Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (340)

Search Parameters:
Keywords = gait initiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 562 KiB  
Article
Effectiveness of a Post-Acute-Care Rehabilitation Program in Patients with Stroke: A Retrospective Cohort Study
by Yi-Pang Lo, Mei-Chen Wang, Yao-Hsiang Chen, Shang-Lin Chiang and Chia-Huei Lin
Life 2025, 15(8), 1216; https://doi.org/10.3390/life15081216 - 1 Aug 2025
Viewed by 394
Abstract
Early rehabilitation is essential for restoring functional recovery in patients with stroke, particularly during the early phase of post-acute care (PAC), or the subacute stage. We aimed to evaluate the effectiveness of a 7-week PAC rehabilitation program in improving muscle strength, physical performance, [...] Read more.
Early rehabilitation is essential for restoring functional recovery in patients with stroke, particularly during the early phase of post-acute care (PAC), or the subacute stage. We aimed to evaluate the effectiveness of a 7-week PAC rehabilitation program in improving muscle strength, physical performance, and functional recovery. A total of 219 inpatients with stroke in the subacute stage were initially recruited from the PAC ward of a regional teaching hospital in Northern Taiwan, with 79 eligible patients—within 1 month of an acute stroke—included in the analysis. The program was delivered 5 days per week, with 3–4 sessions daily (20–30 min each, up to 120 min daily), comprising physical, occupational, and speech–language therapies. Sociodemographic data, muscle strength, physical performance (Berg Balance Scale [BBS], gait speed, and 6-minute walk test [6MWT]), and functional recovery (modified Rankin Scale [mRS], Barthel Index [BI], Instrumental Activities of Daily Living [IADL], and Fugl–Meyer assessment: sensory and upper extremity) were collected at baseline, 3 weeks, and 7 weeks. Generalized estimating equations analyzed program effectiveness. Among the 56 patients (70.9%) who completed the program, significant improvements were observed in the muscle strength of both the affected upper (B = 0.93, p < 0.001) and lower limbs (B = 0.88, p < 0.001), as well as in their corresponding unaffected limbs; in physical performance, including balance (BBS score: B = 9.70, p = 0.003) and gait speed (B = 0.23, p = 0.024); and in functional recovery, including BI (B = 19.5, p < 0.001), IADL (B = 1.48, p < 0.001), and mRS (B = −0.13, p = 0.028). These findings highlight the 7-week PAC rehabilitation program as an effective strategy during the critical recovery phase for patients with stroke. Full article
(This article belongs to the Special Issue Advances in the Rehabilitation of Stroke)
Show Figures

Figure 1

15 pages, 1395 KiB  
Article
Ground Reaction Forces and Impact Loading Among Runners with Different Acuity of Tibial Stress Injuries: Advanced Waveform Analysis for Running Mechanics
by Ryan M. Nixon, Sharareh Sharififar, Matthew Martenson, Lydia Pezzullo, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(8), 802; https://doi.org/10.3390/bioengineering12080802 - 26 Jul 2025
Viewed by 357
Abstract
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) [...] Read more.
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) and those recovering from tibial stress fractures (TSF; both unilateral [UL] and bilateral [BL]). This cross-sectional analysis of runners (n = 66) included four groups: symptomatic MTSS, recovering from UL or BL TSF, or uninjured case-matched controls. Participants ran at self-selected speed on an instrumented treadmill. Kinematics were collected with a 3D optical motion analysis system. Double-Gaussian models described the biphasic loading pattern of running gait (initial impact, active phases). Gaussian parameters described relative differences in the GRF waveform by injury condition. LR was calculated using the central difference numerical derivative of the raw normalized net force data. During the impact phase (0–20% of stance), controls and BL TSF produced higher GRF amplitudes than UL TSF and MTSS (p < 0.05). BL TSF and controls had greater maximal positive LR and minimum LR than UL TSF and MTSS. Peak medial GRF was 18–43% higher in the BL TSF group than in MTSS and UL TSF (p < 0.05). Correlations existed between tibial pain severity and early stance net GRF (r = 0.512; p = 0.016) and between pain severity and the duration since diagnosis for LR values during the impact phase (r values = 0.389–0.522; all p < 0.05). Collectively, these data suggest that this waveform modeling approach can differentiate injury status and pain acuity in runners. Early stance GRF and LR may offer novel insight into the management of running-related injuries. Full article
Show Figures

Graphical abstract

16 pages, 2107 KiB  
Article
Determination of Spatiotemporal Gait Parameters Using a Smartphone’s IMU in the Pocket: Threshold-Based and Deep Learning Approaches
by Seunghee Lee, Changeon Park, Eunho Ha, Jiseon Hong, Sung Hoon Kim and Youngho Kim
Sensors 2025, 25(14), 4395; https://doi.org/10.3390/s25144395 - 14 Jul 2025
Viewed by 535
Abstract
This study proposes a hybrid approach combining threshold-based algorithm and deep learning to detect four major gait events—initial contact (IC), toe-off (TO), opposite initial contact (OIC), and opposite toe-off (OTO)—using only a smartphone’s built-in inertial sensor placed in the user’s pocket. The algorithm [...] Read more.
This study proposes a hybrid approach combining threshold-based algorithm and deep learning to detect four major gait events—initial contact (IC), toe-off (TO), opposite initial contact (OIC), and opposite toe-off (OTO)—using only a smartphone’s built-in inertial sensor placed in the user’s pocket. The algorithm enables estimation of spatiotemporal gait parameters such as cadence, stride length, loading response (LR), pre-swing (PSw), single limb support (SLS), double limb support (DLS), and swing phase and symmetry. Gait data were collected from 20 healthy individuals and 13 hemiparetic stroke patients. To reduce sensitivity to sensor orientation and suppress noise, sum vector magnitude (SVM) features were extracted and filtered using a second-order Butterworth low-pass filter at 3 Hz. A deep learning model was further compressed using knowledge distillation, reducing model size by 96% while preserving accuracy. The proposed method achieved error rates in event detection below 2% of the gait cycle for healthy gait and a maximum of 4.4% for patient gait in event detection, with corresponding parameter estimation errors also within 4%. These results demonstrated the feasibility of accurate and real-time gait monitoring using a smartphone. In addition, statistical analysis of gait parameters such as symmetry and DLS revealed significant differences between the normal and patient groups. While this study is not intended to provide or guide rehabilitation treatment, it offers a practical means to regularly monitor patients’ gait status and observe gait recovery trends over time. Full article
(This article belongs to the Special Issue Wearable Devices for Physical Activity and Healthcare Monitoring)
Show Figures

Figure 1

17 pages, 4138 KiB  
Article
From Control Algorithm to Human Trial: Biomechanical Proof of a Speed-Adaptive Ankle–Foot Orthosis for Foot Drop in Level-Ground Walking
by Pouyan Mehryar, Sina Firouzy, Uriel Martinez-Hernandez and Abbas Dehghani-Sanij
Biomechanics 2025, 5(3), 51; https://doi.org/10.3390/biomechanics5030051 - 4 Jul 2025
Viewed by 300
Abstract
Background/Objectives: This study focuses on the motion planning and control of an active ankle–foot orthosis (AFO) that leverages biomechanical insights to mitigate footdrop, a deficit that prevents safe toe clearance during walking. Methods: To adapt the motion of the device to the user’s [...] Read more.
Background/Objectives: This study focuses on the motion planning and control of an active ankle–foot orthosis (AFO) that leverages biomechanical insights to mitigate footdrop, a deficit that prevents safe toe clearance during walking. Methods: To adapt the motion of the device to the user’s walking speed, a geometric model was used, together with real-time measurement of the user’s gait cycle. A geometric speed-adaptive model also scales a trapezoidal ankle-velocity profile in real time using the detected gait cycle. The algorithm was tested at three different walking speeds, with a prototype of the AFO worn by a test subject. Results: At walking speeds of 0.44 and 0.61 m/s, reduced tibialis anterior (TA) muscle activity was confirmed by electromyography (EMG) signal measurement during the stance phase of assisted gait. When the AFO was in assistance mode after toe-off (initial and mid-swing phase), it provided an average of 48% of the estimated required power to make up for the deliberate inactivity of the TA muscle. Conclusions: Kinematic analysis of the motion capture data showed that sufficient foot clearance was achieved at all three speeds of the test. No adverse effects or discomfort were reported during the experiment. Future studies should examine the device in populations with footdrop and include a comprehensive evaluation of safety. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

28 pages, 4733 KiB  
Article
The Margin of Stability During a Single-Turn Pirouette in Female Amateur Dancers: A Pilot Study
by Annalisa Dykstra, Ashley Kooistra, Nicole Merucci, David W. Zeitler and Gordon Alderink
Appl. Sci. 2025, 15(13), 7519; https://doi.org/10.3390/app15137519 - 4 Jul 2025
Viewed by 282
Abstract
Balance control in pirouettes has previously been characterized by constraint of the topple angle. However, there is a paucity of research using the margin of stability (MoS) as a dynamic measure of balance related to pirouettes. Therefore, this study aimed primarily to examine [...] Read more.
Balance control in pirouettes has previously been characterized by constraint of the topple angle. However, there is a paucity of research using the margin of stability (MoS) as a dynamic measure of balance related to pirouettes. Therefore, this study aimed primarily to examine the MoS as a metric of balance during a single-turn en dehors pirouette in healthy female amateur ballet dancers. Four participants performed pirouettes until five successful pirouettes were achieved without hopping or loss of balance. Three-dimensional motion capture was used to record the motion trajectories of anatomical markers based on the Plug-in-Gait and Oxford Foot models. Motion synchronized with ground reaction forces was used to calculate the center of pressure (CoP), base of support (BoS), center of the pivot foot, center of mass (CoM), and extrapolated center of mass (XCoM) throughout the turn phase, using laboratory (LCS) and virtual left foot (LFT) coordinate systems. In the LCS and LFT coordinate system, the excursions and patterns of motion of both the CoM and XCoM relative to the CoP were similar, suggesting a neurological relationship. Two different measures of the margin of stability (MoS) in the LFT coordinate system were tabulated: the distance between the (1) XCoM and CoP and (2) XCoM and BoS center. The magnitude of both versions of the MoS was greatest at turn initiation and toe-touch, which was associated with two foot contacts. The MoS values were at a minimum approximately 50% of the stance during the turn phase: close to zero along the anteroposterior (A/P) axis and approximately 50 mm along the mediolateral (M/L) axis. On average, MoS magnitudes were reduced (mean across participants: approximately 20 mm) along the A/P axis, and larger MoS magnitudes (mean across participants: approximately 50 mm) along the M/L axis throughout the turn phase. Although all turns analyzed were completed successfully, the larger MoS values along the M/L axis suggest a fall potential. The variability between trials within a dancer and across participants and trials was documented and showed moderate inter-trial (16% to 51%) and across-participant CV% (range: 10% to 28%), with generally larger variations along the A/P axis. Although our results are preliminary, they suggest that the MoS may be useful for detecting faults in the control of dynamic balance in dehors pirouette performance, as a part of training and rehabilitation following injury. Full article
Show Figures

Figure 1

13 pages, 814 KiB  
Review
Biofeedback for Motor and Cognitive Rehabilitation in Parkinson’s Disease: A Comprehensive Review of Non-Invasive Interventions
by Pierluigi Diotaiuti, Giulio Marotta, Salvatore Vitiello, Francesco Di Siena, Marco Palombo, Elisa Langiano, Maria Ferrara and Stefania Mancone
Brain Sci. 2025, 15(7), 720; https://doi.org/10.3390/brainsci15070720 - 4 Jul 2025
Viewed by 768
Abstract
(1) Background: Biofeedback and neurofeedback are gaining attention as non-invasive rehabilitation strategies in Parkinson’s disease (PD) treatment, aiming to modulate motor and non-motor symptoms through the self-regulation of physiological signals. (2) Objective: This review explores the application of biofeedback techniques, electromyographic (EMG) biofeedback, [...] Read more.
(1) Background: Biofeedback and neurofeedback are gaining attention as non-invasive rehabilitation strategies in Parkinson’s disease (PD) treatment, aiming to modulate motor and non-motor symptoms through the self-regulation of physiological signals. (2) Objective: This review explores the application of biofeedback techniques, electromyographic (EMG) biofeedback, heart rate variability (HRV) biofeedback, and electroencephalographic (EEG) neurofeedback in PD rehabilitation, analyzing their impacts on motor control, autonomic function, and cognitive performance. (3) Methods: This review critically examined 15 studies investigating the efficacy of electromyographic (EMG), heart rate variability (HRV), and electroencephalographic (EEG) feedback interventions in PD. Studies were selected through a systematic search of peer-reviewed literature and analyzed in terms of design, sample characteristics, feedback modality, outcomes, and clinical feasibility. (4) Results: EMG biofeedback demonstrated improvements in muscle activation, gait, postural stability, and dysphagia management. HRV biofeedback showed positive effects on autonomic regulation, emotional control, and cardiovascular stability. EEG neurofeedback targeted abnormal cortical oscillations, such as beta-band overactivity and reduced frontal theta, and was associated with improvements in motor initiation, executive functioning, and cognitive flexibility. However, the reviewed studies were heterogeneous in design and outcome measures, limiting generalizability. Subgroup trends suggested modality-specific benefits across motor, autonomic, and cognitive domains. (5) Conclusions: While EMG and HRV systems are more accessible for clinical or home-based use, EEG neurofeedback remains technically demanding. Standardization of protocols and further randomized controlled trials are needed. Future directions include AI-driven personalization, wearable technologies, and multimodal integration to enhance accessibility and long-term adherence. Biofeedback presents a promising adjunct to conventional PD therapies, supporting personalized, patient-centered rehabilitation models. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 3917 KiB  
Article
An Experimental Approach for Investigating Freezing of Gait in Parkinson’s Disease Using Virtual Reality and Neural Sensing: A Pilot Study
by Mandy Miller Koop, Anson B. Rosenfeldt, Kathryn Scelina, Logan Scelina, Colin Waltz, Andrew S. Bazyk, Visar Berki, Kyle Baker, Julio N. Reyes Torres, Enio Kuvliev, Sean Nagel, Benjamin L. Walter, James Liao, David Escobar, Kenneth B. Baker and Jay L. Alberts
Sensors 2025, 25(13), 4036; https://doi.org/10.3390/s25134036 - 28 Jun 2025
Viewed by 572
Abstract
Freezing of gait (FOG) is a disabling symptom associated with Parkinson’s disease (PD). Its understanding and effective treatment is compromised due to the difficulty in reliably triggering FOG in clinical and laboratory environments. The Cleveland Clinic-Virtual Home Environment (CC-VHE) platform was developed to [...] Read more.
Freezing of gait (FOG) is a disabling symptom associated with Parkinson’s disease (PD). Its understanding and effective treatment is compromised due to the difficulty in reliably triggering FOG in clinical and laboratory environments. The Cleveland Clinic-Virtual Home Environment (CC-VHE) platform was developed to address the challenges of eliciting FOG by combining an omnidirectional treadmill with immersive virtual reality (VR) environments to induce FOG under physical, emotional, and cognitive triggers. Recent developments in deep brain stimulation devices that sense neural signals from the subthalamic nucleus in real time offer the potential to understand the underlying neural mechanism(s) of FOG. This manuscript presents the coupling of the CC-VHE technology, VR paradigms, and the experimental and analytical methods for recording and analyzing synchronous cortical, subcortical, and kinematic data as an approach to begin to understand the nuanced neural pathology associated with FOG. To evaluate the utility and feasibility of coupling VR and neural sensing technology, initial data from one participant are included. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

11 pages, 2201 KiB  
Article
From Injury to Full Recovery: Monitoring Patient Progress Through Advanced Sensor and Motion Capture Technology
by Annchristin Andres, Michael Roland, Marcel Orth and Stefan Diebels
Sensors 2025, 25(13), 3853; https://doi.org/10.3390/s25133853 - 20 Jun 2025
Viewed by 383
Abstract
Background: Advanced sensor insoles and motion capture technology can significantly enhance the monitoring of rehabilitation progress for patients with distal tibial fractures. This study leverages the potential of these innovative tools to provide a more comprehensive assessment of a patient’s gait and weight-bearing [...] Read more.
Background: Advanced sensor insoles and motion capture technology can significantly enhance the monitoring of rehabilitation progress for patients with distal tibial fractures. This study leverages the potential of these innovative tools to provide a more comprehensive assessment of a patient’s gait and weight-bearing capacity following surgical intervention, thereby offering the possibility of improved patient outcomes. Methods: A patient who underwent distal medial tibial plating surgery in August 2023 and subsequently required revision surgery due to implant failure, involving plate removal and the insertion of an intramedullary nail in December 2023, was meticulously monitored over a 12-week period. Initial assessments in November 2023 revealed pain upon full weight-bearing without crutches. Following the revision, precise weekly measurements were taken, starting two days after surgery, which instilled confidence in accurately tracking the patient’s progress from initial crutch-assisted walking to full recovery. The monitoring tools included insoles, hand pads for force absorption of the crutches, and a motion capture system. The patient was accompanied throughout all steps of his daily life. Objectives: The study aimed to evaluate the hypothesis that the approximation and formation of a healthy gait curve are decisive tools for monitoring healing. Specifically, it investigated whether cadence, imbalance factors, and ground reaction forces could be significant indicators of healing status and potential disorders. Results: The gait parameters, cadence, factor of imbalance ground reaction forces, and the temporal progression of kinematic parameters significantly correlate with the patient’s recovery trajectory. These metrics enable the early identification of deviations from expected healing patterns, facilitating timely interventions and underscoring the transformative potential of these technologies in patient care. Conclusions: Integrating sensor insoles and motion capture technology offers a promising approach for monitoring the recovery process in patients with distal tibial fractures. This method provides valuable insights into the patient’s healing status, potentially predicting and addressing healing disorders more effectively. Future studies are recommended to validate these findings in a larger cohort and explore the potential integration of these technologies into clinical practice. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

6 pages, 180 KiB  
Case Report
Brainstem Encephalitis: An Atypical Manifestation of Zika Virus Infection in Brazil
by Mateus Santana do Rosário, Pedro Antonio Pereira de Jesus, Italo Andrade Barbosa Lima, Marcos Vinicius Oliveira Francisco, Cleiton Silva Santos, Lorena Cunha Martins, Luiza Vieira Luedy Trindade, Ricardo Khouri and Isadora Cristina de Siqueira
Viruses 2025, 17(6), 864; https://doi.org/10.3390/v17060864 - 18 Jun 2025
Viewed by 464
Abstract
Zika virus (ZIKV), once considered a relatively benign pathogen, has emerged as a cause of severe neurological complications, including Guillain-Barrè Syndrome and encephalitis. This report presents the case of a 21-year-old Brazilian woman who initially presented with fever, rash, and arthralgia. Seven days [...] Read more.
Zika virus (ZIKV), once considered a relatively benign pathogen, has emerged as a cause of severe neurological complications, including Guillain-Barrè Syndrome and encephalitis. This report presents the case of a 21-year-old Brazilian woman who initially presented with fever, rash, and arthralgia. Seven days later, she developed confusion, speech impairment, and gait disturbance. Following a tonic-clonic seizure, neurological examination revealed dysphonia, dysarthria and facial palsy, suggestive of brainstem involvement. ZIKV infection was detected by positive IgM serology and a plaque reduction neutralization test. The patient was treated with corticosteroids and antiepileptic drugs, leading to substantial clinical improvement, and discharge after 25 days of hospitalization. This case underscores the neuroinvasive potential of ZIKV and highlights the importance of early recognition and management of atypical neurological manifestations. It also reinforces the need to consider ZIKV in the differential diagnosis of encephalitis, particularly in endemic regions, and contributes to the growing understanding of ZIKV neurotropism and possible therapeutic approaches for severe presentations. Full article
(This article belongs to the Special Issue Mosquito-Borne Encephalitis Viruses)
17 pages, 1429 KiB  
Article
Effects of Motor Preparation on Walking Ability in Active Ankle Dorsiflexion
by Hiroki Ito, Hideaki Yamaguchi, Ryosuke Yamauchi, Ken Kitai, Kazuhei Nishimoto and Takayuki Kodama
Neurol. Int. 2025, 17(6), 93; https://doi.org/10.3390/neurolint17060093 - 17 Jun 2025
Viewed by 591
Abstract
Background/Objectives: This study aimed to examine the influence of brain activity during motor preparation on walking ability, focusing on motor control during active ankle dorsiflexion. Methods: Participants were classified into high- and low-corticomuscular coherence (CMC), an index of neuromuscular control based on the [...] Read more.
Background/Objectives: This study aimed to examine the influence of brain activity during motor preparation on walking ability, focusing on motor control during active ankle dorsiflexion. Methods: Participants were classified into high- and low-corticomuscular coherence (CMC), an index of neuromuscular control based on the median value. Biomechanical and neurophysiological indices of active ankle dorsiflexion and walking ability were compared between the two groups. Additionally, a machine learning model was developed to accurately predict the CMC classification using brain neural activity during motor preparation. Results: The Cz-TA CMC (beta frequency band) during active ankle dorsiflexion successfully detected significant differences in the maximum dorsiflexion angle, inversion angular velocity, brain activity localization, and variations in Cz beta power values during the transition from motor preparation to execution. Furthermore, CMC identified significant differences in dorsiflexion angle changes after toe-off and inversion angles at initial contact during gait. A support-vector machine model predicting high or low CMC demonstrated high accuracy (Accuracy: 0.96, Precision: 0.92–1.00, Recall: 0.91–1.00, F1 Score: 0.95–0.96) during motor execution based on beta power values from −500 to 0 ms prior to the initiation of active ankle dorsiflexion (representing motor preparation). Conclusions: These findings highlight that the motor preparation processes of the brain during active ankle dorsiflexion are involved in walking ability and can be used to predict it. This indicator is independent of disease severity and holds the potential to provide a clinically versatile evaluation method. Full article
(This article belongs to the Topic Advances in Neurorehabilitation)
Show Figures

Figure 1

8 pages, 5100 KiB  
Case Report
Change in the Location of a Pseudotumor Around the C2 Odontoid Process from Posterior to Anterior to the Odontoid Process in the Natural Course: A Case with “Antero-Odontoid Pseudotumor” or “Peri-Odontoid Pseudotumor”
by Hiroki Takeda, Takaya Imai, Yuki Akaike, Soya Kawabata, Nobuyuki Fujita and Shinjiro Kaneko
J. Clin. Med. 2025, 14(12), 4182; https://doi.org/10.3390/jcm14124182 - 12 Jun 2025
Viewed by 470
Abstract
Background: A pseudotumor adjacent to the odontoid has been reported to be a non-neoplastic mass that is mainly associated with atlantoaxial instability. Methods: Case report. Results: A 72-year-old woman presented to our clinic with a chief complaint of bilateral fine motor dysfunction and [...] Read more.
Background: A pseudotumor adjacent to the odontoid has been reported to be a non-neoplastic mass that is mainly associated with atlantoaxial instability. Methods: Case report. Results: A 72-year-old woman presented to our clinic with a chief complaint of bilateral fine motor dysfunction and gait disturbance. She had rheumatoid arthritis as a comorbidity. Physical examination revealed bilateral hand fine motor dysfunction and signs of myelopathy, including hyperreflexia of the deep tendon reflexes in the lower extremities. Magnetic resonance imaging (MRI) showed a retro-odontoid pseudotumor. Surgery was proposed to the patient, but she did not wish to undergo surgery at this time. At a follow-up visit approximately one year after the initial visit, she complained of the progression of the bilateral hand fine motor dysfunction and gait disturbance. MRI demonstrated a pseudotumor in the space anterior to the odontoid process, indicating that the localization of the pseudotumor around the odontoid process changed from the posterior space to the anterior space in its natural course. Conclusions: The speculated sequential mechanism of the change in the location of the pseudotumor from the posterior space to anterior space to the odontoid process in the natural course is as follows: As the rheumatoid arthritis progressed, the C1-2 joint was immobilized in the dislocated position, and as a result, the retro-odontoid pseudotumor disappeared due to immobilization of the C1-2 joint. Following the disappearance of the retro-odontoid pseudotumor, the odontoid process shifted backward owing to rupture of the transverse annular ligament. Consequently, a new space appeared in front of the odontoid process. Subsequently, damage to the apical and alar ligaments resulted in pseudotumor formation in the new space. Considering our case, the formation of an antero-odontoid pseudotumor occurs only in limited cases, with extreme progression of the pathology. Most cases of retro-odontoid pseudotumors are treated by surgery before such a progression; therefore, we consider that such a case has not yet been reported in the literature. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

17 pages, 733 KiB  
Review
The Temporal Structure of the Running Cycle, an Essential Element in the Analysis: A Critical Review
by Felipe Inostroza-Ríos, Pablo Merino-Muñoz, Celso Sánchez-Ramírez, Alejandro Bustamante Garrido, Jorge Pérez-Contreras, Jorge Cancino-Jimenez, David Arriagada-Tarifeño, Esteban Aedo-Muñoz and Ciro José Brito
Biomechanics 2025, 5(2), 40; https://doi.org/10.3390/biomechanics5020040 - 12 Jun 2025
Viewed by 552
Abstract
The running cycle is distinguished from the gait cycle by the presence of a flight phase and distinct biomechanical characteristics. Despite existing frameworks for the temporal segmentation of running, these models remain underutilized in comprehensive biomechanical analyses, particularly for delineating phases, subphases, and [...] Read more.
The running cycle is distinguished from the gait cycle by the presence of a flight phase and distinct biomechanical characteristics. Despite existing frameworks for the temporal segmentation of running, these models remain underutilized in comprehensive biomechanical analyses, particularly for delineating phases, subphases, and key events. This study aims to provide a review of historical and contemporary temporal models of the running cycle and to introduce a unified structure designed to enhance analytical precision. The proposed framework divides the running cycle into two primary phases: (a) contact (subdivided into braking and propulsion subphases) and (b) flight, together with three critical events: (1) initial contact, (2) transition of braking–propulsion, (3) toe-off. While leg swing is not considered a phase in this framework due to temporal overlap with other phases, its recognized importance in running mechanics warrants its integrated analysis under the proposed temporal phase delineation. Additionally, methodologies for identifying these events through dynamometry and motion capture are evaluated, emphasizing their role in contextualizing kinetic and kinematic data. By integrating this temporal structure, the study aims to standardize biomechanical assessments of running technique, fostering more consistent comparisons across studies. Such integration has the potential to not only refine interpretations of running mechanics but also to enable practical advancements in athletic training, injury mitigation, and performance optimization. Full article
(This article belongs to the Special Issue Biomechanics in Sport, Exercise and Performance)
Show Figures

Figure 1

21 pages, 2944 KiB  
Article
Detection of Gait Events Using Ear-Worn IMUs During Functional Movement Tasks
by Terry Fawden, Iwan Vaughan Roberts, Sarah Goldin, Yash Sharma, Henry Dunne, Thomas Stone and Manohar Bance
Sensors 2025, 25(12), 3629; https://doi.org/10.3390/s25123629 - 9 Jun 2025
Viewed by 475
Abstract
Complex walking tasks such as turning or walking with head movements are frequently used to assess dysfunction in an individual’s vestibular, nervous and musculoskeletal systems. Compared to other methods, wearable inertial measurement units (IMUs) allow quantitative analysis of these tasks in less restricted [...] Read more.
Complex walking tasks such as turning or walking with head movements are frequently used to assess dysfunction in an individual’s vestibular, nervous and musculoskeletal systems. Compared to other methods, wearable inertial measurement units (IMUs) allow quantitative analysis of these tasks in less restricted settings, allowing for a more scalable clinical measurement tool with better ecological validity. This study investigates the use of ear-worn IMUs to identify gait events during complex walking tasks, having collected data on 68 participants with a diverse range of ages and movement-related conditions. The performance of an existing gait event detection algorithm was compared with a new one designed to be more robust to lateral head movements. Our analysis suggests that while both algorithms achieve high initial contact sensitivity across all walking tasks, our new algorithm attains higher terminal contact sensitivity for turning and walking with horizontal head turns, resulting in more accurate estimates of stance and swing times. This provides scope to enable more detailed assessment of complex walking tasks during clinical testing and in daily life settings. Full article
Show Figures

Figure 1

20 pages, 1238 KiB  
Article
Association of Oral Frailty with Physical Frailty and Malnutrition in Patients on Peritoneal Dialysis
by Yu Kobayashi, Tomomi Matsuoka, Ryo Yamaguchi, Kiyomi Ichijo, Miya Suzuki, Tomoyuki Saito, Kimihiro Igarashi, Tokiko Sato, Hiroyuki Takashima and Masanori Abe
Nutrients 2025, 17(12), 1950; https://doi.org/10.3390/nu17121950 - 6 Jun 2025
Viewed by 700
Abstract
Background: Oral frailty is a state between normal oral function and oral hypofunction. Oral frailty progresses to oral hypofunction and dysphagia, which leads to malnutrition, and then to physical frailty and sarcopenia. Oral frailty is reported to be associated with physical frailty [...] Read more.
Background: Oral frailty is a state between normal oral function and oral hypofunction. Oral frailty progresses to oral hypofunction and dysphagia, which leads to malnutrition, and then to physical frailty and sarcopenia. Oral frailty is reported to be associated with physical frailty and malnutrition in hemodialysis patients, but there have been no reports on peritoneal dialysis (PD) patients. Methods: This prospective cohort study investigated the associations of oral frailty with physical frailty, sarcopenia, and malnutrition in patients on PD. Patients were divided into an oral frailty group and a non-oral frailty group according to the Oral Frailty Index-8. Patients were assessed for physical frailty, sarcopenia, and malnutrition at baseline and 1 year later, and changes in each measure were compared between the two groups. Physical frailty was assessed using the Revised Japanese version of the Cardiovascular Health Study Criteria (Revised J-CHS) and the FRAIL scale. Sarcopenia was assessed using the diagnostic criteria reported by the Asian Working Group for Sarcopenia in 2019 (AWGS2019 criteria) and the Screening Tool for Sarcopenia Combined with Calf Circumference (SARC-CalF), skeletal muscle index (SMI), calf circumference (CC), grip strength, and gait speed. Nutritional status was assessed with the Short-Form Mini-Nutritional Assessment (MNA-SF), the Malnutrition Universal Screening Tool (MUST), the Global Leadership Initiative on Malnutrition (GLIM) criteria, weight, and body mass index (BMI). Results: Of the 58 eligible patients, 51 completed the study. The oral frailty group was significantly older and had slower gait speed, fewer teeth, higher intact parathyroid hormone, higher C-reactive protein, higher frequency of cardiovascular disease, and lower employment at baseline. The oral frailty group had significantly worse physical frailty (Revised J-CHS, p = 0.047; FRAIL scale, p = 0.012), sarcopenia (SMI, p = 0.018; CC, p = 0.002), and nutritional status (MNA-SF, p = 0.029; MUST, p = 0.005; GLIM criteria, p = 0.022; weight, p < 0.001; BMI, p < 0.001). However, there were no significant differences in the worsening of sarcopenia (AWGS2019 criteria, SARC-CalF, grip strength, and gait speed). Conclusions: Oral frailty in patients on PD was associated with the development and progression of physical frailty and malnutrition, and may be associated with the development and progression of sarcopenia. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

9 pages, 724 KiB  
Article
Usefulness of the Phase Angle in Evaluating Locomotive Syndrome in Cancer Patients
by Ryoga Kashima, Ryo Yoshikawa, Wataru Saho, Yasumitsu Fujii, Risa Harada, Daisuke Makiura, Daisuke Tatebayashi, Katsuya Fujiwara, Mayu Mizuta, Junichiro Inoue and Yoshitada Sakai
J. Clin. Med. 2025, 14(11), 3980; https://doi.org/10.3390/jcm14113980 - 5 Jun 2025
Viewed by 456
Abstract
Background: Locomotive syndrome (LS), a condition characterized by impaired mobility due to locomotive organ dysfunction, is highly prevalent among patients with cancer. The phase angle (PhA), measured via bioelectrical impedance analysis (BIA), reflects cellular health and nutritional status. This study aimed to investigate [...] Read more.
Background: Locomotive syndrome (LS), a condition characterized by impaired mobility due to locomotive organ dysfunction, is highly prevalent among patients with cancer. The phase angle (PhA), measured via bioelectrical impedance analysis (BIA), reflects cellular health and nutritional status. This study aimed to investigate the association between LS and the PhA in patients with cancer. Methods: This cross-sectional study included hospitalized patients who underwent cancer treatment. The assessed variables included age, sex, body mass index (BMI), gait speed, grip strength, PhA, and the outcomes of LS risk assessment using the stand-up test, two-step test, and the 25-Geriatric Locomotive Function Scale (GLFS25). Results: A total of 190 patients (57 females, 133 males; mean age, 62.6 ± 17.2 years) were analyzed. The PhA was significantly negatively correlated with the LS stage (rs = −0.507, p < 0.001). Similarly, a significant negative correlation was observed between the PhA and each LS risk test, namely, the stand-up test, two-step test, and GLFS25. Furthermore, the PhA was identified as an independent and significant factor associated with LS progression (odds ratio, 0.361; 95% confidence interval, 0.221–0.588; p < 0.001). More effective and rapid than completing the full range of LS risk tests, measuring the PhA represents a convenient and practical tool for the early screening of mobility decline. Conclusions: The PhA is a simple and effective parameter for assessing mobility decline in patients with cancer. It is a potential clinical indicator for initiating rehabilitation interventions aimed at preventing the onset and progression of LS. Full article
(This article belongs to the Special Issue Recent Progress in Rehabilitation Medicine—3rd Edition)
Show Figures

Figure 1

Back to TopTop