Dual-Parameter Prediction of Downhole Supercritical CO2 with Associated Gas Using Levenberg–Marquardt (LM) Neural Network
Abstract
:1. Introduction
2. CO2 Property Calculation
2.1. Comparison of CO2 Property-Calculation Methods
2.2. Downhole Working Fluid Property-Calculation Results
3. Simulation of Supercritical CO2 with Associated Gas
3.1. The Structure of Miniature Venturi Tube
3.2. Simulation Conditions
3.3. Analysis of Influencing Factors for LMF and C
3.3.1. Relationship between LMF and Various Flow Parameters
- The influence of LMF on Δp/p under constant pressure;
- The influence of LMF on Δp/Δploss under constant pressure;
- The influence of LMF on U under constant pressure;
3.3.2. Relationship between Discharge Coefficient C and Various Flow Parameters
- The influence of flow velocity U on the discharge coefficient C;
- The influence of LMF on the discharge coefficient C under constant pressure.
4. Dual-Parameter Prediction Method of Supercritical CO2 Associated Gas
4.1. LM Neural Network Method and Dual-Parameter Influence Factor Equations
4.2. Prediction Results and Error Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Storrs, K.; Lyhne, I.; Drustrup, R. A comprehensive framework for feasibility of CCUS deployment: A meta-review of literature on factors impacting CCUS deployment. Int. J. Greenh. Gas Control 2023, 125, 103878. [Google Scholar] [CrossRef]
- Wang, F.; Liao, G.; Su, C.; Wang, F.; Ma, J.; Yang, Y. Carbon emission reduction accounting method for a CCUS-EOR project. Pet. Explor. Dev. 2023, 50, 989–1000. [Google Scholar] [CrossRef]
- Aneesh, A.M.; Sam, A.A. A mini-review on cryogenic carbon capture technology by desublimation: Theoretical and modeling aspects. Front. Energy Res. 2023, 1, 1167099. [Google Scholar] [CrossRef]
- Luo, N.; Dou, B.; Zhang, H.; Yang, T.; Wu, K.; Wu, C.; Chen, H.; Xu, Y.; Li, W. Process design and energy analysis on synthesis of liquid fuels in an integrated CCUS system. Appl. Energy 2023, 351, 121903. [Google Scholar] [CrossRef]
- Yuan, S.; Ma, D.; Li, J.; Zhou, T.; Ji, Z.; Han, H. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization. Shiyou Kantan Yu Kaifa/Pet. Explor. Dev. 2022, 49, 828–834. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.-J.; Yu, Y. Status of CCUS research and governance by worldwide geological surveys and organizations. China Geol. 2023, 6, 536–540. [Google Scholar]
- Wellenstein, E.; Slagter, M. Strategies for CCS-chain development. A qualitative comparison of different infrastructure configurations. Energy Procedia 2011, 4, 2778–2784. [Google Scholar] [CrossRef]
- Svensson, R.; Odenberger, M.; Johnsson, F.; Strömberg, L. Transportation system for CO2—Application to carbon capture and storage. Energy Convers. Manag. 2004, 45, 2343–2353. [Google Scholar] [CrossRef]
- Nikolai, P.; Rabiyat, B.; Aslan, A.; Ilmutdin, A. Supercritical CO2: Properties and Technological Applications-A Review. J. Therm. Sci. 2019, 28, 394–430. [Google Scholar] [CrossRef]
- Xi, D.P.; Liu, M.Y.; Liu, X.T.; Fei, J.J.; Zang, J.G.; Huang, Y.P. Preliminary Analysis of CO2-SF6 Mixed Working Fluid Brayton Cycle Characteristics. At. Energy Sci. Technol. 2023, 57, 1691–1698. [Google Scholar]
- Span, R.; Wagner, W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Haroon, M.; Sheikh, N.A.; Ayub, A.; Tariq, R.; Sher, F.; Baheta, A.T.; Imran, M. Exergetic, economic and exergo-environmental analysis of bottoming power cycles operating with CO2-based binary mixture. Energies 2020, 13, 5080. [Google Scholar] [CrossRef]
- Haroon, M.; Ayub, A.; Sheikh, N.A.; Imran, M. Exergetic performance and comparative assessment of bottoming power cycles operating with carbon dioxide-based binary mixture as working fluid. Int. J. Energy Res. 2020, 44, 7957–7973. [Google Scholar] [CrossRef]
- Tu, Y.P.; Yuan, Z.K.; Luo, B.; Wang, C.; Zeng, X.; Dong, X. Calculation of Dew Point Temperature for Binary Mixed Gases SF6/N2 and SF6/CO2 under Air Pressures of 0.4~0.8 MPa. High Volt. Eng. 2015, 41, 1446–1450. [Google Scholar]
- Yan, H.J.; Liu, H.; Li, J.H. Study on PVT Properties of Supercritical Carbon Dioxide. Guangzhou Chem. Ind. 2015, 43, 33–35. [Google Scholar]
- Mazzoccoli, M.; Bosio, B.; Arato, E.; Brandani, S. Comparison of equations-of-state with P-ρ-T experimental data of binary mixtures rich in CO2 under the conditions of pipeline transport. J. Supercrit. Fluids 2014, 95, 474–490. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, X.D. Research on Phase State and Physical Properties Calculation Models of Gas, Liquid, and Supercritical CO2. J. China Univ. Pet. Shengli Coll. 2012, 26, 11–14. [Google Scholar]
- Peng, Z.R.; Zheng, Q.Y.; Zhang, X.R. Study on Rapid Calculation Method of Supercritical CO2 Properties in a Large Operating Range. Energy Conserv. Environ. Prot. 2023, 1, 39–41. [Google Scholar]
- Xie, R.; Yu, J.Y. Study on Supercritical CO2 Brayton Cycle Performance Based on Aspen. J. Eng. Thermophys. 2021, 42, 2544–2552. [Google Scholar]
- Sun, B.J.; Sun, X.H.; Wang, Z.Y.; Wang, J.T.; Liu, S.J.; Xia, Q.; Cai, D.J. Variation Law of Flow Parameters Inside the Wellbore in Supercritical CO2 Drilling. J. China Univ. Pet. (Ed. Nat. Sci.) 2016, 40, 88–95. [Google Scholar]
- Kunz, O.; Wagner, W. The GERG-2008 wide range equation of state for natural gases and other mixtures: An expansion of GERG-2004. J. Chem. Eng. Data 2012, 57, 3032–3091. [Google Scholar] [CrossRef]
- ISO 20765–2:2015; Natural Gas—Calculation of Thermodynamic Properties—Part 2: Single-Phase Properties (Gas, Liquid, and Dense Fluid) for Extended Ranges of Application. Available online: https://www.iso.org/standard/59222.html (accessed on 25 May 2022).
- Farzaneh-Gord, M.; Mohseni-Gharyehsafa, B.; Toikka, A.; Zvereva, I. Sensitivity of natural gas flow measurement to AGA8 or GERG2008 equation of state utilization. J. Nat. Gas Sci. Eng. 2018, 57, 305–321. [Google Scholar] [CrossRef]
- Guerrero-Za’rate, D.; Estrada-Baltazar, A.; Iglesias-Silva, G.A. Calculation of critical points for natural gas mixtures with the GERG-2008 equation of state. Fluid Phase Equilibria 2017, 437, 69–82. [Google Scholar] [CrossRef]
- Varzandeh, F.; Stenby, E.H.; Yan, W. Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems. Fluid Phase Equilibria 2017, 434, 21–43. [Google Scholar] [CrossRef]
- Wang, X. Research on Supercritical CO2 Extraction Process. Liaoning Chem. Ind. 2000, 29, 191–193. [Google Scholar]
- Guo, N.P. Extraction of Bitter Melon Seed Oil by Supercritical CO2 Extraction Method and Its GC-MS Analysis. Guangdong Agric. Sci. 2013, 40, 77–79. [Google Scholar]
- Sun, L.P. Supercritical Fluid Extraction Technology in Modern Food Industry. Chem. Equip. Technol. 2001, 22, 18–29. [Google Scholar]
- Shao, R.; Qian, R.Y.; Qin, J.P.; Yun, Z.; Shi, M.R. Application of Supercritical CO2 Extraction Technology in the Separation of Oils and Fatty Acids. China Oils Fats 2001, 26, 9–12. [Google Scholar]
- Nie, L.H.; Zhou, R.J.; Peng, H.S.; Ning, Z.X. Research on the Application of Supercritical Carbon Dioxide. For. Chem. Ind. Newsl. 2003, 37, 29–34. [Google Scholar]
- Arunajatesan, V.; Subramaniam, B.; Hutchenson, K.W.; Herkes, F.E. Fixed bed hydrogenation of organic com pounds in supercritical carbon dioxide. Chem. Eng. Sci. 2001, 56, 1363–1369. [Google Scholar] [CrossRef]
- Yang, J.L.; Ma, Y.T.; Li, M.X. Analysis of Supercritical CO2 Fluid and Its Heat Transfer Characteristics. Fluid Mach. 2013, 41, 66–71. [Google Scholar]
- Van der Kraan, M.; Peeters, M.M.W.; Cid, M.F.; Woerlee, G.F.; Veugelers, W.J.T.; Witkamp, G.J. The influence of variable physical properties and buoyancy on heat exchanger design for near- and supercritical conditions. J. Supercrit. Fluids 2005, 34, 99–105. [Google Scholar] [CrossRef]
- Kurganov, V.A.; Zeigarnik, Y.A.; Maslakova, I.V. Heat transfer and hydraulic resistance of supercritical-pressure coolants. Part I: Specifics of thermophysical properties of supercritical pressure fluids and turbulent heat transfer under heating conditions in round tubes (state of the art). Int. J. Heat Mass Transf. 2012, 55, 3061–3075. [Google Scholar] [CrossRef]
- Wu, R.N.; Wei, B.; Zou, P.; Zhang, X.; Shang, J.; Gao, K. The Influence of Supercritical CO2 on the Physical Properties of Ordinary Heavy Oil and Extra-Heavy Oil. Oilfield Chem. 2018, 35, 440–446. [Google Scholar]
- Cubas, J.M.; Stel, H.; Neto, M.A.M.; Da Silva, L.C.; Romero, G.A.; Morales, R.E. Numerical simulation of the flow of supercritical CO2 in a multistage centrifugal pump. In Proceedings of the SPE Brazil Flow Assurance Technology Congress, Rio de Janeiro, Brazil, 15–18 November 2022. [Google Scholar]
- Harbert, W.; Purcell, C.; Mur, A. Seismic reflection data processing of 3D surveys over an EOR CO2 injection. Energy Procedia 2011, 4, 3684–3690. [Google Scholar] [CrossRef]
- Bouzgarrou, S. CO2 storage in porous media unsteady thermosolutal natural convection—Application in deep saline aquifer reservoirs. Int. J. Greenh. Gas Control 2023, 125, 103890. [Google Scholar] [CrossRef]
- Belhocine, A.; Stojanovic, N.; Abdullah, O.I. Numerical predictions of laminar flow and free convection heat transfer from an isothermal vertical flat plate. Arch. Mech. Eng. 2022, 69, 749–773. [Google Scholar] [CrossRef]
- Xin, S.; Hugh, R.; Halim, G. Dynamic modelling of print circuit heat exchanger in 10MWe supercritical CO2 recompression Brayton cycle. AIP Conf. Proc. 2023, 2815, 030021. [Google Scholar]
- Tan, J.; Wang, Z.; Chen, S.; Hu, H. Progress and Outlook of Supercritical CO2—Heavy Oil Viscosity Reduction Technology: A Minireview. Energy Fuels 2023, 37, 11567–11583. [Google Scholar] [CrossRef]
- Marcia, L.H.; Lemmon, E.W.; Bell, I.H.; McLinden, M.O. The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids. Ind. Eng. Chem. Res. 2022, 61, 15449–15472. [Google Scholar]
- Xu, Y.; Jia, S.-J.; Yuan, C. A Study of Downhole Gas Injection Flow Measurement Method. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Kuala Lumpur, Malaysia, 22–25 May 2023. [Google Scholar]
- Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016; pp. 97–117. [Google Scholar]
- Kohonen, T. An introduction to neural computing. Neural Netw. 1988, 1, 3–16. [Google Scholar] [CrossRef]
- Kevin, I.; Emmanuel, O.E.; Anawe, P.A.L.; Okolie, S.T.A.; Onisobuana, A. Flow Assurance Operational Problems in Natual Gas Pipeline Transportation Networks in Nigeria and its Modeling Using OLGA and PVsim Simulators. Pet. Coal 2018, 60, 79–98. [Google Scholar]
- Chen, Y.; Yan, T.; Sun, X.F.; Qv, J.; Yao, D. Study on influence factors and rules of gas hydrate phase equilibrium based on multiflash software. J. Chengdu Univ. Technol. 2020, 47, 358–366. [Google Scholar]
- ISO 5167-4:2022; Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full. ISO: Geneva, Switzerland, 2022.
- Zhang, K.; Zhang, Z.; Han, Y.N.; Gu, Y.G.; Qiu, Q.G. Artificial Neural Network Modeling of Steam Ejectors. Fluid Mach. 2023, 51, 99–104. [Google Scholar] [CrossRef]
T °C | 116.85 | 126.85 | 136.85 | 146.85 | |
---|---|---|---|---|---|
Calculation Methods | |||||
R. and W. | ρ | 596.59 | 561.50 | 529.46 | 500.50 |
Viscosity | 4.79 × 10−5 | 4.51 × 10−5 | 4.27 × 10−5 | 4.08 × 10−5 | |
PVTsim | ρ | 578.75 | 544.57 | 513.91 | 486.50 |
RE | −2.99% | −3.02% | −2.94% | −2.80% | |
Viscosity | 5.61 × 10−5 | 5.25 × 10−5 | 4.95 × 10−5 | 4.70 × 10−5 | |
RE | 17.12% | 16.41% | 15.93% | 15.20% | |
Multiflash | ρ | 571.28 | 537.99 | 508.08 | 481.29 |
RE | −4.24% | −4.19% | −4.04% | −3.84% | |
Viscosity | 4.85 × 10−5 | 4.56 × 10−5 | 4.33 × 10−5 | 4.14 × 10−5 | |
RE | 1.25% | 1.11% | 1.31% | 1.37% |
T °C | 116.85 | 126.85 | 136.85 | 146.85 | |
---|---|---|---|---|---|
Calculation Methods | |||||
REFPROP | ρ | 311.3 | 298.42 | 286.66 | 275.91 |
Viscosity | 3.06 × 10−5 | 3.01 × 10−5 | 2.97 × 10−5 | 2.94 × 10−5 | |
PVTsim | ρ | 313.08 | 300.21 | 288.46 | 277.71 |
RE | 0.57% | 0.60% | 0.63% | 0.65% | |
Viscosity | 3.29 × 10−5 | 3.23 × 10−5 | 3.17*10−5 | 3.13 × 10−5 | |
RE | 7.71% | 7.16% | 6.67% | 6.24% | |
Multiflash | ρ | 303.80 | 291.37 | 280.03 | 269.66 |
RE | −2.41% | −2.36% | −2.31% | −2.26% | |
Viscosity | 3.10 × 10−5 | 3.04 × 10−5 | 3.00 × 10−5 | 2.96 × 10−5 | |
RE | 1.21% | 0.96% | 0.81% | 0.75% |
T °C | 120 | 130 | 140 | 150 | |
---|---|---|---|---|---|
P MPa | |||||
30 | ρ | 585.22 | 551.07 | 520.01 | 491.99 |
Viscosity | 4.69 × 10−5 | 4.43 × 10−5 | 4.21 × 10−5 | 4.03 × 10−5 | |
40 | ρ | 692.87 | 662.75 | 634.12 | 607.11 |
Viscosity | 5.84 × 10−5 | 5.54 × 10−5 | 5.27 × 10−5 | 5.03 × 10−5 | |
50 | ρ | 763.68 | 737.19 | 711.57 | 686.94 |
Viscosity | 6.80 × 10−5 | 6.46 × 10−5 | 6.16 × 10−5 | 5.90 × 10−5 |
T °C | 120 | 130 | 140 | 150 | |
---|---|---|---|---|---|
P MPa | |||||
30 | ρ | 307.11 | 294.6 | 283.17 | 272.71 |
Viscosity | 3.04 × 10−5 | 3.00 × 10−5 | 2.96 × 10−5 | 2.93 × 10−5 | |
40 | ρ | 379.28 | 365.93 | 353.44 | 341.77 |
Viscosity | 3.61 × 10−5 | 3.54 × 10−5 | 3.47 × 10−5 | 3.42 × 10−5 | |
50 | ρ | 433.11 | 420.05 | 407.64 | 395.86 |
Viscosity | 4.07 × 10−5 | 3.97 × 10−5 | 3.89 × 10−5 | 3.82 × 10−5 |
P MPa | T °C | F × 104 Nm3/d | U m/s | CO2 mol% | LMF % | LVF % | Re × 106 | |
---|---|---|---|---|---|---|---|---|
30 | 120 | 2.5~13.0 | 5.5~38.8 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.0~85.9 | 0.8~5.4 | 4.1 |
130 | 2.5~13.0 | 5.8~40.1 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.2~86.3 | 0.9~5.6 | 4.0 | |
140 | 2.5~13.0 | 6.1~41.4 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.4~86.6 | 0.9~5.8 | 3.8 | |
150 | 2.5~13.0 | 6.5~42.7 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.5~86.9 | 0.9~5.9 | 3.7 | |
40 | 120 | 2.5~13.0 | 4.6~31.2 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.3~86.5 | 0.7~4.2 | 3.86 |
130 | 2.5~13.0 | 4.8~32.2 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.4~86.7 | 0.7~4.4 | 3.81 | |
140 | 2.5~13.0 | 5.0~33.1 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.5~86.9 | 0.8~4.6 | 3.75 | |
150 | 2.5~13.0 | 5.2~34.1 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.7~87.0 | 0.9~4.9 | 3.69 | |
50 | 120 | 2.5~13.0 | 4.1~27.0 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.7~87.0 | 0.7~3.9 | 3.69 |
130 | 2.5~13.0 | 4.3~27.8 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.7~87.1 | 0.7~4.0 | 3.65 | |
140 | 2.5~13.0 | 4.4~28.5 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.8~87.3 | 0.7~4.2 | 3.62 | |
150 | 2.5~13.0 | 4.6~29.2 | 10, 20, 30, 40, 50, 60, 70, 80, 90 | 23.4, 40.7, 54.1, 64.7, 73.3, 80.5, 86.5, 91.7, 96.1 | 7.9~87.4 | 0.7~4.3 | 3.58 |
Data Set | Predicting LMF | Predicting m | ||||
---|---|---|---|---|---|---|
ME | AE | RSME | ME | AE | RSME | |
Training Set | 0.88% | 0.07% | 0.08% | 1.46% | 0.06% | 0.06% |
Validation Set | 2.29% | 0.00% | 0.14% | 1.04% | 0.03% | 0.13% |
Test Set | 6.45% | 0.44% | 0.36% | 2.62% | 0.22% | 0.45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, D.; Kou, L.; Zheng, C.; Wang, S.; Jia, S.; Yuan, C. Dual-Parameter Prediction of Downhole Supercritical CO2 with Associated Gas Using Levenberg–Marquardt (LM) Neural Network. Fluids 2024, 9, 177. https://doi.org/10.3390/fluids9080177
Xue D, Kou L, Zheng C, Wang S, Jia S, Yuan C. Dual-Parameter Prediction of Downhole Supercritical CO2 with Associated Gas Using Levenberg–Marquardt (LM) Neural Network. Fluids. 2024; 9(8):177. https://doi.org/10.3390/fluids9080177
Chicago/Turabian StyleXue, Dedong, Lei Kou, Chunfeng Zheng, Sheng Wang, Shijiao Jia, and Chao Yuan. 2024. "Dual-Parameter Prediction of Downhole Supercritical CO2 with Associated Gas Using Levenberg–Marquardt (LM) Neural Network" Fluids 9, no. 8: 177. https://doi.org/10.3390/fluids9080177
APA StyleXue, D., Kou, L., Zheng, C., Wang, S., Jia, S., & Yuan, C. (2024). Dual-Parameter Prediction of Downhole Supercritical CO2 with Associated Gas Using Levenberg–Marquardt (LM) Neural Network. Fluids, 9(8), 177. https://doi.org/10.3390/fluids9080177