Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = gas discharge tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4883 KiB  
Article
A Pilot-Scale Study on Cross-Tube Ozone Catalytic Oxidation of Biochemical Tailwater in an Industrial Park in Suzhou (China)
by Pengyu Wei, Kangping Cui, Shijie Sun and Jiao Wang
Water 2025, 17(13), 1953; https://doi.org/10.3390/w17131953 - 29 Jun 2025
Viewed by 339
Abstract
Aiming at the defects of the low mass transfer efficiency and large floor space of the traditional ozone process, a cross-tube ozone catalytic oxidation pilot plant was designed and developed. By implementing lateral aeration and a modular series configuration, the gas–liquid mass transfer [...] Read more.
Aiming at the defects of the low mass transfer efficiency and large floor space of the traditional ozone process, a cross-tube ozone catalytic oxidation pilot plant was designed and developed. By implementing lateral aeration and a modular series configuration, the gas–liquid mass transfer pathways were optimized, achieving a hydraulic retention time of 25 min and maintaining an ozone dosage of 43 mg/L, which significantly improved the ozone utilization efficiency. During the pilot operation in an industrial park in Suzhou, Anhui Province, the average COD removal efficiency of the device for the actual biochemical tail water (COD 82.5~29.7 mg/L) reached 35.47%, and the effluent concentration was stably lower than 50 mg/L, which meets the stricter discharge standard. The intermediate products in the system were also analyzed by liquid chromatography–mass spectrometry (LC-MS), and the key pollutants were selected for degradation path analysis. Compared to the original tower process in the park, the ozone dosage was reduced by 46%, the reaction residence time was reduced by 60%, and the cost of water treatment was reduced to 0.067 USD, which is both economical and applicable to engineering. This process provides an efficient and low-cost solution for the deep treatment of wastewater in industrial parks, and has a broad engineering application prospect. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 5383 KiB  
Article
Design and Hydrodynamic Performance Analysis of Airlift Sediment Removal Equipment for Seedling Fish Tanks
by Yufei Zhang, Andong Liu, Chenglin Zhang, Chongwu Guan and Haigeng Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1236; https://doi.org/10.3390/jmse13071236 - 26 Jun 2025
Viewed by 338
Abstract
This study innovatively proposes a pipeline-type pneumatic lift sediment removal device for cleaning pollutants at the bottom of fish breeding tanks and conducts hydrodynamic characteristic analysis on its core component, the pneumatic lift pipeline structure, which consists of a horizontal circular tube with [...] Read more.
This study innovatively proposes a pipeline-type pneumatic lift sediment removal device for cleaning pollutants at the bottom of fish breeding tanks and conducts hydrodynamic characteristic analysis on its core component, the pneumatic lift pipeline structure, which consists of a horizontal circular tube with multiple micro-orifices at the bottom and an upward-inclined circular tube. The pipeline has an inner diameter of 20 mm and a vertical length of 1.2 m, with the orifice at one end of the horizontal tube connected to the gas supply line. During operation, compressed gas enters the horizontal tube, generating negative liquid pressure that draws solid–liquid mixtures from the tank bottom into the pipeline, while buoyant forces propel the gas–liquid–solid mixture upward for discharge through the outlet. Under a constant gas flow rate, numerical simulations investigated efficiency variations through three operational scenarios: ① different pipeline orifice diameters, ② varying orifice quantities and spacings, and ③ adjustable pipeline bottom clearance heights. The results indicate that in scenario ①, an orifice diameter of 4 mm demonstrated optimal efficiency; in scenario ②, the eight-orifice configuration achieved peak efficiency; and scenario ③ showed that the proper adjustment of the bottom clearance height enhances pneumatic efficiency, with maximum efficiency observed at a clearance of 10 mm between sediment suction pipe and tank bottom. Full article
Show Figures

Figure 1

15 pages, 3028 KiB  
Article
Theoretical Study on Critical Liquid-Carrying Capacity of Gas Wells in Fuling Shale Gas Field
by Yang Cheng, Dajiang Wang, Jun Luo and Ruiquan Liao
Processes 2025, 13(3), 776; https://doi.org/10.3390/pr13030776 - 7 Mar 2025
Cited by 1 | Viewed by 633
Abstract
The most common type of well in the Fuling shale gas field is the long horizontal section well. Once the energy attenuates, it is difficult to discharge the accumulated liquid. So, it is particularly important to determine the time of accumulation. Through indoor [...] Read more.
The most common type of well in the Fuling shale gas field is the long horizontal section well. Once the energy attenuates, it is difficult to discharge the accumulated liquid. So, it is particularly important to determine the time of accumulation. Through indoor experiments, it was observed that droplets in the gas core flowing under critical conditions and the liquid film adhering to the tube wall cannot be ignored. It was also discovered that the liquid phase on the tube wall can form fluctuations due to the shear effect of the gas phase. Based on the observed distribution of gas–liquid phases in experiments, a critical liquid-carrying velocity calculation method considering the coexistence of droplets and liquid films, as well as the frictional resistance coefficient at the gas–liquid interface under wave morphology, was established. Integrating production data from 106 wells at home and abroad, as well as testing data from the Fuling example well, the new model was validated. The results showed that the new model can accurately diagnose fluid accumulation in different gas fields, with an accuracy rate of 86.8%, and it can provide an accurate diagnosis for fluid accumulation in gas wells in different water-producing gas fields. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 5914 KiB  
Article
Numerical Simulation Study of the Optimization on Tubing-to-Sediment Surface Distance in Small-Spacing Dual-Well (SSDW) Salt Caverns
by Lei Wang, Zheng Chu, Jiang He, Yujia Zhai, Junming Huang and Haonan Yang
Processes 2025, 13(2), 322; https://doi.org/10.3390/pr13020322 - 24 Jan 2025
Viewed by 726
Abstract
The small-spacing dual-well (SSDW) technique plays a crucial role in the establishment of underground salt cavern gas storage reservoirs. However, during the cavity dissolution and brine discharge processes, insoluble sediment is prone to being carried into the discharge tubing with the brine, leading [...] Read more.
The small-spacing dual-well (SSDW) technique plays a crucial role in the establishment of underground salt cavern gas storage reservoirs. However, during the cavity dissolution and brine discharge processes, insoluble sediment is prone to being carried into the discharge tubing with the brine, leading to tubing blockages or clogging, which disrupts injection and withdrawal operations and severely affects both project efficiency and the safety of the gas storage facility. This study systematically analyzes the influence of the gap between the injection and discharge tubing and the surface of the sediment-on-sediment movement, deposition, and tubing safety in SSDW salt caverns. Through numerical simulations, this study investigates the influence of tubing layout on the internal flow field distribution of the cavern and the suspension behavior of sediment, revealing the changing trend of the risk of sediment entering the tubing at different distances. The results show that a rational tubing distance can significantly lower the risk of sediment backflow and tubing entry, while maintaining high brine discharge efficiency. Based on the simulation results, an optimized tubing layout design suitable for SSDW salt caverns is proposed, offering technical direction to guarantee the safe and effective functioning of underground salt cavern gas storage sites. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Drilling Techniques)
Show Figures

Figure 1

19 pages, 3003 KiB  
Article
Dual-Parameter Prediction of Downhole Supercritical CO2 with Associated Gas Using Levenberg–Marquardt (LM) Neural Network
by Dedong Xue, Lei Kou, Chunfeng Zheng, Sheng Wang, Shijiao Jia and Chao Yuan
Fluids 2024, 9(8), 177; https://doi.org/10.3390/fluids9080177 - 31 Jul 2024
Cited by 1 | Viewed by 1262
Abstract
This research investigates the application of supercritical carbon dioxide (CO2) within carbon capture, utilization, and storage (CCUS) technologies to enhance oil-well production efficiency and facilitate carbon storage, thereby promoting a low-carbon circular economy. We simulate the flow of supercritical CO2 [...] Read more.
This research investigates the application of supercritical carbon dioxide (CO2) within carbon capture, utilization, and storage (CCUS) technologies to enhance oil-well production efficiency and facilitate carbon storage, thereby promoting a low-carbon circular economy. We simulate the flow of supercritical CO2 mixed with associated gas (flow rates 3–13 × 104 Nm3/d) in a miniature venturi tube under high temperature and high-pressure conditions (30–50 MPa, 120–150 °C). Accurate fluid property calculations, essential for simulation fidelity, were performed using the R. Span and W. Wagner and GERG-2008 equations. A dual-parameter prediction model was developed based on the simulation data. However, actual measurements only provide fluid types and measurement data, such as pressure, temperature, and venturi differential pressure, to determine the liquid mass fraction (LMF) and total mass flow rate (m), presenting challenges due to complex nonlinear relationships. Traditional formula-fitting methods proved inadequate for these conditions. Consequently, we employed a Levenberg–Marquardt (LM) based neural network algorithm to address this issue. The LM optimizer excels in handling complex nonlinear problems with faster convergence, making it suitable for our small dataset. Through this approach, we formulated dual-parameter model equations to elucidate fluid flow factors, analyzing the impact of multiple parameters on the LMF and the discharge coefficient (C). The resulting model predicted dual parameters with a relative error for LMF of ±1% (Pc = 95.5%) and for m of ±1% (Pc = 95.5%), demonstrating high accuracy. This study highlights the potential of neural networks to predict the behavior of complex fluids with high supercritical CO2 content, offering a novel solution where traditional methods fail. Full article
Show Figures

Figure 1

15 pages, 4003 KiB  
Article
Design and Performance Analysis of a Small-Scale Prototype Water Condensing System for Biomass Combustion Flue Gas Abatement
by Valentina Coccia, Ramoon Barros Lovate Temporim, Leandro Lunghi, Oleksandra Tryboi, Franco Cotana, Anna Magrini, Daniele Dondi, Dhanalakshmi Vadivel, Marco Cartesegna and Andrea Nicolini
Sustainability 2024, 16(12), 5164; https://doi.org/10.3390/su16125164 - 18 Jun 2024
Cited by 1 | Viewed by 1493
Abstract
This article outlines the design and performance of a flue gas condensation system integrated with a biomass combustion plant. The system comprises a biomass plant fuelled by wood chips, generating flue gases. These gases are condensed via a double heat exchanger set-up, extracting [...] Read more.
This article outlines the design and performance of a flue gas condensation system integrated with a biomass combustion plant. The system comprises a biomass plant fuelled by wood chips, generating flue gases. These gases are condensed via a double heat exchanger set-up, extracting water and heat to reduce concentrations of CO, CO2, and NOx while releasing gases at a temperature close to ambient temperature. The 100 kW biomass plant operates steadily, consuming 50 kg of wood chips per hour with fuel energy of 18.98 MJ/kg. Post combustion, the gases exit at 430 °C and undergo two-stage cooling. In the first stage, gases are cooled in a high-temperature tube heat exchanger, transferring heat to air. They then enter the second stage, a flue gas/water heat exchanger, recovering sensible and latent thermal energy, which leads to water condensation. Flue gas is discharged at approximately 33 °C. Throughout, parameters like the flue gas temperatures, mass flow, fuel consumption, heat carrier temperatures, and water condensation rates were monitored. The test results show that the system can condense water from flue gas at 75 g/min at 22 °C while reducing pollutant emissions by approximately 20% for CO2, 19% for CO, 30% for NO, and 26% for NOx. Full article
Show Figures

Figure 1

25 pages, 8124 KiB  
Article
Study of Condensation during Direct Contact between Steam and Water in Pressure-Relief Tank
by Shasha Yin, Yingjie Wang, Yuan Yuan and Bei Li
Energies 2024, 17(11), 2772; https://doi.org/10.3390/en17112772 - 5 Jun 2024
Viewed by 1998
Abstract
Direct contact condensation (DCC) is a phenomenon observed when steam interacts with subcooled water, exhibiting higher heat and mass transfer rates compared to wall condensation. It has garnered significant interest across industries such as nuclear, chemical, and power due to its advantageous characteristics. [...] Read more.
Direct contact condensation (DCC) is a phenomenon observed when steam interacts with subcooled water, exhibiting higher heat and mass transfer rates compared to wall condensation. It has garnered significant interest across industries such as nuclear, chemical, and power due to its advantageous characteristics. In the context of pressure-relief tanks, understanding and optimizing the DCC process are critical for safety and efficiency. The efficiency of pressure-relief tanks depends on the amount of steam condensed per unit of time, which directly affects their operational parameters and design. This study focuses on investigating the direct gas–liquid contact condensation process in pressure-relief tanks using computational fluid dynamics (CFD). Through experimental validation and a sensitivity analysis, the study provides insights into the influence of inlet steam parameters and basin temperature on the steam plume characteristics. Furthermore, steady-state and transient calculation models are developed to simulate the behaviour of the pressure-relief tank, providing valuable data for safety analysis and design optimization. There is a relatively high-pressure area in the upper part of the bubble hole of the pressure-relief tube, and the value increases as it is closer to the holes. The steam velocity in the bubbling hole near the 90° elbow position is higher. This study contributes to the understanding of steam condensation dynamics in pressure-relief tanks. When the steam emission and pressure are fixed, the equilibrium temperature increases linearly as the initial temperature increases (where a = 1, b = 20 in y = a x+ b correlation), the equilibrium pressure increases nearly exponentially, and the equilibrium gas volume decreases. When the steam emission and initial temperature are fixed, the equilibrium temperature does not change as the steam discharge pressure increases. The correlations between the predicted equilibrium parameters and the inlet steam parameters and tank temperature provide valuable insights for optimizing a pressure-relief tank design and improving the operational safety in diverse industrial contexts. Full article
(This article belongs to the Special Issue Optimal Design and Analysis of Advanced Nuclear Reactors)
Show Figures

Figure 1

12 pages, 2911 KiB  
Article
Experimental Study on The Performance of External Open-Circuit Failure Gas Discharge Tubes under Power-Frequency Follow Currents
by Hao Lu, Yuhang Chen, Hongchang Li, Chuanxiao Zheng and Heng Hu
Electronics 2024, 13(1), 165; https://doi.org/10.3390/electronics13010165 - 29 Dec 2023
Cited by 1 | Viewed by 1604
Abstract
A short-circuit fault in the gas discharge tube (GDT) is one of the latent hazards of electrical equipment. It may cause the ignition of electrical equipment. Therefore, based on the existing GDT, an improved external open-circuit failure gas discharge tube (EOFGDT) which can [...] Read more.
A short-circuit fault in the gas discharge tube (GDT) is one of the latent hazards of electrical equipment. It may cause the ignition of electrical equipment. Therefore, based on the existing GDT, an improved external open-circuit failure gas discharge tube (EOFGDT) which can remove short-circuit (SC) failure is presented in this paper, and its structure and working mechanisms are introduced. This EOFGDT can utilize the combustion and heat transfer of continuous arcs due to SC failures to increase the temperature of its end electrode, so as to induce a solder joint failure, by which the elastic sheet on the solder joint becomes disconnected from the end electrode, forming an external gap that reduces the rising speed and amplitude of the recovery voltage across the arc gap, and eventually forms an open circuit (OC) within the structure. The EOFGDT SC condition was simulated and a test of the EOFGDT ability to remove SC faults by using an 8/20 µs impulse current generator coupled with a power-frequency power supply test bed was conducted. The experimental results show that the magnitude of the SC follow currents, power-frequency voltages, and the impulse currents are positively correlated to the OC response time, which is greatly affected by the power-frequency follow currents. When the SC current reaches 30 A, the EOFGDT OC response time is about 350 ms. The experimental waveform is consistent with the screen result of the OC response time of the EOFGDT, which proves the effectiveness of EOFGDTs for the inhibition of SC follow-current failures. Full article
Show Figures

Figure 1

11 pages, 1389 KiB  
Case Report
Successful Emergency Management of a Dog with Ventilator-Dependent Acquired Myasthenia Gravis with Immunoadsorption
by Florian Sänger, Stefanie Dörfelt, Bettina Giani, Gesine Buhmann, Andrea Fischer and René Dörfelt
Animals 2024, 14(1), 33; https://doi.org/10.3390/ani14010033 - 21 Dec 2023
Cited by 1 | Viewed by 2281
Abstract
A one-year-old, female intact Samoyed, 12.5 kg, was presented with coughing for 2 weeks, progressive appendicular and axial muscle weakness, megaesophagus and labored breathing for 5 days. There was no improvement with standard treatment. Acquired myasthenia gravis was suspected and the dog was [...] Read more.
A one-year-old, female intact Samoyed, 12.5 kg, was presented with coughing for 2 weeks, progressive appendicular and axial muscle weakness, megaesophagus and labored breathing for 5 days. There was no improvement with standard treatment. Acquired myasthenia gravis was suspected and the dog was referred with increasing dyspnea. At presentation, the dog showed a severely reduced general condition, was non-ambulatory and showed abdominal and severely labored breathing. A marked hypercapnia (PvCO2 = 90.1 mmHg) was present in venous blood gas analysis. The serum anti-acetylcholine receptor antibody test was consistent with acquired myasthenia gravis (2.1 nmol/L). The dog was anesthetized with propofol and mechanically ventilated with a Hamilton C1 ventilator. Immunoadsorption was performed with the COM.TEC® and ADAsorb® platforms and a LIGASORB® adsorber to eliminate anti-acetylcholine receptor antibodies. Local anticoagulation was performed with citrate. Treatment time for immunoadsorption was 1.5 h with a blood flow of 50 mL/min. A total plasma volume of 1.2 L was processed. Further medical treatment included intravenous fluid therapy, maropitant, esomeprazole, antibiotic therapy for aspiration pneumonia and neostigmine 0.04 mg/kg intramuscularly every 6 h for treatment of acquired myasthenia gravis. Mechanical ventilation was stopped after 12 h. A percutaneous gastric feeding tube was inserted under endoscopic control on day 2 for further medical treatment and nutrition. A second treatment with immunoadsorption was performed on day 3. Again, a total plasma volume of 1.2 L was processed. Immediately after this procedure, the dog regained muscle strength and was able to stand and to walk. After 6 days, the dog was discharged from the hospital. This is the first report of immunoadsorption for emergency management of a dog with acute-fulminant acquired myasthenia gravis. Immunoadsorption may be an additional option for emergency treatment in dogs with severe signs of acquired myasthenia gravis. Full article
Show Figures

Figure 1

28 pages, 20130 KiB  
Article
Study on Aerodynamic Drag Reduction by Plasma Jets for 600 km/h Vacuum Tube Train Sets
by Ang Li, Hongjiang Cui, Ying Guan, Jichen Deng, Ying Zhang and Wu Deng
Machines 2023, 11(12), 1078; https://doi.org/10.3390/machines11121078 - 8 Dec 2023
Cited by 3 | Viewed by 2184
Abstract
In order to break through the speed bottleneck, researchers envision using tubes to cover high-speed maglev trains and extract some of the air inside the tubes, creating a low-density environment on the ground, greatly reducing the aerodynamic drag of the trains, and in [...] Read more.
In order to break through the speed bottleneck, researchers envision using tubes to cover high-speed maglev trains and extract some of the air inside the tubes, creating a low-density environment on the ground, greatly reducing the aerodynamic drag of the trains, and in a relatively economical and feasible way, making high subsonic (600 km/h and above) and even supersonic ground transportation possible. The faster the running speed of high-speed trains, the greater the impact of aerodynamic drag on their energy consumption. Studying the aerodynamic characteristics of trains with a speed of 600 km/h can help optimize the aerodynamic shape of the train, reduce aerodynamic drag, and reduce energy consumption. This has positive implications for improving train energy efficiency, reducing energy consumption, and environmental impact. This paper adopts the numerical simulation method to study the drag reduction effect of the plasma arrangement and different excitation speeds on the train set in four positions when the incoming wind speed is 600 km/h, to analyze the mechanism of drag reduction, and then to analyze the combination of working conditions in order to investigate the drag reduction effect of plasma on the vacuum tube train set with an ambient pressure of 10,000 Pa. The findings demonstrate that the plasma induces the directional flow of the gas close to the wall to move the flow separation point backward and delay the separation of the flow, thereby reducing the front and rear differential pressure drag of the train set and lowering the aerodynamic drag coefficient of the entire train. The plasma arrangement is located at the rear of the flow separation point and in close proximity to the flow separation point. The pneumatic drag reduction effect peaks when the excitation speed reaches 0.2 times the train speed and the pneumatic drag reduction ratio is around 0.88%; the pneumatic drag reduction ratio of the rear car peaks when the excitation speed reaches 0.25 times the train speed and the pneumatic drag reduction ratio is 1.62%. The SDBD (Surface Dielectric Barrier Discharge) device is installed at the flow separation point around the nose tip of the rear car. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

19 pages, 7204 KiB  
Article
Innovative Curved-Tip Reactor for Non-Thermal Plasma and Plasma-Treated Water Generation: Synergistic Impact Comparison with Sodium Hypochlorite in Dental Root Canal Disinfection
by Raúl Arguello-Sánchez, Régulo López-Callejas, Benjamín Gonzalo Rodríguez-Méndez, Rogelio Scougall-Vilchis, Ulises Velázquez-Enríquez, Antonio Mercado-Cabrera, Rosendo Peña-Eguiluz, Raúl Valencia-Alvarado and Carlo Eduardo Medina-Solís
Materials 2023, 16(22), 7204; https://doi.org/10.3390/ma16227204 - 17 Nov 2023
Cited by 4 | Viewed by 1978
Abstract
Non-thermal plasmas (NTPs), known as cold atmospheric plasmas (CAPs), hold great potential for diverse medical applications, including dentistry. However, traditional linear and rigid dielectric barrier discharge reactors used for NTP generation encounter limitations in accessing oral cavities and root canals. To address this [...] Read more.
Non-thermal plasmas (NTPs), known as cold atmospheric plasmas (CAPs), hold great potential for diverse medical applications, including dentistry. However, traditional linear and rigid dielectric barrier discharge reactors used for NTP generation encounter limitations in accessing oral cavities and root canals. To address this issue, we have developed an innovative NTP reactor featuring an angled end for improved accessibility. The central copper electrode, with a 0.59 mm diameter and adjustable length for desired angulation, is coated with zircon powder (ZrSiO4) to ensure stable NTP generation. This central electrode is housed within a stainless steel tube (3 mm internal diameter, 8 mm external diameter, and 100 mm length) with a 27° angle at one end, making it ergonomically suitable for oral applications. NTP generation involves polarizing the reactor electrodes with 13.56 MHz radio frequency signals, using helium gas as a working medium. We introduce plasma-treated water (PTW) as an adjunctive therapy to enhance biofilm eradication within root canals. A synergistic approach combining NTP and PTW is employed and compared to the gold standard (sodium hypochlorite, NaOCl), effectively neutralizing Enterococcus faecalis bacteria, even in scenarios involving biofilms. Moreover, applying NTP in both gaseous and liquid environments successfully achieves bacterial inactivation at varying treatment durations, demonstrating the device’s suitability for medical use in treating root canal biofilms. The proposed NTP reactor, characterized by its innovative design, offers a practical and specific approach to plasma treatment in dental applications. It holds promise in combatting bacterial infections in root canals and oral cavities. Full article
(This article belongs to the Special Issue From Conventional towards Modern Biomaterials in Dentistry)
Show Figures

Figure 1

12 pages, 5160 KiB  
Article
High-Rate Capability of LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) as Cathode for Lithium-Ion Batteries
by Lukman Noerochim, Elsanti Anggraini Gunawan, Sungging Pintowantoro, Haniffudin Nurdiansah, Ariiq Dzurriat Adam and Nurul Hayati Idris
Batteries 2023, 9(8), 420; https://doi.org/10.3390/batteries9080420 - 11 Aug 2023
Cited by 3 | Viewed by 2811
Abstract
LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) cathodes were synthesized via the co-precipitation method and continued with the calcination process in a tube furnace at 750 °C under flowing oxygen gas for 12 h. X-ray diffraction [...] Read more.
LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) cathodes were synthesized via the co-precipitation method and continued with the calcination process in a tube furnace at 750 °C under flowing oxygen gas for 12 h. X-ray diffraction (XRD) revealed a well-formed and high-purity phase with a hexagonal structure. LiNi0.9Mn0.07Al0.03O2 (NMA 973) had the best electrochemical performance with the lowest redox peak separation, the smallest charge transfer resistance (71.58 Ω cm−2), the highest initial specific discharge capacity of 172 mAh g−1 at 0.1C, and a capacity retention of 98% after 100 cycles. Under high current density at 1 C, NMA 973 had excellent specific discharge capacity compared to the other samples. The optimal content of Mn and Al elements is a crucial factor to obtain the best electrochemical performance of NMA. Therefore, NMA 973 is a promising candidate as a cathode for high-energy-density lithium-ion batteries. Full article
Show Figures

Figure 1

16 pages, 3346 KiB  
Article
Study on Facile and Full-Scale Reuse Treatment of Wastewater Produced from Tail Gas Oxidation-Absorption Technology of Natural Gas Purification Plant
by Quanwu Tang, Jing Li, Jingqiang Fu, Dong Lin, Chang Yi, Liang Zhao, Qiang Zeng and Chao Hu
Water 2023, 15(12), 2259; https://doi.org/10.3390/w15122259 - 16 Jun 2023
Cited by 3 | Viewed by 2239
Abstract
The oxidation-absorption technology of tail gas is perfect for natural gas purification plants to ensure the up-to-standard discharge of sulfur dioxide emissions, but it can produce a large amount of wastewater. In this paper, a facile and full-scale reuse treatment strategy based on [...] Read more.
The oxidation-absorption technology of tail gas is perfect for natural gas purification plants to ensure the up-to-standard discharge of sulfur dioxide emissions, but it can produce a large amount of wastewater. In this paper, a facile and full-scale reuse treatment strategy based on the sequential combination of disc tube reverse osmosis and low-temperature and low-pressure evaporation desalination was proposed and studied. The produced light yellow wastewater was acid sulfate-rich organic wastewater, in which sulfate ions (SO42−) existed up to 6479 mg/L, and the chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD5), total organic carbon (TOC), ammonia nitrogen (ammonia-N), total nitrogen (TN) and suspended solid (SS) were 207, 71.9, 67.6, 1.28, 70.5 and 20.9 mg/L, respectively. After the reuse treatment, there was COD (6 mg/L), BOD5 (1.4 mg/L), TOC (0.9 mg/L), TN (2.07 mg/L), SS (6 mg/L) and SO42− (90 mg/L) in permeated water, and condensate water with COD (11 mg/L), BOD5 (2.3 mg/L), TOC (4.3 mg/L), SS (2 mg/L) and SO42− (1.2 mg/L) was obtained. Thereby, pollution indexes were reduced after the reuse treatment so as to meet the water quality standard (GB/T18920-2022) in China, and the total water recovery rate reached 98.2 vol%. Ultimately, the priority pollutant migration mechanism during the reuse treatment process was determined. Full article
(This article belongs to the Special Issue Water, Waste and Wastewater: Treatment and Resource Recovery)
Show Figures

Figure 1

19 pages, 6258 KiB  
Article
Modelling Wave Transmission for Transient Flow and Amplitude-Frequency Characteristics of Tubular String in a Water Injection Well
by Eryang Ming, Cong Li, Huiqing Lan, Jiaqing Yu, Lichen Zheng and Xiaohan Pei
Appl. Sci. 2023, 13(6), 3917; https://doi.org/10.3390/app13063917 - 19 Mar 2023
Cited by 3 | Viewed by 1917
Abstract
Fluid wave code communication is used in layered water injection intelligent monitoring systems, but a model of fluid transient flow wave signal transmission is still unknown. Impedance and transfer coefficient in power transmission theory were used to describe transient flow waves in the [...] Read more.
Fluid wave code communication is used in layered water injection intelligent monitoring systems, but a model of fluid transient flow wave signal transmission is still unknown. Impedance and transfer coefficient in power transmission theory were used to describe transient flow waves in the transmission process of a tubular string in a water injection well and a transient flow wave model was built based on the transfer matrix method. The relationship between pressure and discharge was analyzed when the transient flow waves moved along the tubular string, and the influence of terminal impedance and dip angle of the tubular string on the wave transmission was studied. Simulations showed that the transient flow waves were with standing wave distribution when the transient flow wave signals transmitted in the tubular string. Moreover, the transmission volatility under different terminal impedances was analyzed. The communication frequency was selected according to the wave amplitude ratio between the two ends of the water injection tubular string. The relationship between the influence of tubular string parameters and fluid characteristics on the wave velocity and wave amplitude in the signal transmission process was obtained by simulation analysis. The wave velocity tended to decrease as the gas content increased. As the tube diameter–thickness ratio increased, the wave velocity decreased. Taking data from a water injection well in Daqing Oilfield as an example, a two-layer water injection test platform was built to study the fluctuation of discharge and pressure at monitoring points in the tubular string. The experiment condition was that the depth of the injection well was 1400 m. It was verified by the experiments that the pressure and flow changes in the downhole and wellhead had good consistency during the transmission of transient flow waves. Comparing the experimental results with the numerical results, the errors of the wave velocity and wave amplitude were 0.69% and 3.85%, respectively, indicating the verification of the simulation model. This study provides a theoretical support for the transmission of transient flow wave signals in a water injection tubular string. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 2nd Volume)
Show Figures

Figure 1

19 pages, 13674 KiB  
Article
Drainage Research of Different Tubing Depth in the Horizontal Gas Well Based on Laboratory Experimental Investigation and a New Liquid-Carrying Model
by Xiuwu Wang, Wenmin Ma, Wei Luo and Ruiquan Liao
Energies 2023, 16(5), 2165; https://doi.org/10.3390/en16052165 - 23 Feb 2023
Viewed by 2549
Abstract
Since the structure of horizontal gas wells is more intricate than that of vertical wells, there is a lack of consistency in the form of liquid-carrying in different portions. Applying the commonly utilized liquid-carrying hypothesis of vertical gas wells into horizontal gas wells [...] Read more.
Since the structure of horizontal gas wells is more intricate than that of vertical wells, there is a lack of consistency in the form of liquid-carrying in different portions. Applying the commonly utilized liquid-carrying hypothesis of vertical gas wells into horizontal gas wells is therefore challenging. The maximum liquid volume that the gas flow could raise, the gas flow rate, and the maximum amount of energy that could be produced from a specific amount of gas flow should all be considered when determining the liquid volume that the gas flow could lift. This study is the first to integrate theoretical analysis with laboratory testing to analyze the gas–liquid flow law of drainage stability at varied tubing depths. The impact of gas drainage stability is then verified through the laboratory experiments. The novel model of various tubing depths, which is based on the energy of inflow and outflow from the horizontal well, is cleverly built. According to the study, the fluctuation is typically less when the tubing reaches the heel of the horizontal section than it is in the other sections, and the relative error of the new model, which is validated using laboratory tests, is typically less than 10%. The research showed that for horizontal gas wells with a normal structure, the gas flow and liquid discharge are most stable when the tubing reaches the heel of the horizontal section. Instead of depending exclusively on crucial liquid-carrying gas flow rates, the new model uses the combination of gas and liquid flow rates to make decisions concerning liquid loading and to quantify the liquid removal in real time, which is more realistic. The research illustrates how the study could provide a factual basis for assessing the capacity of horizontal gas wells to raise the liquid. Full article
(This article belongs to the Special Issue Advances in Petroleum Exploration and Production)
Show Figures

Figure 1

Back to TopTop