Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,357)

Search Parameters:
Keywords = gas composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1847 KiB  
Article
Application of ANN in the Performance Evaluation of Composite Recycled Mortar
by Shichao Zhao, Yaohua Liu, Geng Xu, Hao Zhang, Feng Liu and Binglei Wang
Buildings 2025, 15(15), 2752; https://doi.org/10.3390/buildings15152752 (registering DOI) - 4 Aug 2025
Abstract
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick [...] Read more.
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick powder (RCBS), recycled concrete powder (RCBP), and recycled gypsum powder (RCGP)—we systematically investigated the effects of RP type, replacement rate, and curing period on mortar UCS. The core objective and novelty lie in establishing and comparing three artificial intelligence models for high-precision UCS prediction. Furthermore, leveraging GA-BP’s functional extremum optimization theory, we determined the optimal UCS alongside its corresponding mix proportion and curing scheme, with experimental validation of the solution reliability. Key findings include the following: (1) Increasing total RP content significantly reduces mortar UCS; the maximum UCS is achieved with a 1:1 blend ratio of RCBP:RCGP, while a 20% RCBS replacement rate and extended curing periods markedly enhance strength. (2) Among the prediction models, GA-BP demonstrates superior performance, significantly outperforming BP models with both single and double hidden layer. (3) The functional extremum optimization results exhibit high consistency with experimental validation, showing a relative error below 10%, confirming the method’s effectiveness and engineering applicability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
43 pages, 2199 KiB  
Review
Photochemical Haze Formation on Titan and Uranus: A Comparative Review
by David Dubois
Int. J. Mol. Sci. 2025, 26(15), 7531; https://doi.org/10.3390/ijms26157531 (registering DOI) - 4 Aug 2025
Abstract
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional [...] Read more.
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional and seasonal variability, creating environments favorable for the production of complex organic molecules under low-temperature conditions. Among them, Uranus—the smallest of the ice giants—has, since Voyager 2, emerged as a compelling target for future exploration due to unanswered questions regarding the composition and structure of its atmosphere, as well as its ring system and diverse icy moon population (which includes four possible ocean worlds). Titan, as the only moon to harbor a dense atmosphere, presents some of the most complex and unique organics found in the solar system. Central to the production of these organics are chemical processes driven by low-energy photons and electrons (<50 eV), which initiate reaction pathways leading to the formation of organic species and gas phase precursors to high-molecular-weight compounds, including aerosols. These aerosols, in turn, remain susceptible to further processing by low-energy UV radiation as they are transported from the upper atmosphere to the lower stratosphere and troposphere where condensation occurs. In this review, I aim to summarize the current understanding of low-energy (<50 eV) photon- and electron-induced chemistry, drawing on decades of insights from studies of Titan, with the objective of evaluating the relevance and extent of these processes on Uranus in anticipation of future observational and in situ exploration. Full article
(This article belongs to the Special Issue Chemistry Triggered by Low-Energy Particles)
30 pages, 966 KiB  
Review
A Review on Anaerobic Digestate as a Biofertilizer: Characteristics, Production, and Environmental Impacts from a Life Cycle Assessment Perspective
by Carmen Martín-Sanz-Garrido, Marta Revuelta-Aramburu, Ana María Santos-Montes and Carlos Morales-Polo
Appl. Sci. 2025, 15(15), 8635; https://doi.org/10.3390/app15158635 (registering DOI) - 4 Aug 2025
Abstract
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits [...] Read more.
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits depend on feedstock characteristics, treatment processes, and application methods. This study reviews digestate composition, treatment technologies, regulatory frameworks, and environmental impact assessment through Life Cycle Assessment. It analyzes the influence of functional unit selection and system boundary definitions on Life Cycle Assessment outcomes and the effects of feedstock selection, pretreatment, and post-processing on its environmental footprint and fertilization efficiency. A review of 28 JCR-indexed articles (2018–present) analyzed LCA studies on digestate, focusing on methodologies, system boundaries, and impact categories. The findings indicate that Life Cycle Assessment methodologies vary widely, complicating direct comparisons. Transportation distances, nutrient stability, and post-processing strategies significantly impact greenhouse gas emissions and nutrient retention efficiency. Techniques like solid–liquid separation and composting enhance digestate stability and agronomic performance. Digestate remains a promising alternative to synthetic fertilizers despite market uncertainty and regulatory inconsistencies. Standardized Life Cycle Assessment methodologies and policy incentives are needed to promote its adoption as a sustainable soil amendment within circular economy frameworks. Full article
(This article belongs to the Special Issue Novel Research on By-Products and Treatment of Waste)
24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 (registering DOI) - 4 Aug 2025
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

16 pages, 3226 KiB  
Article
Sustainable Agronomical Practices Affect Essential Oil Composition of Tanacetum balsamita L.
by Martina Grattacaso, Alessandra Bonetti, Sara Di Lonardo and Luigi Paolo D’Acqui
Plants 2025, 14(15), 2406; https://doi.org/10.3390/plants14152406 - 3 Aug 2025
Abstract
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination [...] Read more.
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination (bioinoculants + compost), and a control. At each harvest, essential oil was extracted from fresh leaves via stem-flow distillation and analyzed using gas chromatography coupled with single quadrupole mass spectrometry. Twenty to twenty-four compounds were identified. Based on the dominant terpene derivative, the results indicated that Tanacetum balsamita L. cultivated in Italy belongs to “camphor” chemotype, a pharmacologically active compound known for its antimicrobial, anti-inflammatory, and analgesic properties. Moreover, three compounds, α-, β-phellandrene and myrtenol, were identified as typical of Tanacetum balsamita L. cultivated in Italy. Treatment effects were significant for some compounds (camphor, borneol, terpinen-4-ol, α-terpineol, dehydro sabinene ketone, and 3-thujanol), and the interaction between treatment and year was significant for a few compounds (borneol, terpinen-4-ol, dehydro sabinene ketone, 1,8-cineol, and 3-thujanol). These results emphasize the need to account for seasonal variation and underline the necessity of a deeper understanding of how experimental factors interact with them, especially in long-term essential oil studies. Full article
(This article belongs to the Special Issue Chemical Analysis, Bioactivity, and Application of Essential Oils)
Show Figures

Figure 1

16 pages, 6744 KiB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 107
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

25 pages, 7708 KiB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 (registering DOI) - 1 Aug 2025
Viewed by 200
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

13 pages, 2107 KiB  
Article
The Impact of Harvest Season on Oolong Tea Aroma Profile and Quality
by Chao Zheng, Shuilian Gao, Xiaxia Wang, Zhenbiao Yang, Junling Zhou and Ying Liu
Plants 2025, 14(15), 2378; https://doi.org/10.3390/plants14152378 - 1 Aug 2025
Viewed by 86
Abstract
The impact of seasonality on the aroma quality of tea has been documented in various tea types, but not specifically in oolong tea. This study is the first to explore the complex relationships between seasonality, volatile compounds, and aroma quality in oolong tea. [...] Read more.
The impact of seasonality on the aroma quality of tea has been documented in various tea types, but not specifically in oolong tea. This study is the first to explore the complex relationships between seasonality, volatile compounds, and aroma quality in oolong tea. Using Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry (HS-SPME-GC-MS)-based untargeted metabolomics, we analyzed 266 samples of Tieguanyin oolong tea. The data identified linalool, linalool oxides (trans-linalool oxide (furanoid) and trans-linalool oxide (pyranoid)), and their metabolites (diendiol I; hotrienol) as key seasonal discriminants. Four out of the top ten key differential compounds for distinguishing aroma scores were metabolites from fatty acid degradation, namely trans-3-hexenyl butyrate, trans-2-hexenyl hexanoate, hexyl hexanoate, and hexyl 2-methyl butyrate. Approximately one-fifth of the seasonal discriminant volatile compounds were significant in influencing aroma quality. Overall, the impact of seasonality on the aroma quality of finished Tieguanyin oolong tea is marginal. These findings enhance our understanding of the interplay between seasonal variations, volatile composition, and aroma quality in oolong tea. Full article
(This article belongs to the Special Issue Production, Quality and Function of Tea)
Show Figures

Figure 1

30 pages, 4423 KiB  
Review
Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis
by Gbolahan Alagbe, Klara Urbanova and Olajumoke Alagbe
Processes 2025, 13(8), 2444; https://doi.org/10.3390/pr13082444 - 1 Aug 2025
Viewed by 258
Abstract
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and [...] Read more.
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and kola nuts. It emphasizes the fatty acid profiles, noting that palmitic acid (C16:0) is the predominant saturated fatty acid, while oleic acid (C18:1) and linoleic acid (C18:2) are the most abundant monounsaturated and polyunsaturated fatty acids, respectively. The review also details various analytical techniques employed for extracting and characterizing bioactive compounds, which are crucial for assessing nut quality and health benefits. Methods such as Soxhlet extraction, solid-phase microextraction (SPME), supercritical fluid extraction (SFE), gas chromatography (GC-FID and GC-MS), and high-performance liquid chromatography (HPLC) are highlighted. Furthermore, it discusses scientific evidence linking nut consumption to antioxidant and anti-inflammatory properties, improved cardiovascular health, and a reduced risk of type 2 diabetes, establishing nuts as important components in a healthy diet. This review underscores the role of nuts as functional foods and calls for standardized methodologies in future lipidomic and volatilomic studies. Full article
Show Figures

Figure 1

8 pages, 890 KiB  
Communication
Single-Cell Protein Using an Indigenously Isolated Methanotroph Methylomagnum ishizawai, Using Biogas
by Jyoti A. Mohite, Kajal Pardhi and Monali C. Rahalkar
Microbiol. Res. 2025, 16(8), 171; https://doi.org/10.3390/microbiolres16080171 - 1 Aug 2025
Viewed by 145
Abstract
The use of methane as a carbon source for producing bacterial single-cell protein (SCP) has been one of the most interesting developments in recent years. Most of these upcoming industries are using a methanotroph, Methylococcus capsulatus Bath, for SCP production using natural gas [...] Read more.
The use of methane as a carbon source for producing bacterial single-cell protein (SCP) has been one of the most interesting developments in recent years. Most of these upcoming industries are using a methanotroph, Methylococcus capsulatus Bath, for SCP production using natural gas as the substrate. In the present study, we have explored the possibility of using an indigenously isolated methanotroph from a rice field in India, Methylomagnum ishizawai strain KRF4, for producing SCP from biogas [derived from cow dung]. The process was eco-friendly, required minimal instruments and chemicals, and was carried out under semi-sterile conditions in a tabletop fish tank. As the name suggests, Methylomagnum is a genus of large methanotrophs, and the strain KRF4 had elliptical to rectangular size and dimensions of ~4–5 µm × 1–2 µm. In static cultures, when biogas and air were supplied in the upper part of the growing tank, the culture grew as a thick pellicle/biofilm that could be easily scooped. The grown culture was mostly pure, from the microscopic observations where the large size of the cells, with rectangular-shaped cells and dark granules, could easily help identify any smaller contaminants. Additionally, the large cell size could be advantageous for separating biomass during downstream processing. The amino acid composition of the lyophilized biomass was analyzed using HPLC, and it was seen that the amino acid composition was comparable to commercial fish meal, soymeal, Pruteen, and the methanotroph-derived SCP-UniProtein®. The only difference was that a slightly lower percentage of lysine, tryptophan, and methionine was observed in Methylomagnum-derived SCP. Methylomagnum ishizawai could be looked at as an alternative for SCP derived from methane or biogas due to the comparable SCP produced, on the qualitative level. Further intensive research is needed to develop a continuous, sustainable, and economical process to maximize biomass production and downstream processing. Full article
Show Figures

Figure 1

15 pages, 4578 KiB  
Article
Improving Balance Between Oxygen Permeability and Stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Through High-Entropy Design
by Yongfan Zhu, Meng Wu, Guangru Zhang, Zhengkun Liu and Gongping Liu
Membranes 2025, 15(8), 232; https://doi.org/10.3390/membranes15080232 - 1 Aug 2025
Viewed by 172
Abstract
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of [...] Read more.
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of a high-entropy perovskite, Ba0.5Sr0.5Co0.71Fe0.2Ta0.03Ni0.03Zr0.03O3−δ. The crystal structure, microstructure, and elemental composition of the material were systematically characterized and analyzed. Theoretical analysis and experimental characterization confirm that the material exhibits a stable single-phase high-entropy perovskite oxide structure. Under He as the sweep gas, the membrane achieved an oxygen permeation flux of 1.28 mL·cm−2·min−1 and operated stably for over 100 h (1 mm thick, 900 °C). In a 20% CO2/He atmosphere, the flux remained above 0.92 mL·cm−2·min−1 for over 100 h, demonstrating good CO2 tolerance. Notably, when the sweep gas is returned to the pure He atmosphere, the oxygen permeation flux fully recovers to 1.28 mL·cm−2·min−1, with no evidence of leakage. These findings indicate that the proposed B-site doping strategy can break the trade-off between oxygen permeability and structural stability in conventional perovskite membranes. This advancement supports the industrialization of oxygen permeable membranes and offers valuable theoretical guidance for the design of high-performance perovskite materials. Full article
Show Figures

Figure 1

17 pages, 4098 KiB  
Article
The Influence of the Annealing Process on the Mechanical Properties of Chromium Nitride Thin Films
by Elena Chițanu, Iulian Iordache, Mirela Maria Codescu, Virgil Emanuel Marinescu, Gabriela Beatrice Sbârcea, Delia Pătroi, Leila Zevri and Alexandra Cristiana Nadolu
Materials 2025, 18(15), 3605; https://doi.org/10.3390/ma18153605 (registering DOI) - 31 Jul 2025
Viewed by 166
Abstract
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent [...] Read more.
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent wear resistance, and strong corrosion resistance. In this study, a fabrication process for CrN-based thin films was developed by combining reactive direct current magnetron sputtering (dcMS) with post-deposition annealing in air. CrN coatings were deposited by reactive dcMS using different argon-nitrogen (Ar:N2) gas ratios (4:1, 3:1, 2:1, and 1:1), followed by annealing at 550 °C for 1.5 h in ambient air. XRD and EDS analysis revealed that this treatment results in the formation of a composite phase comprising CrN and Cr2O3. The resulting coating exhibited favorable mechanical and tribological properties, including a maximum hardness of 12 GPa, a low wear coefficient of 0.254 and a specific wear rate of 7.05 × 10−6 mm3/N·m, making it a strong candidate for advanced protective coating applications. Full article
Show Figures

Figure 1

23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 240
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 (registering DOI) - 30 Jul 2025
Viewed by 205
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

13 pages, 8060 KiB  
Article
Microstructural, Mechanical, and Thermal Properties of Textured Si3N4/BN Composite Ceramics Prepared Using Two-Step Sintering
by Dexiang Gong, Yi Zhou, Yunwei Shi and Qianglong He
Materials 2025, 18(15), 3573; https://doi.org/10.3390/ma18153573 - 30 Jul 2025
Viewed by 212
Abstract
Textured Si3N4/BN composite ceramics were successfully fabricated using two-step sintering, combining pseudo-hot isostatic pressing (PHIP) and gas pressure sintering. The grain size of h-BN platelets had a significant influence on densification and mechanical and thermal properties. With an increase [...] Read more.
Textured Si3N4/BN composite ceramics were successfully fabricated using two-step sintering, combining pseudo-hot isostatic pressing (PHIP) and gas pressure sintering. The grain size of h-BN platelets had a significant influence on densification and mechanical and thermal properties. With an increase in h-BN grain size, the volume density of the composite ceramics gradually decreased, while flexural strength gradually increased. Meanwhile, larger h-BN platelets were more likely to trigger toughening mechanisms like large-angle deflection and greatly increase fracture toughness. Through proper selection of h-BN grain size, textured ceramics, with the addition of h-BN platelets of 1–2 μm, showed high thermal conductivity (∼92 W∙m−1∙K−1) and reliable mechanical properties (∼540 MPa, ∼7.5 MPa∙m1/2, ∼11.1 GPa). Therefore, texture control is an effective means of improving the overall performance of ceramic materials. Novel textured composite ceramics thus have great potential in large-scale fabrication and directional heat dissipation applications. Full article
Show Figures

Graphical abstract

Back to TopTop