Trends in Measuring Instrument Transformers for Gas-Insulated Switchgears: A Review
Abstract
:1. Introduction
2. Trends in IEC Standards for ITs
- IVTs manufactured since 2011 need to meet IEC 61869-1 and 3;
- ICTs manufactured since 2012 need to meet IEC 61869-1 and 2;
- Single-phase CVTs with manufactured since 2012 need to meet IEC 61869-1 and 5;
- LPVTs with analog output manufactured since 2017 need to meet IEC 61869-1 and 11;
- LPCTs with analog output manufactured since 2018 need to meet IEC 61869-1 and 10;
- EVTs manufactured since 2017 need to meet IEC 60044-7 as well as IEC 61869-1 and 11;
- ECTs manufactured since 2017 need to meet IEC 60044-8 as well as IEC 61869-1 and 10.
3. Conventional Instrument Transformers
3.1. Voltage Transformers
3.2. Current Transformers
4. Non-Conventional Instrument Transformers
4.1. Electronic Instrument Transformers (EITs)
4.1.1. Principle and Structures of EVTs and ECT
4.1.2. Accuracy of EVTs and ECTs
4.2. Low-Power Passive Instrument Transformer (LPITs)
4.2.1. Principle and Structures of LPVTs and LPCTs
4.2.2. Accuracy of LPVTs and LPCTs
5. Conclusions
- EITs, using Rogowski coils, offer excellent accuracy and dynamics but struggle with EMC and disturbances, limiting their use. LPIT types such as LPVTs and LPCTs aim to solve these issues. LPVTs apply the voltage divider principle, and LPCTs use Rogowski coils or an iron core, both ensuring stable, accurate measurements without active electronic components.
- The shift from IEC 60044 to IEC 61869 marks a significant change in IT standards, with LPITs driving the miniaturization and digitalization of GISs. When applied to a 72.5 kV GIS, an LPIT offers notable reductions in size, weight, and environmental impact, proving to be a sustainable and efficient choice for contemporary power systems.
- Given current trends and progress, choosing between conventional ITs and NCITs, especially LPITs, hinges on specific site needs. In the evolving power industry, NCITs’ role in improving high-voltage substations’ reliability, stability, and environmental sustainability is becoming increasingly important.
- Despite existing challenges, including commercial adoption, EMC, susceptibility to external disturbances, and the need for standardization, it is imperative that ongoing research, efforts towards standardization, and collaboration within the industry continue. These steps are crucial for overcoming these obstacles and fully harnessing the potential of NCITs in contemporary power systems.
Author Contributions
Funding
Conflicts of Interest
References
- IEC 60044-1; Instrument Transformers—Part 1: Current Transformers. International Electrotechnical Commission: Geneva, Switzerland, 1996.
- IEC 60044-2; Instrument Transformers—Part 2: Inductive Voltage Transformers. International Electrotechnical Commission: Geneva, Switzerland, 1997.
- Gómez Sandoval, K.Y.; Marriaga Márquez, I.A.; Silva Ortega, J.I.; Grimaldo Guerrero, J.W.; Hernandez Herrera, H. Bibliometric review of emerging technologies in Gas Insulated Substations SF6. In Proceedings of the Development of Engineering and Innovation in the Scenarios of the 4th Industrial Revolution (EXPOTECNOLOGIA 2020), Cartagena, Colombia, 4–6 November 2020. [Google Scholar] [CrossRef]
- Riechert, U.; Holaus, W. Ultra high-voltage gas-insulated switchgear—A technology milestone. Eur. Trans. Electr. Power 2012, 22, 60–82. [Google Scholar] [CrossRef]
- Thummapal, D.; Kothari, S.; Thirumalai, M. Emerging Technologies in High Voltage Gas Insulated Switchgear-Clean Air GIS and NCIT. In Proceedings of the 2019 International Conference on High Voltage Engineering and Technology (ICHVET), Hyderabad, India, 7–8 February 2019. [Google Scholar] [CrossRef]
- Bolin, P. Gas-Insulated Substations. In Electric Power Substations Engineering, 3rd ed.; McDonald, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 2.1–2.19. ISBN 9781315213910. [Google Scholar]
- Haddad, A.; Warne, D.F. Advances in High Voltage Engineering, 1st ed.; The Institution of Engineering and Technology: Stevenage, UK, 2004; pp. 37–73. ISBN 9781849190381. [Google Scholar]
- Bassan, F.R.; Rosolem, J.B.; Floridia, C.; Aires, B.N.; Peres, R.; Aprea, J.F.; Nascimento, C.A.M.; Fruett, F. Power-over-Fiber LPIT for Voltage and Current Measurements in the Medium Voltage Distribution Networks. Sensors 2021, 21, 547. [Google Scholar] [CrossRef]
- Resende, D.F.; Silva, L.R.M.; Nepomuceno, E.G.; Duque, C.A. Optimizing Instrument Transformer Performance through Adaptive Blind Equalization and Genetic Algorithms. Energies 2023, 16, 7354. [Google Scholar] [CrossRef]
- Thomas, R.; Vujanic, A.; Xu, D.Z.; Sjodin, J.E.; Salazar, H.R.M.; Yang, M.; Powers, N. Non-Conventional Instrument Transformers Enabling Digital Substations for Future Grid. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Dallas, TX, USA, 3–5 May 2016. [Google Scholar] [CrossRef]
- Kim, D.E.; Kim, N.H.; Kim, S.G.; Kim, S.W.; Kil, G.S. Development of Combined Instrument Transformer for Gas-Insulated Switchgears. J. Korean Soc. Railw. 2023, 26, 268–276. [Google Scholar] [CrossRef]
- Daboul, M.; Orságová, J.; Jurák, V.; Vrtal, M. Testing Rogowski Coils with Merging Units for Smart Grids. Energies 2023, 16, 7323. [Google Scholar] [CrossRef]
- Mingotti, A.; Betti, C.; Peretto, L.; Tinarelli, R. Simplified and Low-Cost Characterization of Medium-Voltage Low-Power Voltage Transformers in the Power Quality Frequency Range. Sensors 2022, 22, 2274. [Google Scholar] [CrossRef] [PubMed]
- Frigo, G.; Agustoni, M. Characterization of a Low Power Instrument Transformer with Digital Output in Low-Inertia Power Systems. In Proceedings of the 2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), Split, Croatia, 24–26 May 2022. [Google Scholar] [CrossRef]
- Hunt, R.; Flynn, B.; Smith, T. The Substation of the Future: Moving toward a Digital Solution. IEEE Power Energy Mag. 2019, 17, 47–55. [Google Scholar] [CrossRef]
- IEC 61850-9-2; Communication Networks and Systems for Power Utility Automation—Part 9-2: Specific Communication Service Mapping (SCSM)—Sampled Values over ISO/IEC 8802-3. International Electrotechnical Commission: Geneva, Switzerland, 2011.
- IEC 60044-7; Instrument Transformers—Part 7: Electronic Voltage Transformers. International Electrotechnical Commission: Geneva, Switzerland, 1999.
- IEC 60044-8; Instrument Transformers—Part 8: Electronic Current Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2002.
- Chen, Q.; Li, H.B.; Huang, B.X. An innovative combined electronic instrument transformer applied in high voltage lines. Measurement 2010, 43, 960–965. [Google Scholar] [CrossRef]
- Saitoh, M.; Kimura, T.; Minami, Y.; Yamanaka, N.; Maruyama, S.; Nakajima, T.; Kosakada, M. Electronic instrument transformers for integrated substation systems. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan, 6–10 October 2002. [Google Scholar] [CrossRef]
- Tarmizi, A.I.; Rotaru, M.D.; Sykulski, J.K. Electromagnetic compatibility studies within smart grid automated substations. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014. [Google Scholar] [CrossRef]
- Liu, B.; Tong, Y.; Deng, X.P.; Wan, G. The electromagnetic compatibility research of electronic transformer under simulated complex environment. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 20–22 October 2014. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, P.; Qin, Y.; Zhao, M.; Yang, Z.; Chen, H. Electromagnetic Immunity Performance of Intelligent Electronic Equipment in Smart Substation’s Electromagnetic Environment. Energies 2020, 13, 1130. [Google Scholar] [CrossRef]
- IEC 61869-10; Instrument transformers—Part 10: Additional Requirements for Low-Power Passive Current Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2017.
- IEC 61869-11; Instrument transformers—Part 11: Additional Requirements for Low Power Passive Voltage Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2017.
- Moreno, A.; Gil, C.; Santiago, J.R. IEC 61869-10 and IEC 61869-11 Passive Sensors and their Interface with IEDS. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Online Conference, 20–23 September 2021. [Google Scholar] [CrossRef]
- Milovac, P.; Javora, R.; Skendzic, V. Sensor Technology in a Medium-Voltage Switchgear for the US Market Applications. CIRED—Open Access Proc. J. 2017, 2017, 432–435. [Google Scholar] [CrossRef]
- Shotter, G.F. A new null method of testing instrument transformers, and its application. J. Inst. Electr. Eng. 1930, 68, 873–888. [Google Scholar] [CrossRef]
- Robinson, L.T. Electrical measurements on circuits requiring current and potential transformers. Proc. Am. Inst. Electr. Eng. 1909, 28, 981–1015. [Google Scholar] [CrossRef]
- Djokić, B.V.; Parks, H.; Wise, N.; Naumović-Vuković, D.; Škundrić, S.P.; Žigić, A.D.; Polužanski, V. A comparison of two current transformer calibration systems at NRC Canada. IEEE Trans. Instrum. Meas. 2016, 66, 1628–1635. [Google Scholar] [CrossRef]
- IEC 61869-1; Instrument Transformers—Part 1: General Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2023.
- IEC 60044-5; Instrument Transformers—Part 5: Capacitor Voltage Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2011.
- IEC 61869-3; Instrument Transformers—Part 3: Additional Requirements for Inductive Voltage Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2011.
- IEC 61869-5; Instrument Transformers—Part 5: Additional Requirements for Capacitor Voltage Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2011.
- IEC 61869-2; Instrument Transformers—Part 2: Additional Requirements for Current Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2012.
- IEC 60044-6; Instrument Transformers—Part 6: Requirements for Protective Current Transformers for Transient Performance. International Electrotechnical Commission: Geneva, Switzerland, 1992.
- IEC 60044-3; Instrument Transformers—Part 3: Combined Transformers. International Electrotechnical Commission: Geneva, Switzerland, 1980.
- IEC 61869-4; Instrument Transformers—Part 4: Additional Requirements for Combined Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2013.
- IEC 61869-6; Instrument Transformers—Part 6: Additional General Requirements for Low-Power Instrument Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2016.
- Grasset, H. How to Use the New IEC 61869 Series Standards; Schneider Electric: Rueil-Malmaison, France, 2017. [Google Scholar]
- International Electrotechnical Commission TC 38: Instrument Transformers. Available online: https://www.iec.ch/dyn/www/f?p=103:23:0::::FSP_ORG_ID:1241 (accessed on 25 December 2023).
- Zimmermann, R. For a Greener Finland: Siemens Energy Seals Largest Order for SF6-Free Gas-Insulated Switchgear in Europe; Siemens Energy: Munich, Germany, 2021. [Google Scholar]
- Araujo, A.E.; Soudack, A.C.; Marti, J.R. Ferroresonance in power systems: Chaotic behaviour. IEE Proc. Part C Gener. Transm. Distrib. (Inst. Electr. Eng.) 1993, 140, 237–240. [Google Scholar] [CrossRef]
- Preetham, K.S.; Saravanaselvan, R.; Ramanujam, R. Investigation of subharmonic ferroresonant oscillations in power systems. Electr. Power Syst. Res. 2006, 76, 873–879. [Google Scholar] [CrossRef]
- Solak, K.; Rebizant, W.; Kereit, M. Detection of Ferroresonance Oscillations in Medium Voltage Networks. Energies 2020, 13, 4129. [Google Scholar] [CrossRef]
- Li, Y.; Shi, W.; Li, F.R. Novel analytical solution to fundamental ferroresonance—Part I: Power frequency excitation characteristic. IEEE Trans. Power Del. 2006, 2, 788–793. [Google Scholar] [CrossRef]
- Shein, P.; Zissu, S.; Schapiro, W. Voltage transformer ferroresonance in one 400 kV GIS substation. In Proceedings of the Sixteenth Conference of Electrical and Electronics Engineers, Tel-Aviv, Israel, 7–9 March 1989. [Google Scholar] [CrossRef]
- Braisch, D.; Schichler, U.; Schumacher, M.; Funk, H.-W.; Krebs, R. Partial saturation of current transformers in gas insulated switchgears. In Proceedings of the 16th International Symposium on High Voltage Engineering, Cape Town, South Africa, 24–28 August 2009. [Google Scholar]
- Lesniewska, E. Modern Methods of Construction Problem Solving in Designing Various Types of Instrument Transformers. Energies 2022, 15, 8199. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Nowicz, R. Application of instrument transformers in power quality assessment. In Proceedings of the International Symposium: Modern Electric Power Systems, Wroclaw, Poland, 20–22 September 2010. [Google Scholar]
- Daut, I.; Hasan, S.; Taib, S.; Chan, R.; Irwanto, M. Harmonic content as the indicator of transformer core saturation. In Proceedings of the Power Engineering and Optimization Conference (PEOCO), Shah Alam, Malaysia, 23–24 June 2010. [Google Scholar] [CrossRef]
- Krieg, T.; John, F. Substations, 1st ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 279–400. [Google Scholar] [CrossRef]
- Siemens. Alabama Power Company Siemens EM TS: GIS Overview; Siemens Industry: Munich, Germany, 2018. [Google Scholar]
- Arora, A.; Koch, H. Design features of GIS. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 16 June 2005. [Google Scholar] [CrossRef]
- Bertolotto, P.; Faifer, M.; Ottoboni, R. High Voltage Multi-Purpose Current and Voltage Electronic Transformer. In Proceedings of the 2007 IEEE Instrumentation & Measurement Technology Conference (IMTC), Warsaw, Poland, 1–3 May 2007. [Google Scholar] [CrossRef]
- Heine, H.; Guenther, P.; Becker, F. New non-conventional instrument transformer (NCIT)—A future technology in gas insulated switchgear. In Proceedings of the 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 3–5 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Filipović-Grčić, B.; Uglešić, I.; Milardić, V.; Filipović-Grčić, D. Analysis of electromagnetic transients in secondary circuits due to disconnector switching in 400kV air-insulated substation. Electr. Power Syst. Res. 2014, 115, 11–17. [Google Scholar] [CrossRef]
- Nie, Y.; Ge, J. Overview of Voltage Transformers Suitable for High Voltage Levels. In Proceedings of the 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Shenzhen, China, 24–26 April 2020. [Google Scholar] [CrossRef]
- Schlemper, H.-D.; Fuchsle, D.; Ramm, G.; Widmer, J. Test and application of non-conventional multi-purpose voltage and current transducers. In Proceedings of the 2004 CIGRE Session, Paris, France, 29 August–3 September 2004. [Google Scholar]
- Boero, R.; Jones, C.; Klimek, A. Novel application of optical current and voltage transducers on High Voltage switchgear. In Proceedings of the 2004 CIGRE Session, Paris, France, 29 August–3 September 2004. [Google Scholar]
- Kaczmarek, M.; Kaczmarek, P.; Stano, E. The Reference Wideband Inductive Current Transformer. Energies 2023, 16, 7307. [Google Scholar] [CrossRef]
- Sun, S.; Ma, F.; Yang, Q.; Ni, H.; Bai, T.; Ke, K.; Qiu, Z. Research on Non-Contact Voltage Measurement Method Based on Near-End Electric Field Inversion. Energies 2023, 16, 6468. [Google Scholar] [CrossRef]
- Zhou, Q.; He, W.; Li, S.; Hou, X. Research and Experiments on a Unipolar Capacitive Voltage Sensor. Sensors 2015, 15, 20678–20697. [Google Scholar] [CrossRef]
- Battal, F.; Balci, S.; Sefa, I. Power electronic transformers: A review. Measurement 2021, 171, 108848. [Google Scholar] [CrossRef]
- Močnik, J.; Humar, J.; Žemva, A. A non-conventional instrument transformer. Measurement 2013, 46, 4114–4120. [Google Scholar] [CrossRef]
- Li, Z.; Yu, C.; Abu-Siada, A.; Li, H.; Li, Z.; Zhang, T.; Xu, Y. An online correction system for electronic voltage transformers. Int. J. Electr. Power Energy Syst. 2021, 126, 106611. [Google Scholar] [CrossRef]
- Fluri, R.; Schmid, J.; Braun, P. Applications of low power current and voltage sensors. In Proceedings of the 21st International Conference on Electricity Distribution, Frankfurt, Germany, 6–9 June 2011. [Google Scholar]
- Djokic, B.; So, E. Calibration System for Electronic Instrument Transformers with Digital Output. In Proceedings of the 2004 Conference on Precision Electromagnetic Measurements, London, UK, 27 June–2 July 2004. [Google Scholar] [CrossRef]
- Kim, S.-G.; Kim, D.-E.; Kim, N.-H.; Kim, S.-W.; Kil, G.-S. Design and Fabrication of Non-contact Wide-frequency Voltage Measurement Device with D-dot Sensor. J. Korean Soc. Railw. 2022, 25, 621–629. [Google Scholar] [CrossRef]
- Lee, G.-Y.; Kim, N.-H.; Kim, D.-E.; Kil, G.-S.; Kim, S.-W. The Design, Fabrication, and Evaluation of a Phase-Resolved Partial Discharge Sensor Embedded in a MV-Class Bushing. Sensors 2023, 23, 9844. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Yang, J. Design, Experiments and Simulation of Voltage Transformers on the Basis of a Differential Input D-dot Sensor. Sensors 2014, 14, 12771–12783. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, J.; Wei, G.; Yang, Y. Design and Simulation Test of an Open D-Dot Voltage Sensor. Sensors 2015, 15, 23640–23652. [Google Scholar] [CrossRef]
- IEEE PSRC Special Report, Practical Aspects of Rogowski Coil Applications to Relaying September 2010. Available online: http://www.pespsrc.org (accessed on 1 January 2024).
- Yue, X.; Zhu, G.; Wang, J.V.; Deng, X.; Wang, Q. PCB Rogowski Coils for Capacitors Current Measurement in System Stability Enhancement. Electronics 2023, 12, 1099. [Google Scholar] [CrossRef]
- Fritz, N.; Neeb, C.; De Doncker, R.W. A PCB Integrated Differential Rogowski Coil for Non-Intrusive Current Measurement Featuring High Bandwidth and dv/dt Immunity. In Proceedings of the 2015 Power and Energy Student Summit (PESS), Dortmund, Germany, 13–14 January 2015. [Google Scholar] [CrossRef]
- Ferkovic, L.; Ilic, D.; Malaric, R. Mutual Inductance of a Precise Rogowski Coil in Dependence of the Position of Primary Conductor. IEEE Trans. Instrum. Meas. 2009, 58, 122–128. [Google Scholar] [CrossRef]
- Shafiq, M.; Stewart, B.G.; Hussain, G.A.; Hassan, W.; Choudhary, M.; Palo, I. Design and applications of Rogowski coil sensors for power system measurements: A review. Measurement 2022, 203, 112014. [Google Scholar] [CrossRef]
- Skendzic, V.; Hughes, B. Using Rogowski coils inside protective relays. In Proceedings of the 2013 66th Annual Conference for Protective Relay Engineers, College Station, TX, USA, 8–11 April 2013. [Google Scholar] [CrossRef]
- Liu, J.-L.; Ye, B.; Zhan, T.-W.; Feng, J.-H.; Zhang, J.-D.; Wang, X.-X. Coaxial Capacitive Dividers for High-Voltage Pulse Measurements in Intense Electron Beam Accelerator with Water Pulse-Forming Line. IEEE Trans. Instrum. Meas. 2009, 58, 161–166. [Google Scholar] [CrossRef]
- Kim, N.-H.; Kim, D.-E.; Kim, S.-W.; Kim, J.-H.; Kil, G.-S. Development of Electronic Voltage Transformer for Electric Rolling Stocks. J. Korean Soc. Railw. 2023, 26, 445–453. [Google Scholar] [CrossRef]
- Mingotti, A.; Costa, F.; Pasini, G.; Peretto, L.; Tinarelli, R. Modeling Capacitive Low-Power Voltage Transformer Behavior over Temperature and Frequency. Sensors 2021, 21, 1719. [Google Scholar] [CrossRef]
- Jin, M.; Li, H.; Liu, S. Identification and Compensation for D-Dot Measurement System in Transient Electromagnetic Pulse Measurement. Sensors 2022, 22, 8538. [Google Scholar] [CrossRef]
- Lim, S.-H.; Kim, N.-H.; Kim, D.-E.; Kim, S.-G.; Kil, G.-S. Design and Fabrication of an Electronic Voltage Transformer (EVT) Embedded in a Spacer of Gas Insulated Switchgears. J. Korean Inst. Electr. Electron. Mater. Eng. 2022, 35, 353–358. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Chen, P. A Design Method of PCB Rogowski Coil in Limited Space and Modified Integral Circuit. IEEE Sens. J. 2020, 20, 5801–5808. [Google Scholar] [CrossRef]
- Nurmansah, A.P.; Hidayat, S. Design and testing PCB Rogowski-coil current sensor for high current application. In Proceedings of the International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Denpasar, Indonesia, 2–5 October 2017. [Google Scholar] [CrossRef]
- Mingotti, A.; Peretto, L.; Tinarelli, R. Smart Characterization of Rogowski Coils by Using a Synthetized Signal. Sensors 2020, 20, 3359. [Google Scholar] [CrossRef]
- Mingotti, A.; Costa, F.; Peretto, L.; Tinarelli, R. Accuracy Type Test for Rogowski Coils Subjected to Distorted Signals, Temperature, Humidity, and Position Variations. Sensors 2022, 22, 1397. [Google Scholar] [CrossRef]
- El-Shahat, M.; Tag Eldin, E.; Mohamed, N.A.; EL-Morshedy, A.; Ibrahim, M.E. Measurement of Power Frequency Current including Low- and High-Order Harmonics Using a Rogowski Coil. Sensors 2022, 22, 4220. [Google Scholar] [CrossRef] [PubMed]
Old IEC Standard | Products | New IEC Standard | |
---|---|---|---|
60044-1 | Current transformers | 61869-2 | 61869-1 |
60044-6 | |||
60044-2 | Inductive voltage transformers | 61869-3 | |
60044-3 | Combined transformers | 61869-4 | |
60044-5 | Capacitor voltage transformers | 61869-5 | |
60044-7 | Electronic voltage transformers | 61869-7 | |
Low-power passive voltage transformers | 61869-11 | ||
60044-8 | Electronic current transformers | 61869-8 | |
Low-power passive current transformers | 61869-10 |
Accuracy Class | Voltage (Ratio) Error | Phase Displacement | |
---|---|---|---|
0.1 | 0.1 | 5 | 0.15 |
0.2 | 0.2 | 10 | 0.3 |
0.5 | 0.5 | 20 | 0.6 |
1.0 | 1.0 | 40 | 1.2 |
3.0 | 3.0 | - | - |
Accuracy Class | Current (Ratio) Error | Phase Displacement | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
At Current (% of Rated) | ||||||||||||
5 | 20 | 100 | 120 | 5 | 20 | 100 | 120 | 5 | 20 | 100 | 120 | |
0.1 | 0.4 | 0.2 | 0.1 | 0.1 | 15 | 8 | 5 | 5 | 0.45 | 0.24 | 0.15 | 0.15 |
0.2 | 0.75 | 0.35 | 0.2 | 0.2 | 30 | 15 | 15 | 10 | 0.9 | 0.45 | 0.3 | 0.3 |
0.5 | 1.5 | 0.75 | 0.5 | 0.5 | 90 | 45 | 45 | 30 | 2.7 | 1.35 | 0.9 | 0.9 |
1 | 3.0 | 1.5 | 1.0 | 1.0 | 180 | 90 | 90 | 60 | 5.4 | 2.7 | 1.8 | 1.8 |
Accuracy Class | Voltage (Ratio) Error | Phase Error | |
---|---|---|---|
0.1 | 0.1 | 5 | 0.15 |
0.2 | 0.2 | 10 | 0.3 |
0.5 | 0.5 | 20 | 0.6 |
1.0 | 1.0 | 40 | 1.2 |
3.0 | 3.0 | Not specified | Not specified |
Accuracy Class | Current (Ratio) Error | Phase Error | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
At Current (% of Rated) | ||||||||||||
5 | 20 | 100 | 120 | 5 | 20 | 100 | 120 | 5 | 20 | 100 | 120 | |
0.1 | 0.4 | 0.2 | 0.1 | 0.1 | 15 | 8 | 5 | 5 | 0.45 | 0.24 | 0.15 | 0.15 |
0.2 | 0.75 | 0.35 | 0.2 | 0.2 | 30 | 15 | 10 | 10 | 0.9 | 0.45 | 0.3 | 0.3 |
0.5 | 1.5 | 0.75 | 0.5 | 0.5 | 90 | 45 | 30 | 30 | 2.7 | 1.35 | 0.9 | 0.9 |
1.0 | 3.0 | 1.5 | 1.0 | 1.0 | 180 | 90 | 60 | 60 | 5.4 | 2.7 | 1.8 | 1.8 |
Accuracy Class | Voltage (Ratio) Error | Phase Error | |||||||
---|---|---|---|---|---|---|---|---|---|
At Voltage (% of Rated) | |||||||||
80 | 100 | 120 | 80 | 100 | 120 | 80 | 100 | 120 | |
0.1 | 0.1 | 0.1 | 0.1 | 5 | 5 | 5 | 0.15 | 0.15 | 0.15 |
0.2 | 0.2 | 0.2 | 0.2 | 10 | 10 | 10 | 0.3 | 0.3 | 0.3 |
0.5 | 0.5 | 0.5 | 0.5 | 20 | 20 | 20 | 0.6 | 0.6 | 0.6 |
1.0 | 1.0 | 1.0 | 1.0 | 40 | 40 | 40 | 1.2 | 1.2 | 1.2 |
3.0 | 3.0 | 3.0 | 3.0 | Not specified | Not specified |
Accuracy Class | Current (Ratio) Error | Phase Error | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
At Current (% of Rated) | ||||||||||||
5 | 20 | 100 | 120 | 5 | 20 | 100 | 120 | 5 | 20 | 100 | 120 | |
0.1 | 0.4 | 0.2 | 0.1 | 0.1 | 15 | 8 | 5 | 5 | 0.45 | 0.24 | 0.15 | 0.15 |
0.2 | 0.75 | 0.35 | 0.2 | 0.2 | 30 | 15 | 10 | 10 | 0.9 | 0.45 | 0.3 | 0.3 |
0.5 | 1.5 | 0.75 | 0.5 | 0.5 | 90 | 45 | 30 | 30 | 2.7 | 1.35 | 0.9 | 0.9 |
1.0 | 3.0 | 1.5 | 1.0 | 1.0 | 180 | 90 | 60 | 60 | 5.4 | 2.7 | 1.8 | 1.8 |
3 | - | 4.5 | 3 | 3 | Not specified | Not specified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-E.; Lee, G.-Y.; Kil, G.-S.; Kim, S.-W. Trends in Measuring Instrument Transformers for Gas-Insulated Switchgears: A Review. Energies 2024, 17, 1846. https://doi.org/10.3390/en17081846
Kim D-E, Lee G-Y, Kil G-S, Kim S-W. Trends in Measuring Instrument Transformers for Gas-Insulated Switchgears: A Review. Energies. 2024; 17(8):1846. https://doi.org/10.3390/en17081846
Chicago/Turabian StyleKim, Dong-Eon, Gyeong-Yeol Lee, Gyung-Suk Kil, and Sung-Wook Kim. 2024. "Trends in Measuring Instrument Transformers for Gas-Insulated Switchgears: A Review" Energies 17, no. 8: 1846. https://doi.org/10.3390/en17081846
APA StyleKim, D. -E., Lee, G. -Y., Kil, G. -S., & Kim, S. -W. (2024). Trends in Measuring Instrument Transformers for Gas-Insulated Switchgears: A Review. Energies, 17(8), 1846. https://doi.org/10.3390/en17081846