 145 kV GIS bay with a conventional IT [42].

However, one of the essential components of conventional ITs, the iron-core type,
can have problems monitoring and controlling power systems by saturation under fault
conditions. Particularly, saturation impedes proportional conversion of voltage and current
in a measuring IT, resulting in disruption of accurate measurements.

In the case of IVTs, the phenomenon of ferroresonance occurs between non-linear
inductance of an iron core and capacitance around a core by saturation of the core [43–45]
when the magnetic flux density during operation exceeds the saturated magnetic flux den-
sity of the IVT. This condition leads to a non-linear relationship between magnetic strength
and magnetic flux density, causing a rapid decrease in inductance and resonance occurrence
with the distributed capacitance from ground. Therefore, ferroresonance of an IVT under
fault conditions can cause insulation breakdown and affect accurate measurements in a
GIS [46,47].

An ICT for a GIS including an iron core has short distances between phases and
ground wires. For this reason, the short distance between phases leads to partial magnetic
saturation of the ICT core in the other phase when a fault current flows in single phase. As
a result, a secondary current flows in the ICT core even when there is no primary current.
Furthermore, the magnitude and polarity of remanence can affect those of the secondary
current when a core is premagnetized by remanence [48].

The impact of an iron core under fault conditions in IVTs and ICTs can be mitigated
by altering the structure, core material, wire thickness, and number of turns to alleviate
saturation for accurate measurements. However, there are limitations such as increases in
the size, weight, and cost of ITs [49–51].
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3.1. Voltage Transformers

In high-voltage substations, the VTs used for voltage measurement are IVTs and CVTs.
CVTs are mainly used for single-phase voltage measurement in AISs. In contrast, IVTs
are applied in GISs, which have a compact structure and high insulation performance
compared to AISs. IVTs are installed in an enclosure filled with SF6 as shown in Figure 2.
VT are installed for all three phases and need to be designed with specific transformation
ratios such as 154kV/

√
3 : 110V/

√
3 for signal phase/ground operation in the case of a

170 kV three-phase system [52,53].
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IVTs operate based on the principle of electromagnetic induction. The primary wind-
ing is directly connected to the primary conductor, inducing a magnetic field in the core
and induces voltage in the secondary winding. Figure 3 shows the configuration of an IVT.
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The secondary voltage based on the ratio of primary and secondary turns can be
expressed as following Equation (1):

Us =
Ns

Np
× Up − ∆U (1)

where Up and Us are the primary and secondary voltages of the IVT and Np and Ns are the
primary and secondary turns of the VT. ∆U represents the voltage drop due to the winding
resistance and leakage reactance of the actual IVT.

In the design of IVTs, the magnitude and phase error of the primary voltage are crucial
factors in determining the accuracy class of the IT in measurements. Voltage ratio error
and phase displacement can be estimated. Figure 4 shows the vectors of three voltages in a
typical VT.
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Figure 4. Vector diagram of error in IVT.

Herein, εu is the ratio error of the voltage, and δu is the phase displacement between
the primary and secondary voltages. When the secondary voltage is higher than the rated
transformation ratio, ε is positive, and when the phase of the secondary voltage leads the
phase of the primary voltage, the phase displacement is expressed as positive.

The rated secondary voltage for the first primary voltage of an IVT and the accuracy
class are defined by IEC 61869-3. According to the international standard, the rated sec-
ondary voltage is output as an analog signal through the terminal box, typically 110 V or
100 V [33]. All ITs have an accuracy class designation through accuracy tests to ensure
compliance with the design rating. The accuracy class is determined based on the charac-
teristics of voltage ratio error and phase displacement. The voltage ratio error defined in
the IEC 61869-3 standard is expressed in Equation (2), as follows:

εu =
KrUs − Up

Up
× 100[%] (2)

The error for phase displacement is expressed in Equation (3), as follows:

δu = φus −φup (3)

where εu is the voltage ratio error, δu is phase displacement, Up and Us represent the
primary and secondary voltages of the VT, φup and φus are the primary and secondary
phase angles of the PT, and Kr is the rated transformation ratio.

The accuracy class required for VTs as required by the standard is presented in Table 2.
The voltage ratio error and phase displacement of VTs at the rated frequency should not
exceed the values specified in Table 2 for all voltages and burdens within the range of 80%
to 120% of the rated voltage.

Table 2. Limits of error for IVTs according to IEC 61869-3.

Accuracy Class Voltage (Ratio) Error
±%

Phase Displacement

±Minutes ±Centiradians

0.1 0.1 5 0.15
0.2 0.2 10 0.3
0.5 0.5 20 0.6
1.0 1.0 40 1.2
3.0 3.0 - -
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3.2. Current Transformers

ICTs are commonly used in GISs that employ the conductor as the primary winding.
The design consists of a high-permeability iron core and copper windings. ICTs of GISs are
installed within the GIS enclosures. The details of an ICT are shown in Figure 5. The size
of the enclosure in GIS bays is influenced by the requirements of metering and protection,
considering factors such as the number and size of cores based on the demands of the core.
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ICTs operate based on the principle of electromagnetic induction and have the primary
conductor serving as the transformer’s primary winding. The configuration of an ICT is
shown in Figure 6.
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The secondary current, based on the ratio of primary and secondary turns, can be
expressed in Equation (4), as follows:

I2 =
N1

N2
× I1 − Ie (4)

where I1 and I2 are the primary and secondary currents of the ICT and N1 and N2 are
the primary and secondary turns of the ICT. Since the primary winding of the ICT is the
primary conductor, the number of turns is 1. Furthermore, Ie is excitation current, causing
phase and ratio errors due to loss current from the iron cores and magnetizing components.

Reproducing errors in CT manufacturing is crucial. Current ratio error and phase
displacement can be estimated. Figure 7 shows the vectors of the three currents in a
typical CT.
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Herein, the secondary current of I2 is chosen as the reference vector and set to 100%.
εi is the voltage ratio error, and δi is the phase displacement between the primary and
secondary voltages. When the secondary current is higher than the rated transformation
ratio, it is positive, and when the phase of the secondary current leads the phase of the
primary current, the phase displacement is expressed as positive.

The rated secondary voltage for the primary voltage of an ICT and the accuracy class
are defined by IEC 61869-2. For a CT, the rated secondary current should be 5 A or 1 A [35].
The accuracy class of a CT is determined based on the characteristics of current ratio error
and phase displacement. The ratio error and phase displacement of current, as defined by
IEC 61869-2, are expressed in Equation (5) as follows:

εi =
KrI2 − I1

I1
× 100[%] (5)

The error for phase displacement is expressed in Equation (6), as follows:

δi = φi2 −φi1 (6)

where εi is the current ratio error, δi is the phase displacement, I1 and I2 are the CT’s
primary current and secondary current, and φi1 and φi2 are the primary and secondary
phase angles of the CT.

The accuracy class required by IEC 61869-2 for a CT is shown in Table 3. The current
ratio error and phase displacement of the CT should not exceed the values specified in
Table 3 at 5%, 20%, 100%, and 120% of the rated primary current under rated frequency
and burden.

Table 3. Limits of error for ICT according to IEC 61869-2.

Accuracy Class

Current (Ratio) Error
±%

Phase Displacement

±Minutes ±Centiradians

At Current (% of Rated)

5 20 100 120 5 20 100 120 5 20 100 120

0.1 0.4 0.2 0.1 0.1 15 8 5 5 0.45 0.24 0.15 0.15
0.2 0.75 0.35 0.2 0.2 30 15 15 10 0.9 0.45 0.3 0.3
0.5 1.5 0.75 0.5 0.5 90 45 45 30 2.7 1.35 0.9 0.9
1 3.0 1.5 1.0 1.0 180 90 90 60 5.4 2.7 1.8 1.8

4. Non-Conventional Instrument Transformers

In recent years, voltage and current have become very important measurements in
high voltage systems for control and protection purposes due to increasing power demand
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and expending capacity of power facilities [55,56]. Traditional iron-core type IVTs and ICTs
face limitations such as insulation deficiencies, mechanical strength issues, and seismic
vulnerabilities in high-voltage environments. Furthermore, the effects of impulses from
events such as opening and closing surges and external thunderstorms affect the device
through electrostatic induction or electromagnetic flow effects [57,58]. Consequently, there
has been a great deal of research conducted to introduce new approaches to enhance the
reliability and stability of high-voltage measurement devices [56,59–63].

This paper focuses on NCITs to replace ITs in GISs to achieve a smaller, lighter, greener,
and digitalization of substations [64]. NCITs are broadly categorized into EITs, based on IEC
60044-7 and 8, and LPITs, based on IEC 61869-10 and 11. The beginning of the NCIT was
the decentralized transmission of voltage and current signals to substation control rooms
via fiber optic connections, coinciding with the introduction of IEC 61850 9-2. Furthermore,
inconsistencies in signal communication systems among manufacturers have led to various
technical research into standalone merging units (SAMUs) to ensure interoperability and
facilitate the connection and correct operation of individual devices. [65,66].

Additionally, EITs and LPITs are limited to relatively low output power (within a
few VA), which allows them to connect directly to data acquisition devices, reducing
unnecessary adapters and improving accuracy. Smart grids and digitalized substations
particularly in the context of decentralized power sources such as renewable energy have
been found new applications of EIT and LPIT by leveraging these advantages such as
where they can operate in a limited footprint [67].

4.1. Electronic Instrument Transformers (EITs)
4.1.1. Principle and Structures of EVTs and ECT

IVTs installed in GISs have a direct electrical connection between the primary high
and secondary low voltages, making them susceptible to insulation breakdown during
operation due to transients. Furthermore, the LC resonance phenomenon can occur when
a breaker opens at the termination of the main system [68]. This phenomenon involves a
combination of capacitive reactance, caused by the charge capacity between each pole and
ground, and inductive reactance, induced by the voltage in the main system [69]. When
these factors are combined in series, it can result in high commercial frequency overvolt-
age, potentially leading to insulation breakdown in the GIS. To address this issue, EVTs
according to IEC 60044-7 were introduced. An EVT is designed for voltage measurement
while maintaining electrical isolation between the high- and low-voltage sides based on the
D-dot principle using Gaussian laws [70,71]. Figure 8 shows the structure and equivalent
circuit of a D-dot sensor applied to a typical EVT.
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Equation (7) from the equivalent circuit is expressed as Equation (8):

i(t) = iC(t) + iR(t) (7)

ε
dE(t)

dt
× Seq = Cm

dV(t)
dt

+
V(t)
Rm

(8)

where ε is the permittivity of the insulation, such as an epoxy insulator; E(t) is the intensity
of the incident electric field; Seq is the equivalent area enclosed by the closed surface of the
sensing electrode; Cm is the capacitance between the sensing electrode and ground; and Rm
is the output resistance of the sensing electrode. The output of the EVT can be expressed as
Equation (9) by adjusting the output resistance of the sensing electrode or the impedance of
measurement device. If Rm is lower than a few kΩ or the impedance of the measurement
device is low, the output of the EVT becomes proportional to the first derivative value of
the induced electric field or magnetic flux density [71,72].

V(t) = Rm × Seq × ε
dE(t)

dt
= Rm × Seq ×

dD(t)
dt

(9)

Substation digitization has adopted air-core Rogowski-coil current sensors (RCS) in
the GIS in accordance with 61850-9-2 due to the limitation of ICTs [73]. Both RCSs and
ICTs operate based on Faraday’s law. However, their differences are in their saturation
characteristics. Unlike ICTs with iron cores that experience magnetic saturation, air-core
RCSs remain unsaturated even under transient conditions such as short circuits or ground
faults. This unique characteristic ensures a linear output [13,74]. Figure 9 shows the
structure and equivalent circuit of an RCS.
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Once a large current is applied to the HV conductor, the magnetic flux in the air-core
RCS links with it, inducing a current in the RCS coil. The induced secondary current in
the RCS coil leads the primary current in the HV conductor by 90 degrees. Therefore, the
voltage induced in the coil is expressed as the Equation (10):

Vcoil(t) = −M
dip(t)

dt
(10)

where M is the mutual inductance between the primary conductor and RCS, and is ex-
pressed as following Equation (11):

M =
µ0N(

√
b −

√
a)

2

2
(11)

where, µ0 is the permeability of air, N is the number of turns of the coil, a is the inner radius
of the coil, and b is the outer radius of the coil.
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Due to the internal elements within the RCS winding, such as mutual and self-
inductance, self-capacitance, and self-resistance, the output voltage of the RCS is deter-
mined through the R–L voltage drop, as expressed in the following Equation (12) [75].

VRCS(t) = −M
dip(t)

dt
− Lcoil

dicoil(t)
dt

− Rcoil·is(t) (12)

where LCoil is the self-inductance of the RCS and RCoil is the self-resistance of the RCS.
Due to the derivative characteristics of the RCS, the output signal must be connected to
converters for the restoration of the signal to its original form.

Due to the susceptibility of RCSs to external electric fields, many studies have been
conducted on optimizing the sensor structures to enhance output characteristics and
minimize external interference. L. Ferković and colleagues [76] conducted simulations to
analyze the impact of the RCS output by examining the mutual inductance between the
high-voltage conductor and the RCS coils. The analysis considered various aspects of RCS
structure, such as winding thickness, spacing, and the position of the conductor. While
the influence of the position of the high-voltage conductor and the RCS was found to be
insignificant, approximately 1%, the winding structure of the RCS was identified as having
a significant impact. Specifically, maintaining a constant winding density was highlighted
as a substantial contributor to the power output. Another study conducted by M. Shafiq
and colleagues [77] involved deriving optimal geometrical parameters through principal
analysis of RCS and presenting key design aspects to be considered in current measurement
using RCS.

Through these studies on current measurement using RCSs, a high-precision CT for
application in digital substations is proposed. This CT is intended to replace ICTs, which are
traditionally designed, fabricated, and installed separately for measurement and protection
purposes due to issues related to flux saturation with a single RCS.

Figure 10 shows a block diagram of a typical EIT. According to IEC 60044, the convert-
ers such as IC that use external power can be employed to generate suitable outputs that
satisfy the accuracy class, since primary and secondary converters are available, and an
external power source for each converter is connected. The EIT, therefore, allows a digital
output [78].
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4.1.2. Accuracy of EVTs and ECTs

The voltage and current ratio error ε are calculated in the rated frequency component
using Equation (13), and the phase error φe, which represents the amount by which the
secondary voltage and current are out of phase with the primary voltage and current, is
calculated using Equation (14).

ε =
KnUS − UP

UP
× 100[%] (13)

φe = φS −φP −φ0n + 2πftdn (14)

where Kn is the rated transformation ratio, UP represents the root mean square (RMS)
values of the actual primary values (voltage and current), US is the RMS value of the actual
secondary voltage measured by the EVT and ECT, φP is the primary phase measured by
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the EVT and ECT, φS is the secondary phase measured by the EVT and ECT, φ0n is the
rated phase offset, and tdn is the rated delay time.

The accuracy classes for EITs in measurement are specified as 0.1–0.2–0.5–1–3. The ratio
error and phase error for each accuracy class of EVT and ECT are specified in Tables 4 and 5.
As shown in Table 5, limits of errors for ECTs are only specified in the accuracy classes of
0.1, 0.2, 0.5, and 1, not the accuracy class of 3. These classes are determined based on the
tolerance range of the rated voltage and current and the standard reference ranges of the
burden. Each ratio error and phase error must comply with ambient temperature, the rated
frequency, the rated burden, the rated auxiliary power, and a lagged power factor of 0.8.

Table 4. Limits of errors for EVTs according to IEC 60044-7.

Accuracy Class Voltage (Ratio) Error
±%

Phase Error

±Minutes ±Centiradians

0.1 0.1 5 0.15

0.2 0.2 10 0.3

0.5 0.5 20 0.6

1.0 1.0 40 1.2

3.0 3.0 Not specified Not specified

Table 5. Limits of errors for ECTs according to IEC 60044-8.

Accuracy Class

Current (Ratio) Error
±%

Phase Error

±Minutes ±Centiradians

At Current (% of Rated)

5 20 100 120 5 20 100 120 5 20 100 120

0.1 0.4 0.2 0.1 0.1 15 8 5 5 0.45 0.24 0.15 0.15

0.2 0.75 0.35 0.2 0.2 30 15 10 10 0.9 0.45 0.3 0.3

0.5 1.5 0.75 0.5 0.5 90 45 30 30 2.7 1.35 0.9 0.9

1.0 3.0 1.5 1.0 1.0 180 90 60 60 5.4 2.7 1.8 1.8

4.2. Low-Power Passive Instrument Transformer (LPITs)
4.2.1. Principle and Structures of LPVTs and LPCTs

An LPVT is based on the voltage divider principle rather than the D-dot method of
measuring derivative signals used in EVTs. The voltage divider principle, which can be
employed in an LPVT, is categorized into four dividers in accordance with IEC 61869-11: a
resistive voltage divider (R-divider), a capacitive voltage divider (C-divider), a resistive-
capacitive voltage divider (RC-divider), and an RC-divider with a passive integrator [25].
The R-divider, which is directly connected to the primary conductor, is typically utilized for
low-voltage applications. In contrast, the C-divider and RC-divider, which facilitate non-
contact measurement, are employed for high-voltage measurements. Those dividers, which
can secure stability by electrically separating the high- and low-voltage sides, are mainly
applied to the LPVT [79–81]. Figure 11 shows the conceptual structure and equivalent
circuit of a typical LPVT with a capacitive voltage divider (CVD) principle based on
the C-divider.
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The LPVT’s output can be expressed as the following Equation (15) [82].

VLPVT(t) =
CH

CH + CL + CV
× UP(t) (15)

An LPVT with a CVD consists of a high-voltage stray capacitor CH between a high-
voltage conductor and the CVD electrode installed at a distance, along with a low-voltage
capacitor CL between the CVD electrode and ground [83]. In addition, a controlling
capacitor CV for the transformation ratio defined in IEC 61869-11 is connected in parallel
with CL. The output impedance, a resistor of 2 MΩ and a capacitor of 50 pF, must be
installed in parallel to satisfy the rated burden defined in IEC 61869-1.

LPCTs are essentially constructed on the same principle as ECTs, utilizing a Rogowski-
coil current sensor. An RCS has a non-magnetic air core, ensuring a linear and non-saturated
output. However, the mutual coupling between the primary conductor and an RCS’s
winding is significantly smaller than that of an ICT. As a result, the output power is also
low, making LPCTs suitable for microprocessor-based devices with high input impedance.
LPCTs differ from ECTs in that they are required by the IEC requirement to provide
only analog outputs and must be based on passive technology with no active electronic
components [78]. Figure 12 shows the structure and equivalent circuit of an LPCT.
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According to IEC 61869-10, no active electronic components can be connected to an
LPCT, in contrast to an ECT. Due to the characteristics of RCSs, the output signal leads
the primary current by 90 degrees. Therefore, a phase displacement of 90 degrees is
considered [84–87]. Figure 13 shows a block diagram of a typical LPIT. Unlike the EIT
described earlier, derivative output signals are not within the scope of an LPIT according to
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IEC 61869-10 and 11, and the LPIT should operate without any active electronic components.
Therefore, since it does not contain any active electronics such as additional IC, it does not
require an additional power supply, allowing for very stable and accurate measurements
over a wide range [88]. As a result, LPVTs must be designed based on the voltage divider
principle compared to the D-dot principle of EVTs, and LPCTs apply the same approach as
ECTs but differ in that they allow for derivative output signals. In addition, LPITs have a
new procedure called output correction.
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4.2.2. Accuracy of LPVTs and LPCTs

Calculation of the ratio error and phase error of an LPIT is similar to that of an EIT,
but it is correctable because it does not use any active electronic component. The ratio error
can be corrected by applying a correction factor in the range of 0.900 to 1.100, and the phase
error can be corrected by applying a phase offset correction in the range of ±300 min (5
degrees). The corrected ratio error and corrected phase error are calculated by Equations
(16) and (17), respectively.

εcorU =
CFU·Kr·VLPIT − UP

UP
× 100[%] (16)

φecor = φLPIT −φP −φcorφo (17)

where CFU is the correction factor, Kr is the rated transformation ratio, UP is the primary
high voltage and high current, VLPIT is the secondary output voltage measured by LPVT
and LPCT, φP is the phase angle of the primary high voltage, φLPIT is the LPVT and LPCT’s
phase angle, and φcorφo is the corrected phase offset.

The standard accuracy classes for LPITs are the same as for EITs: 0.1–0.2–0.5–1–3, and
must be satisfied with a tolerance among 80%, 100%, and 120% of the rated voltage for
LPVTs and 5%, 20%, 50%, 100%, and 120% of the rated voltage for LPCTs. Tables 6 and 7
shows limits of error for LPVTs and LPCTs, respectively. Ratio errors and phase errors must
be satisfied when the rated frequency range and ambient temperature range are within the
reference range, and when connected within ±5% of the resistive part of the rated burden
and between 0% and 100% of the capacitive part of the rated burden.

Table 6. Limits of errors for LPVTs according to IEC 61869-11.

Accuracy Class

Voltage (Ratio) Error
±%

Phase Error

±Minutes ±Centiradians

At Voltage (% of Rated)

80 100 120 80 100 120 80 100 120

0.1 0.1 0.1 0.1 5 5 5 0.15 0.15 0.15

0.2 0.2 0.2 0.2 10 10 10 0.3 0.3 0.3

0.5 0.5 0.5 0.5 20 20 20 0.6 0.6 0.6

1.0 1.0 1.0 1.0 40 40 40 1.2 1.2 1.2

3.0 3.0 3.0 3.0 Not specified Not specified
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Table 7. Limits of error for LPCT according to IEC 61869-10.

Accuracy Class

Current (Ratio) Error
±%

Phase Error

±Minutes ±Centiradians

At Current (% of Rated)

5 20 100 120 5 20 100 120 5 20 100 120

0.1 0.4 0.2 0.1 0.1 15 8 5 5 0.45 0.24 0.15 0.15

0.2 0.75 0.35 0.2 0.2 30 15 10 10 0.9 0.45 0.3 0.3

0.5 1.5 0.75 0.5 0.5 90 45 30 30 2.7 1.35 0.9 0.9

1.0 3.0 1.5 1.0 1.0 180 90 60 60 5.4 2.7 1.8 1.8

3 - 4.5 3 3 Not specified Not specified

NCITs, including both EITs and LPITs, have various pros and cons compared to
conventional IT, and the decision of which device to install and use depends on site
conditions. When the NCIT is applied to the GIS with a rated voltage of 72.5 kV, it is possible
to reduce the size by 33% in length, 23% in height per bay of a three-phase-in-one-enclosure
type of GIS, as shown in Figure 14. Additionally, since the amount of SF6 is reduced by 15%
in terms of volume, it is effective for improving the eco-friendliness of power equipment.
Applying NCIT can reduce the size of the GIS by about 5–10% [13,69,80,83]. Moreover, the
amount of copper wires in a conventional IT can be significantly reduced, helping to reduce
potential failure factors and improve reliability.
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5. Conclusions

This paper aimed to explore the development of technologies and methods for measur-
ing instruments in GISs to deepen our understanding of the capabilities of CITs and NCITs.
Significant advancements in the field of ITs have been observed in response to the evolving
requirements of high-voltage substations. Conventional ITs, such as IVTs and ICTs, have
been instrumental in power systems but face challenges related to size, weight, insulation,
and accuracy, particularly in GISs. The utilization of SF6 in GISs, while enhancing insulation
performance, has led to issues such as magnetic saturation in conventional transformers. To
address these challenges in the era of digital substations, NCITs have emerged as a viable
solution. EITs and LPITs conforming to standards such as IEC 60044-7 and 8 and 61869-10
and 11 offer alternatives to conventional ITs.

1. EITs, using Rogowski coils, offer excellent accuracy and dynamics but struggle with
EMC and disturbances, limiting their use. LPIT types such as LPVTs and LPCTs
aim to solve these issues. LPVTs apply the voltage divider principle, and LPCTs use
Rogowski coils or an iron core, both ensuring stable, accurate measurements without
active electronic components.
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2. The shift from IEC 60044 to IEC 61869 marks a significant change in IT standards,
with LPITs driving the miniaturization and digitalization of GISs. When applied to
a 72.5 kV GIS, an LPIT offers notable reductions in size, weight, and environmental
impact, proving to be a sustainable and efficient choice for contemporary power
systems.

3. Given current trends and progress, choosing between conventional ITs and NCITs,
especially LPITs, hinges on specific site needs. In the evolving power industry, NCITs’
role in improving high-voltage substations’ reliability, stability, and environmental
sustainability is becoming increasingly important.

4. Despite existing challenges, including commercial adoption, EMC, susceptibility to
external disturbances, and the need for standardization, it is imperative that ongoing
research, efforts towards standardization, and collaboration within the industry con-
tinue. These steps are crucial for overcoming these obstacles and fully harnessing the
potential of NCITs in contemporary power systems.

At present, several of the technologies and methods discussed are still in the lab-
oratory research stage, facing challenges that need to be addressed, such as the effects
of EMC, temperature variations, and external disturbances. Despite these challenges,
continuous research and advancements have been achieved in the field of measurement
applications over the past few decades. This paper highlights the potential of NCITs in
modern power systems, especially in terms of fostering collaborative initiatives among
industry stakeholders.
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