Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = gapCp gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4443 KiB  
Communication
Population Genetic Structure of Citrus Tatter Leaf Virus in Zhejiang Province, China
by Lianming Lu, Shunmin Liu, Zhanxu Pu, Baoju An, Danchao Du, Xiurong Hu, Jia Lv and Zhendong Huang
Viruses 2025, 17(7), 909; https://doi.org/10.3390/v17070909 - 27 Jun 2025
Viewed by 312
Abstract
Citrus tatter leaf virus (CTLV), a major pathogen threatening global citrus production, remains poorly characterized in terms of its regional genetic diversity and evolutionary dynamics. To address this gap, we conducted a comprehensive population genetic analysis of CTLV in Zhejiang Province, China, using [...] Read more.
Citrus tatter leaf virus (CTLV), a major pathogen threatening global citrus production, remains poorly characterized in terms of its regional genetic diversity and evolutionary dynamics. To address this gap, we conducted a comprehensive population genetic analysis of CTLV in Zhejiang Province, China, using 181 coat protein (CP) gene sequences—the largest regional CTLV dataset to date. Our analyses uncovered substantial genetic diversity among Zhejiang CTLV isolates. Phylogenetic reconstructions revealed that these isolates span multiple clades, closely aligning with global CTLV population structures, indicative of recurrent viral introductions and extensive regional circulation. Population structure analyses revealed significant genetic differentiation driven by geography, with Jinhua isolates forming a distinct cluster, and by host species, with Citrus reticulata ‘Criton’ isolates diverging from those in other citrus varieties. Selection pressure analysis indicated that while most CP polymorphic sites were under purifying selection, several clade-specific codons showed signatures of positive selection. These results offer new insights into CTLV’s population structure and localized evolutionary trajectories, enhancing our understanding of its regional adaptation and informing strategies for disease management and control of this globally significant pathogen. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

19 pages, 5554 KiB  
Article
GAPDH Gene Family in Populus deltoides: Genome-Wide Identification, Structural Analysis, and Expression Analysis Under Drought Stress
by Hyemin Lim, Michael Immanuel Jesse Denison, Sathishkumar Natarajan, Kyungmi Lee, Changyoung Oh and Danbe Park
Int. J. Mol. Sci. 2025, 26(1), 335; https://doi.org/10.3390/ijms26010335 - 2 Jan 2025
Viewed by 1360
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. [...] Read more.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown. Identification and systematic analysis of the GAPDH family in Populus deltoides (P. deltoides) have not been performed. Bioinformatics methods were used to analyze the physicochemical characteristics, structural characteristics, phylogenetic relationships, gene structure, motif analysis, and expression of GAPDH gene family members in P. deltoides. We identified 12 GAPDH members in P. deltoides. Five types of PdGAPDH were identified: GAPA, GAPB, GAPC1, GAPC2, and GAPCp. PdGAPDH genes were differentially expressed in leaves, stems, and roots of 1-year-old poplar seedlings. PdGAPDH gene transcripts showed that PdGAPDH2 and PdGAPDH4 were highly expressed in the leaves. In the roots, seven genes—PdGAPDH01, PdGAPDH05, PdGAPDH06, PdGAPDH07, PdGAPDH08, PdGAPDH09, and PdGAPDH12—showed significantly high expression levels. PdGAPDH02, PdGAPDH03, PdGAPDH04, and PdGAPDH11 showed decreased expression under drought conditions and recovered after re-watering. These results lay the foundation for further studies on the drought stress mechanisms of P. deltoides. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

25 pages, 12175 KiB  
Article
Analysis of Stress Response Genes in Microtuberization of Potato Solanum tuberosum L.: Contributions to Osmotic and Combined Abiotic Stress Tolerance
by Lisset Herrera-Isidron, Braulio Uribe-Lopez, Aaron Barraza, José Luis Cabrera-Ponce and Eliana Valencia-Lozano
Plants 2024, 13(21), 2996; https://doi.org/10.3390/plants13212996 - 26 Oct 2024
Cited by 2 | Viewed by 2102
Abstract
Wild Solanum species have contributed many introgressed genes during domestication into current cultivated potatoes, enhancing their biotic and abiotic stress resistance and facilitating global expansion. Abiotic stress negatively impacts potato physiology and productivity. Understanding the molecular mechanisms regulating tuber development may help solve [...] Read more.
Wild Solanum species have contributed many introgressed genes during domestication into current cultivated potatoes, enhancing their biotic and abiotic stress resistance and facilitating global expansion. Abiotic stress negatively impacts potato physiology and productivity. Understanding the molecular mechanisms regulating tuber development may help solve this global problem. We made a transcriptomic analysis of potato microtuberization under darkness, cytokinins, and osmotic stress conditions. A protein–protein interaction (PPI) network analysis identified 404 genes with high confidence. These genes were involved in important processes like oxidative stress, carbon metabolism, sterol biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, and nucleosome assembly. From this network, we selected nine ancestral genes along with eight additional stress-related genes. We used qPCR to analyze the expression of the selected genes under osmotic, heat–osmotic, cold–osmotic, salt–osmotic, and combined-stress conditions. The principal component analysis (PCA) revealed that 60.61% of the genes analyzed were associated with osmotic, cold–osmotic, and heat–osmotic stress. Seven out of ten introgression/domestication genes showed the highest variance in the analysis. The genes H3.2 and GAPCP1 were involved in osmotic, cold–osmotic, and heat–osmotic stress. Under combined-all stress, TPI and RPL4 were significant, while in salt–osmotic stress conditions, ENO1, HSP70-8, and PER were significant. This indicates the importance of ancestral genes for potato survival during evolution. The targeted manipulation of these genes could improve combined-stress tolerance in potatoes, providing a genetic basis for enhancing crop resilience. Full article
(This article belongs to the Special Issue Potato Physiology, Genetics and Breeding)
Show Figures

Figure 1

8 pages, 500 KiB  
Brief Report
ddPCR for the Detection and Absolute Quantification of Oropouche Virus
by Elena Pomari, Andrea Matucci, Silvia Accordini, Rebeca Passarelli Mantovani, Natasha Gianesini, Antonio Mori and Concetta Castilletti
Viruses 2024, 16(9), 1426; https://doi.org/10.3390/v16091426 - 7 Sep 2024
Cited by 2 | Viewed by 2618
Abstract
Background: Oropouche virus (OROV) is a segmented RNA virus belonging to the genus Orthobunyavirus in the family Peribunyaviridae. Herein, an in-house droplet digital PCR (ddPCR) assay was used for the detection and quantification of OROV. Methods: The ddPCR reaction was assessed as [...] Read more.
Background: Oropouche virus (OROV) is a segmented RNA virus belonging to the genus Orthobunyavirus in the family Peribunyaviridae. Herein, an in-house droplet digital PCR (ddPCR) assay was used for the detection and quantification of OROV. Methods: The ddPCR reaction was assessed as duplex assay using the human housekeeping gene RPP30. Limit of detection (LoD) analysis was performed in whole blood, serum, and urine. The assay was executed on a total of 28 clinical samples (whole blood n = 9, serum n = 11, and urine n = 8), of which 16 specimens were tested positive at the routine molecular diagnostics (endpoint and real-time PCRs). Results: The LoD of the ddPCR performed using 10-fold serial dilution of OROV detected up to 1 cp/µL in all the biological matrices. Compared to the routine molecular diagnostics, the ddPCR assay showed 100% sensitivity for whole blood and serum and 75% for urine, highlighting higher positive rate of ddPCR. Conclusion: We have established a quantitative RNA detection method of OROV with high sensitivity and specificity based on ddPCR. This test is capable of quantitatively monitoring the viral load of OROV and can contribute, in addition to laboratory diagnosis, to shed light on the pathogenesis, filling in the knowledge gaps of this neglected disease and to the vector control programs. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Graphical abstract

14 pages, 7554 KiB  
Article
Oxytocin Receptors on Calvarial Periosteal Innervation: Therapeutic Target for Post-Traumatic Headache?
by Vimala N. Bharadwaj, Michael Klukinov, Robert Paul Cowan, Nazanin Mahinparvar, David John Clark and David Clifford Yeomans
Pharmaceutics 2024, 16(6), 760; https://doi.org/10.3390/pharmaceutics16060760 - 4 Jun 2024
Viewed by 1290
Abstract
Objective: Following a mild traumatic brain injury (mTBI), the most prevalent and profoundly debilitating occurrence is the emergence of an acute and persistent post-traumatic headache (PTH), for which there are presently no approved treatments. A crucial gap in knowledge exists regarding the consequences [...] Read more.
Objective: Following a mild traumatic brain injury (mTBI), the most prevalent and profoundly debilitating occurrence is the emergence of an acute and persistent post-traumatic headache (PTH), for which there are presently no approved treatments. A crucial gap in knowledge exists regarding the consequences of an mTBI, which could serve as a foundation for the development of therapeutic approaches. The activation of trigeminal sensory nerve terminals that innervate the calvarial periosteum (CP)—a densely innervated tissue layer covering the calvarial skull—has been implicated in both migraines and PTHs. We have previously shown that trigeminal oxytocin receptors (OTRs) may provide a therapeutic target for PTHs. This study examined the expression of oxytocin receptors on trigeminal nerves innervating the periosteum and whether these receptors might serve as a therapeutic target for PTHs using a direct application of oxytocin to the periosteum in a rodent model of PTH. Methods: We used retrograde tracing and immunohistochemistry to determine if trigeminal ganglion (TG) neurons innervating the periosteum expressed OTRs and/or CGRPs. To model the impact of local inflammation that occurs following an mTBI, we applied chemical inflammatory mediators directly to the CP and assessed for changes in immediate-early gene expression as an indication of neuronal activation. We also determined whether mTBI would lead to expression changes to OTR levels. To determine whether these OTRs could be a viable therapeutic target, we assessed the impact of oxytocin injections into the CP in a mouse model of PTH-induced periorbital allodynia. Results: The results of these experiments demonstrate the following: (1) the cell bodies of CP afferents reside in the TG and express both OTRs and CGRPs; (2) inflammatory chemical stimulation of the periosteum leads to rapid activation of TG neurons (phospho-ERK (p-ERK) expression), (3) mTBI-induced inflammation increased OTR expression compared to the sham group; and (4) administration of oxytocin into the periosteum on day 2 and day 40 blocked cutaneous allodynia for up to one hour post-administration for both acute and persistence phases in the PTH model—an effect that was preventable by the administration of an OTR antagonist. Conclusion: Taken together, our observations suggest that periosteal trigeminal afferents contribute to post-TBI craniofacial pain, and that periosteum tissue can be used as a potential local target for therapeutics such as oxytocin. Full article
Show Figures

Graphical abstract

19 pages, 3399 KiB  
Article
Genome-Wide DNA Methylation in Early-Onset-Dementia Patients Brain Tissue and Lymphoblastoid Cell Lines
by Oscar Ramos-Campoy, Aina Comas-Albertí, David Hervás, Sergi Borrego-Écija, Beatriz Bosch, Juan Sandoval, Laura Fort-Aznar, Fermín Moreno-Izco, Guadalupe Fernández-Villullas, Laura Molina-Porcel, Mircea Balasa, Albert Lladó, Raquel Sánchez-Valle and Anna Antonell
Int. J. Mol. Sci. 2024, 25(10), 5445; https://doi.org/10.3390/ijms25105445 - 16 May 2024
Viewed by 2185
Abstract
Epigenetics, a potential underlying pathogenic mechanism of neurodegenerative diseases, has been in the scope of several studies performed so far. However, there is a gap in regard to analyzing different forms of early-onset dementia and the use of Lymphoblastoid cell lines (LCLs). We [...] Read more.
Epigenetics, a potential underlying pathogenic mechanism of neurodegenerative diseases, has been in the scope of several studies performed so far. However, there is a gap in regard to analyzing different forms of early-onset dementia and the use of Lymphoblastoid cell lines (LCLs). We performed a genome-wide DNA methylation analysis on sixty-four samples (from the prefrontal cortex and LCLs) including those taken from patients with early-onset forms of Alzheimer’s disease (AD) and frontotemporal dementia (FTD) and healthy controls. A beta regression model and adjusted p-values were used to obtain differentially methylated positions (DMPs) via pairwise comparisons. A correlation analysis of DMP levels with Clariom D array gene expression data from the same cohort was also performed. The results showed hypermethylation as the most frequent finding in both tissues studied in the patient groups. Biological significance analysis revealed common pathways altered in AD and FTD patients, affecting neuron development, metabolism, signal transduction, and immune system pathways. These alterations were also found in LCL samples, suggesting the epigenetic changes might not be limited to the central nervous system. In the brain, CpG methylation presented an inverse correlation with gene expression, while in LCLs, we observed mainly a positive correlation. This study enhances our understanding of the biological pathways that are associated with neurodegeneration, describes differential methylation patterns, and suggests LCLs are a potential cell model for studying neurodegenerative diseases in earlier clinical phases than brain tissue. Full article
Show Figures

Figure 1

18 pages, 3650 KiB  
Article
Genome-Wide Identification and Expression Analysis of the bHLH Transcription Factor Family in Wintersweet (Chimonanthus praecox)
by Hafiz Muhammad Kamran, Xuemei Fu, Huabo Wang, Nan Yang and Longqing Chen
Int. J. Mol. Sci. 2023, 24(17), 13462; https://doi.org/10.3390/ijms241713462 - 30 Aug 2023
Cited by 7 | Viewed by 2475
Abstract
Wintersweet (Chimonanthus praecox (L.) Link, Calycanthaceae) is an esteemed ornamental flowering shrub known for its distinct blooming period in winter, vibrant color petals, and captivating floral fragrance. Basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles as key regulators in secondary metabolites [...] Read more.
Wintersweet (Chimonanthus praecox (L.) Link, Calycanthaceae) is an esteemed ornamental flowering shrub known for its distinct blooming period in winter, vibrant color petals, and captivating floral fragrance. Basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles as key regulators in secondary metabolites biosynthesis, growth, and development in plants. However, the systematic analysis of the bHLH family members and their role in the regulation of floral traits in Wintersweet remains insufficiently understood. To bridge this knowledge gap, we conducted a comprehensive genome-wide analysis of the C. praecox bHLH (CpbHLH) gene family, identifying a total of 131 CpbHLH genes across 11 chromosomes. Phylogenetic analysis classified these CpbHLH genes into 23 subfamilies, wherein most members within the same subfamily exhibited analogous intron/exon patterns and motif composition. Moreover, the expansion of the CpbHLH gene family was primarily driven by segmental duplication, with duplicated gene pairs experiencing purifying selection during evolution. Transcriptomic analysis revealed diverse expression patterns of CpbHLH genes in various tissues and distinct stages of Wintersweet flower development, thereby suggesting their involvement in a diverse array of physiological processes. Furthermore, yeast 2-hybrid assay demonstrated interaction between CpbHLH25 and CpbHLH59 (regulators of floral scent and color) as well as with CpbHLH112 and CpMYB2, suggesting potential coordinately regulation of secondary metabolites biosynthesis in Wintersweet flowers. Collectively, our comprehensive analysis provides valuable insights into the structural attributes, evolutionary dynamics, and expression profiles of the CpbHLH gene family, laying a solid foundation for further explorations of the multifaceted physiological and molecular roles of bHLH TFs in Wintersweet. Full article
(This article belongs to the Special Issue Advances in Research for Ornamental Plants Breeding)
Show Figures

Figure 1

26 pages, 1002 KiB  
Review
A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques
by Oznur Caliskan-Aydogan and Evangelyn C. Alocilja
Microorganisms 2023, 11(6), 1491; https://doi.org/10.3390/microorganisms11061491 - 3 Jun 2023
Cited by 64 | Viewed by 12873
Abstract
Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance [...] Read more.
Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance (AMR) worldwide. Carbapenem-resistant Enterobacterales (CRE) are among the bacteria that need urgent attention globally. The emergence and spread of carbapenem-resistant bacteria are mainly due to the rapid dissemination of genes that encode carbapenemases through horizontal gene transfer (HGT). The rapid dissemination enables the development of host colonization and infection cases in humans who do not use the antibiotic (carbapenem) or those who are hospitalized but interacting with environments and hosts colonized with carbapenemase-producing (CP) bacteria. There are continuing efforts to characterize and differentiate carbapenem-resistant bacteria from susceptible bacteria to allow for the appropriate diagnosis, treatment, prevention, and control of infections. This review presents an overview of the factors that cause the emergence of AMR, particularly CRE, where they have been reported, and then, it outlines carbapenemases and how they are disseminated through humans, the environment, and food systems. Then, current and emerging techniques for the detection and surveillance of AMR, primarily CRE, and gaps in detection technologies are presented. This review can assist in developing prevention and control measures to minimize the spread of carbapenem resistance in the human ecosystem, including hospitals, food supply chains, and water treatment facilities. Furthermore, the development of rapid and affordable detection techniques is helpful in controlling the negative impact of infections caused by AMR/CRE. Since delays in diagnostics and appropriate antibiotic treatment for such infections lead to increased mortality rates and hospital costs, it is, therefore, imperative that rapid tests be a priority. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Mechanisms in Bacteria)
Show Figures

Figure 1

17 pages, 3930 KiB  
Article
Chloroplast Genome Analysis for Genetic Information and Authentication in Five Barleria Species
by Sanit Kaewdaungdee, Runglawan Sudmoon, Tawatchai Tanee, Shiou Yih Lee and Arunrat Chaveerach
Genes 2022, 13(10), 1705; https://doi.org/10.3390/genes13101705 - 22 Sep 2022
Cited by 5 | Viewed by 2001
Abstract
In order to authenticate the genomic information of Barleriacristata L., B. lupulina Lindl., B. repens Nees, B. siamensis Craib, and B. strigosa Willd, cp genomes were investigated. They revealed a general structure with a total size of 151,997–152,324 bp. The genomes encoded [...] Read more.
In order to authenticate the genomic information of Barleriacristata L., B. lupulina Lindl., B. repens Nees, B. siamensis Craib, and B. strigosa Willd, cp genomes were investigated. They revealed a general structure with a total size of 151,997–152,324 bp. The genomes encoded a total of 131 genes, including 86 CDS, 37 tRNA, and 8 rRNA genes. Other details found were as follows: different numbers and types of SSRs; identical gene content, which is adjacent to the border regions, except for B. strigosa, that revealed a shorter ndhF gene sequence and lacked the ycf1 gene; slightly different genetic distance values, which can be used for species identification; three distinct gaps of nucleotide variations between the species located at the intergenic spacer regions of the LSC and CDS of the SSC; three effective molecular markers derived from divergent hotspot regions, including the ccsA-ndhD, ndhA-ndhH-rps15, and ycf1. The genetic relationships derived from the cp genome and the CDS phylogenetic trees of Barleria and the 13 genera in Acanthaceae and different families, Scrophulariaceae and Phrymaceae, showed similar results. The six Barleria species as monophyletic groups with inner and outer outgroups were found to have perfect discrimination. These results have helped to authenticate the five Barleria species and the six genera in Acanthaceae. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Graphical abstract

19 pages, 1540 KiB  
Article
Artificial Intelligence and Circulating Cell-Free DNA Methylation Profiling: Mechanism and Detection of Alzheimer’s Disease
by Ray O. Bahado-Singh, Uppala Radhakrishna, Juozas Gordevičius, Buket Aydas, Ali Yilmaz, Faryal Jafar, Khaled Imam, Michael Maddens, Kshetra Challapalli, Raghu P. Metpally, Wade H. Berrettini, Richard C. Crist, Stewart F. Graham and Sangeetha Vishweswaraiah
Cells 2022, 11(11), 1744; https://doi.org/10.3390/cells11111744 - 25 May 2022
Cited by 23 | Viewed by 5884
Abstract
Background: Despite extensive efforts, significant gaps remain in our understanding of Alzheimer’s disease (AD) pathophysiology. Novel approaches using circulating cell-free DNA (cfDNA) have the potential to revolutionize our understanding of neurodegenerative disorders. Methods: We performed DNA methylation profiling of cfDNA from AD patients [...] Read more.
Background: Despite extensive efforts, significant gaps remain in our understanding of Alzheimer’s disease (AD) pathophysiology. Novel approaches using circulating cell-free DNA (cfDNA) have the potential to revolutionize our understanding of neurodegenerative disorders. Methods: We performed DNA methylation profiling of cfDNA from AD patients and compared them to cognitively normal controls. Six Artificial Intelligence (AI) platforms were utilized for the diagnosis of AD while enrichment analysis was used to elucidate the pathogenesis of AD. Results: A total of 3684 CpGs were significantly (adj. p-value < 0.05) differentially methylated in AD versus controls. All six AI algorithms achieved high predictive accuracy (AUC = 0.949–0.998) in an independent test group. As an example, Deep Learning (DL) achieved an AUC (95% CI) = 0.99 (0.95–1.0), with 94.5% sensitivity and specificity. Conclusion: We describe numerous epigenetically altered genes which were previously reported to be differentially expressed in the brain of AD sufferers. Genes identified by AI to be the best predictors of AD were either known to be expressed in the brain or have been previously linked to AD. We highlight enrichment in the Calcium signaling pathway, Glutamatergic synapse, Hedgehog signaling pathway, Axon guidance and Olfactory transduction in AD sufferers. To the best of our knowledge, this is the first reported genome-wide DNA methylation study using cfDNA to detect AD. Full article
(This article belongs to the Special Issue Epigenetic Mechanisms Underlying Ageing and Age-Related Diseases)
Show Figures

Figure 1

23 pages, 2659 KiB  
Article
Phylogeographical Analyses of a Relict Fern of Palaeotropical Flora (Vandenboschia speciosa): Distribution and Diversity Model in Relation to the Geological and Climate Events of the Late Miocene and Early Pliocene
by Samira Ben-Menni Schuler, Hammadi Hamza, Gabriel Blanca, Ana Teresa Romero-García and Víctor N. Suárez-Santiago
Plants 2022, 11(7), 839; https://doi.org/10.3390/plants11070839 - 22 Mar 2022
Cited by 3 | Viewed by 3208
Abstract
Fern phylogeographic studies have mostly focused on the influence of the Pleistocene climate on fern distributions and the prevalence of long-distance dispersal. The effect of pre-Pleistocene events on the distributions of fern species is largely unexplored. Here, we elucidate a hypothetical scenario for [...] Read more.
Fern phylogeographic studies have mostly focused on the influence of the Pleistocene climate on fern distributions and the prevalence of long-distance dispersal. The effect of pre-Pleistocene events on the distributions of fern species is largely unexplored. Here, we elucidate a hypothetical scenario for the evolutionary history of Vandenboschia speciosa, hypothesised to be of Tertiary palaeotropical flora with a peculiar perennial gametophyte. We sequenced 40 populations across the species range in one plastid region and two variants of the nuclear gapCp gene and conducted time-calibrated phylogenetic, phylogeographical, and species distribution modelling analyses. Vandenboschia speciosa is an allopolyploid and had a Tertiary origin. Late Miocene aridification possibly caused the long persistence in independent refugia on the Eurosiberian Atlantic and Mediterranean coasts, with the independent evolution of gene pools resulting in two evolutionary units. The Cantabrian Cornice, a major refugium, could also be a secondary contact zone during Quaternary glacial cycles. Central European populations resulted from multiple post-glacial, long-distance dispersals. Vandenboschia speciosa reached Macaronesia during the Pliocene–Pleistocene, with a phylogeographical link between the Canary Islands, Madeira, and southern Iberia, and between the Azores and northwestern Europe. Our results support the idea that the geological and climate events of the Late Miocene/Early Pliocene shifted Tertiary fern distribution patterns in Europe. Full article
(This article belongs to the Special Issue Genetic Diversity and Phylogeography of Lycophytes and Ferns)
Show Figures

Figure 1

13 pages, 5979 KiB  
Article
Protective Efficacy of Novel Oral Biofilm Vaccines against Photobacterium damselae subsp. damselae Infection in Giant Grouper, Epinephelus lanceolatus
by Feng-Jie Su and Meei-Mei Chen
Vaccines 2022, 10(2), 207; https://doi.org/10.3390/vaccines10020207 - 28 Jan 2022
Cited by 8 | Viewed by 3224
Abstract
Photobacterium damselae subsp. damselae is a pathogen that mainly infects a variety of fish species. There are many antibiotic-resistant strains of Photobacterium damselae subsp. damselae. In a previously published article, we described the production method for a novel oral biofilm vaccine. In [...] Read more.
Photobacterium damselae subsp. damselae is a pathogen that mainly infects a variety of fish species. There are many antibiotic-resistant strains of Photobacterium damselae subsp. damselae. In a previously published article, we described the production method for a novel oral biofilm vaccine. In the study reported herein, we confirmed the protective effect of the oral biofilm vaccine against Photobacterium damselae subsp. damselae. Twenty-eight days after vaccination, phagocytosis increased by 256% relative to the control group. The mean albumin–globulin ratios of the vaccine groups were significantly lower than the mean albumin–globulin ratios of the control group. There were no significant intergroup differences in lysozyme activity. Mean IgM titers were significantly higher in the vaccine group than in the control group. There was a significant upregulation of the TLR 3, IL-1β, and IL-8 genes in the spleen 28 days after vaccination. The cumulative mortality of the control fish was 84% after challenging fish with the Photobacterium damselae subsp. damselae, while the cumulative mortality of the oral biofilm vaccine (PBV) group was 32%, which was significantly higher than those of the whole-cell vaccine (PWV) and chitosan particle (CP) groups. There is minimal published research on the prevention and treatment of Photobacterium damselae subsp. damselae infection; therefore, this oral biofilm vaccine may represent a new method to fill this gap. Full article
(This article belongs to the Special Issue Vaccines for Aquaculture)
Show Figures

Graphical abstract

13 pages, 2974 KiB  
Article
Molecular Insights into Defense Responses of Vietnamese Maize Varieties to Fusarium verticillioides Isolates
by Trang Minh Tran, Maarten Ameye, Sofie Landschoot, Frank Devlieghere, Sarah De Saeger, Mia Eeckhout and Kris Audenaert
J. Fungi 2021, 7(9), 724; https://doi.org/10.3390/jof7090724 - 4 Sep 2021
Cited by 11 | Viewed by 3167
Abstract
Fusarium ear rot (FER) caused by Fusarium verticillioides is one of the main fungal diseases in maize worldwide. To develop a pathogen-tailored FER resistant maize line for local implementation, insights into the virulence variability of a residing F. verticillioides population are crucial for [...] Read more.
Fusarium ear rot (FER) caused by Fusarium verticillioides is one of the main fungal diseases in maize worldwide. To develop a pathogen-tailored FER resistant maize line for local implementation, insights into the virulence variability of a residing F. verticillioides population are crucial for developing customized maize varieties, but remain unexplored. Moreover, little information is currently available on the involvement of the archetypal defense pathways in the F. verticillioides–maize interaction using local isolates and germplasm, respectively. Therefore, this study aims to fill these knowledge gaps. We used a collection of 12 F. verticillioides isolates randomly gathered from diseased maize fields in the Vietnamese central highlands. To assess the plant’s defense responses against the pathogens, two of the most important maize hybrid genotypes grown in this agro-ecological zone, lines CP888 and Bt/GT NK7328, were used. Based on two assays, a germination and an in-planta assay, we found that line CP888 was more susceptible to the F. verticillioides isolates when compared to line Bt/GT NK7328. Using the most aggressive isolate, we monitored disease severity and gene expression profiles related to biosynthesis pathways of salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), benzoxazinoids (BXs), and pathogenesis-related proteins (PRs). As a result, a stronger induction of SA, JA, ABA, BXs, and PRs synthesizing genes might be linked to the higher resistance of line Bt/GT NK7328 compared to the susceptible line CP888. All these findings could supply valuable knowledge in the selection of suitable FER resistant lines against the local F. verticllioides population and in the development of new FER resistant germplasms. Full article
(This article belongs to the Special Issue Plant-Pathogenic Fusarium Species)
Show Figures

Figure 1

20 pages, 6271 KiB  
Article
Comparative Analysis of Complete Chloroplast Genome Sequences of Wild and Cultivated Bougainvillea (Nyctaginaceae)
by Mary Ann C. Bautista, Yan Zheng, Zhangli Hu, Yunfei Deng and Tao Chen
Plants 2020, 9(12), 1671; https://doi.org/10.3390/plants9121671 - 28 Nov 2020
Cited by 12 | Viewed by 3960
Abstract
Bougainvillea (Nyctaginaceae) is a popular ornamental plant group primarily grown for its striking colorful bracts. However, despite its established horticultural value, limited genomic resources and molecular studies have been reported for this genus. Thus, to address this existing gap, complete chloroplast genomes of [...] Read more.
Bougainvillea (Nyctaginaceae) is a popular ornamental plant group primarily grown for its striking colorful bracts. However, despite its established horticultural value, limited genomic resources and molecular studies have been reported for this genus. Thus, to address this existing gap, complete chloroplast genomes of four species (Bougainvillea glabra, Bougainvillea peruviana, Bougainvillea pachyphylla, Bougainvillea praecox) and one Bougainvillea cultivar were sequenced and characterized. The Bougainvillea cp genomes range from 153,966 bp to 154,541 bp in length, comprising a large single-copy region (85,159 bp–85,708 bp) and a small single-copy region (18,014 bp–18,078 bp) separated by a pair of inverted repeats (25,377–25,427 bp). All sequenced plastomes have 131 annotated genes, including 86 protein-coding, eight rRNA, and 37 tRNA genes. These five newly sequenced Bougainvillea cp genomes were compared to the Bougainvillea spectabilis cp genome deposited in GeBank. The results showed that all cp genomes have highly similar structures, contents, and organization. They all exhibit quadripartite structures and all have the same numbers of genes and introns. Codon usage, RNA editing sites, and repeat analyses also revealed highly similar results for the six cp genomes. The amino acid leucine has the highest proportion and almost all favored synonymous codons have either an A or U ending. Likewise, out of the 42 predicted RNA sites, most conversions were from serine (S) to leucine (L). The majority of the simple sequence repeats detected were A/T mononucleotides, making the cp genomes A/T-rich. The contractions and expansions of the IR boundaries were very minimal as well, hence contributing very little to the differences in genome size. In addition, sequence variation analyses showed that Bougainvillea cp genomes share nearly identical genomic profiles though several potential barcodes, such as ycf1, ndhF, and rpoA were identified. Higher variation was observed in both B. peruviana and B. pachyphylla cp sequences based on SNPs and indels analysis. Phylogenetic reconstructions further showed that these two species appear to be the basal taxa of Bougainvillea. The rarely cultivated and wild species of Bougainvillea (B. pachyphylla, B. peruviana, B. praecox) diverged earlier than the commonly cultivated species and cultivar (B. spectabilis, B. glabra, B. cv.). Overall, the results of this study provide additional genetic resources that can aid in further phylogenetic and evolutionary studies in Bougainvillea. Moreover, genetic information from this study is potentially useful in identifying Bougainvillea species and cultivars, which is essential for both taxonomic and plant breeding studies. Full article
(This article belongs to the Special Issue Plant Evolution, Systematics, and Chloroplast Genome)
Show Figures

Figure 1

13 pages, 3567 KiB  
Article
Comparative Analyses of the Chloroplast Genomes of Patchouli Plants and Their Relatives in Pogostemon (Lamiaceae)
by Cai-Yun Zhang, Tong-Jian Liu, Xiao-Lu Mo, Hui-Run Huang, Gang Yao, Jian-Rong Li, Xue-Jun Ge and Hai-Fei Yan
Plants 2020, 9(11), 1497; https://doi.org/10.3390/plants9111497 - 5 Nov 2020
Cited by 6 | Viewed by 3248
Abstract
Pogostemon Desf., the largest genus of the tribe Pogostemoneae (Lamiaceae), consists of ca. 80 species distributed mainly from South and Southeast Asia to China. The genus contains many patchouli plants, which are of great economic importance but taxonomically difficult. Therefore, it is necessary [...] Read more.
Pogostemon Desf., the largest genus of the tribe Pogostemoneae (Lamiaceae), consists of ca. 80 species distributed mainly from South and Southeast Asia to China. The genus contains many patchouli plants, which are of great economic importance but taxonomically difficult. Therefore, it is necessary to characterize more chloroplast (cp) genomes for infrageneric phylogeny analyses and species identification of Pogostemon, especially for patchouli plants. In this study, we newly generated four cp genomes for three patchouli plants (i.e., Pogostemon plectranthoides Desf., P. septentrionalis C. Y. Wu et Y. C. Huang, and two cultivars of P. cablin (Blanoco) Benth.). Comparison of all samples (including online available cp genomes of P. yatabeanus (Makino) Press and P. stellatus (Lour.) Kuntze) suggested that Pogostemon cp genomes are highly conserved in terms of genome size and gene content, with a typical quadripartite circle structure. Interspecific divergence of cp genomes has been maintained at a relatively low level, though seven divergence hotspot regions were identified by stepwise window analysis. The nucleotide diversity (Pi) value was correlated significantly with gap proportion (indels), but significantly negative with GC content. Our phylogenetic analyses based on 80 protein-coding genes yielded high-resolution backbone topologies for the Lamiaceae and Pogostemon. For the overall mean substitution rates, the synonymous (dS) and nonsynonymous (dN) substitution rate values of protein-coding genes varied approximately threefold, while the dN values among different functional gene groups showed a wider variation range. Overall, the cp genomes of Pogostemon will be useful for phylogenetic reconstruction, species delimitation and identification in the future. Full article
(This article belongs to the Special Issue Plant Evolution, Systematics, and Chloroplast Genome)
Show Figures

Figure 1

Back to TopTop