Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = fuzzy time series

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 3162 KB  
Review
A Review on Fuzzy Cognitive Mapping: Recent Advances and Algorithms
by Gonzalo Nápoles, Agnieszka Jastrzebska, Isel Grau, Yamisleydi Salgueiro and Maikel Leon
Big Data Cogn. Comput. 2026, 10(1), 22; https://doi.org/10.3390/bdcc10010022 - 6 Jan 2026
Viewed by 345
Abstract
Fuzzy Cognitive Maps (FCMs) are a type of recurrent neural network with built-in meaning in their architecture, originally devoted to modeling and scenario simulation tasks. These knowledge-based neural systems support feedback loops that handle static and temporal data. Over the last decade, there [...] Read more.
Fuzzy Cognitive Maps (FCMs) are a type of recurrent neural network with built-in meaning in their architecture, originally devoted to modeling and scenario simulation tasks. These knowledge-based neural systems support feedback loops that handle static and temporal data. Over the last decade, there has been a noticeable increase in the number of contributions dedicated to developing FCM-based models and algorithms for structured pattern classification and time series forecasting. These models are attractive since they have proven competitive compared to black boxes while providing highly desirable interpretability features. Equally important are the theoretical studies that have significantly advanced our understanding of the convergence behavior and approximation capabilities of FCM-based models. These studies can challenge individuals who are not experts in Mathematics or Computer Science. As a result, we can occasionally find flawed FCM studies that fail to benefit from the theoretical progress experienced by the field. To address all these challenges, this survey paper aims to cover relevant theoretical and algorithmic advances in the field, while providing clear interpretations and practical pointers for both practitioners and researchers. Additionally, we will survey existing tools and software implementations, highlighting their strengths and limitations towards developing FCM-based solutions. Full article
Show Figures

Figure 1

31 pages, 2487 KB  
Article
Enhancing Predictive Performance of LSTM–Attention Models for Investment Risk Forecasting
by Amina Ladhari and Heni Boubaker
Risks 2026, 14(1), 13; https://doi.org/10.3390/risks14010013 - 5 Jan 2026
Viewed by 280
Abstract
For many decades, time-series forecasting has been applied to different problems by scientists and industries. Many models have been introduced for the purpose of forecasting. These advancements have significantly improved the accuracy and reliability of predictions, especially in complex scenarios where traditional methods [...] Read more.
For many decades, time-series forecasting has been applied to different problems by scientists and industries. Many models have been introduced for the purpose of forecasting. These advancements have significantly improved the accuracy and reliability of predictions, especially in complex scenarios where traditional methods struggled. As data availability continues to expand, the integration of machine learning techniques is likely to further enhance forecasting capabilities across various fields. Today, hybrid techniques are gaining popularity, as they combine the advantages of different approaches to deliver improved predictive performance and more advanced visualization analytics for decision support. These hybrid approaches can provide better prediction, and at the same time, they can develop a more sophisticated set of visualization analytics for decision support. Recently, the integration of cross-entropy, fuzzy logic, and attention mechanisms in hybrid forecasting models has enhanced their ability to capture complex and uncertain patterns in financial and energy markets. In this study, we propose a hybrid ANN–LSTM deep learning model optimized with cross-entropy, fuzzy logic, and an attention mechanism to enhance the forecasting of financial and energy time series, specifically Ethereum and natural gas prices. Our models combine the feature extraction strength of ANN with the temporal learning of LSTM, while cross-entropy improves convergence, fuzzy logic handles uncertainty, and attention refines feature weighting. Since inaccurate forecasts can lead to greater estimation uncertainty and increased financial and operational risk, improving predictive reliability is essential for effective risk mitigation. These techniques prove effective not only in improving estimation accuracy but also in minimizing financial risks and supporting more informed investment decisions. Full article
(This article belongs to the Special Issue Artificial Intelligence Risk Management)
Show Figures

Figure 1

26 pages, 4017 KB  
Article
Major Depressive Disorder Diagnosis Using Time–Frequency Embeddings Based on Deep Metric Learning and Neuro-Fuzzy from EEG Signals
by A-Hyeon Jo and Keun-Chang Kwak
Appl. Sci. 2026, 16(1), 324; https://doi.org/10.3390/app16010324 - 28 Dec 2025
Cited by 1 | Viewed by 349
Abstract
Major depressive disorder (MDD) is a prevalent mental health condition that requires accurate and objective diagnostic tools. Electroencephalogram (EEG) signals provide valuable insights into brain activity and have been widely studied for mental disorder classification. In this study, we propose a novel DML [...] Read more.
Major depressive disorder (MDD) is a prevalent mental health condition that requires accurate and objective diagnostic tools. Electroencephalogram (EEG) signals provide valuable insights into brain activity and have been widely studied for mental disorder classification. In this study, we propose a novel DML + ANFIS framework that integrates deep metric learning (DML) with an adaptive neuro-fuzzy inference system (ANFIS) for the automated diagnosis of major depressive disorder (MDD) using EEG time series signals. Time–frequency features are first extracted from raw EEG signals using the short-time Fourier transform (STFT) and the continuous wavelet transform (CWT). These features are then embedded into a low-dimensional space using a DML approach, which enhances the inter-class separability between MDD and healthy control (HC) groups in the feature space. The resulting time–frequency feature embeddings are finally classified using an ANFIS, which integrates fuzzy logic-based nonlinear inference with deep metric learning. The proposed DML + ANFIS framework was evaluated on a publicly available EEG dataset comprising MDD patients and healthy control (HC) subjects. Under subject-dependent evaluation, the STFT-based DML + ANFIS and CWT-based models achieved an accuracy of 92.07% and 98.41% and an AUC of 97.28% and 99.50%, respectively. Additional experiments using subject-independent cross-validation demonstrated reduced but consistent performance trends, thus indicating the framework’s ability to generalize to unseen subjects. Comparative experiments showed that the proposed approach generally outperformed conventional deep learning models, including Bi-LSTM, 2D CNN, and DML + NN, under identical experimental conditions. Notably, the DML module compressed 1280-dimensional EEG features into a 10-dimensional embedding, thus achieving substantial dimensionality reduction while preserving discriminative information. These results suggest that the proposed DML + ANFIS framework provides an effective balance between classification performance, generalization capability, and computational efficiency for EEG-based MDD diagnosis. Full article
(This article belongs to the Special Issue AI-Based Biomedical Signal and Image Processing)
Show Figures

Figure 1

20 pages, 3862 KB  
Article
Hybrid ANFIS–MPA and FFNN–MPA Models for Bitcoin Price Forecasting
by Ceren Baştemur Kaya, Ebubekir Kaya and Eyüp Sıramkaya
Biomimetics 2025, 10(12), 827; https://doi.org/10.3390/biomimetics10120827 - 10 Dec 2025
Viewed by 602
Abstract
This study introduces two hybrid forecasting models that integrate the Marine Predators Algorithm (MPA) with Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Feed-Forward Neural Networks (FFNN) for short-term Bitcoin price prediction. Daily Bitcoin data from 2022 were converted into supervised time-series structures with multiple [...] Read more.
This study introduces two hybrid forecasting models that integrate the Marine Predators Algorithm (MPA) with Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Feed-Forward Neural Networks (FFNN) for short-term Bitcoin price prediction. Daily Bitcoin data from 2022 were converted into supervised time-series structures with multiple input configurations. The proposed hybrid models were evaluated against six well-known metaheuristic algorithms commonly used for training intelligent forecasting systems. The results show that MPA consistently yields lower prediction errors, faster convergence, and more stable optimization behavior compared with alternative algorithms. Both ANFIS-MPA and FFNN-MPA maintained their advantage across all tested structures, demonstrating reliable performance under varying model complexities. All experiments were repeated multiple times, and the hybrid approaches exhibited low variance, indicating robust and reproducible behavior. Overall, the findings highlight the effectiveness of MPA as an optimizer for improving the predictive performance of neuro-fuzzy and neural network models in financial time-series forecasting. Full article
Show Figures

Figure 1

25 pages, 3692 KB  
Article
Design and Simulation of Suspension Leveling System for Small Agricultural Machinery in Hilly and Mountainous Areas
by Peng Huang, Qiang Luo, Quan Liu, Yao Peng, Shijie Zheng and Jiukun Liu
Sensors 2025, 25(24), 7447; https://doi.org/10.3390/s25247447 - 7 Dec 2025
Viewed by 495
Abstract
To address issues such as chassis attitude deviation, reduced operational efficiency, and diminished precision when agricultural machinery operates in complex terrains—including steep slopes and fragmented plots in hilly and mountainous regions—a servo electric cylinder-based active suspension levelling system has been designed. Real-time dynamic [...] Read more.
To address issues such as chassis attitude deviation, reduced operational efficiency, and diminished precision when agricultural machinery operates in complex terrains—including steep slopes and fragmented plots in hilly and mountainous regions—a servo electric cylinder-based active suspension levelling system has been designed. Real-time dynamic control is achieved through a fuzzy PID algorithm. Firstly, the suspension’s mechanical structure and key parameters were determined, employing a ‘servo electric cylinder-spring-shock absorber series’ configuration to achieve load support and passive vibration damping. Secondly, a kinematic and dynamic model of the quarter-link suspension was established. Finally, Simulink simulations were conducted to model the agricultural machinery traversing mountainous, uneven terrain at segmented stable operating speeds, thereby validating the suspension’s control performance. Simulation results demonstrate that the system maintains chassis height error within ±0.05 m, chassis height change rate within ±0.2 m/s, and response time ≤ 0.8 s. It rapidly and effectively counteracts terrain disturbances, achieving precise chassis height control. This provides theoretical support for designing whole-vehicle levelling systems for small agricultural machinery in hilly and mountainous terrains. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

18 pages, 1233 KB  
Article
A New Hybrid Recurrent Intuitionistic Fuzzy Time Series Forecasting Method
by Turan Cansu, Eren Bas, Tamer Akkan and Erol Egrioglu
Forecasting 2025, 7(4), 71; https://doi.org/10.3390/forecast7040071 - 25 Nov 2025
Viewed by 728
Abstract
Classical time series methods are widely employed to analyze linear time series with a limited number of observations; however, their effectiveness relies on several strict assumptions. In contrast, artificial neural networks are particularly suitable for forecasting problems due to their data-driven nature and [...] Read more.
Classical time series methods are widely employed to analyze linear time series with a limited number of observations; however, their effectiveness relies on several strict assumptions. In contrast, artificial neural networks are particularly suitable for forecasting problems due to their data-driven nature and ability to address both linear and nonlinear challenges. Furthermore, recurrent neural networks feed the output back into the network as input, utilizing this feedback mechanism to enrich the information provided to the model. This study proposes a novel recurrent hybrid intuitionistic forecasting method utilizing a modified pi–sigma neural network, principal component analysis (PCA), and simple exponential smoothing (SES). In the proposed framework, lagged time series variables and principal components derived from the membership and non-membership values of an intuitionistic fuzzy clustering method are used as inputs. A modified particle swarm optimization (PSO) algorithm is employed to train this new hybrid network. By integrating PCA, modified pi–sigma neural networks (MPS-ANNs), and SES within a recurrent hybrid structure, the model simultaneously captures linear and nonlinear dynamics, thereby enhancing forecasting accuracy and stability. The performance of the proposed model is evaluated using diverse financial and environmental datasets, including CMC-Open (I–IV), NYC water consumption, OECD freshwater use, and ROW series. Comparative results indicate that the proposed method achieves superior accuracy and stability compared to other fuzzy-based approaches. Full article
(This article belongs to the Section AI Forecasting)
Show Figures

Figure 1

26 pages, 6829 KB  
Article
Research on Machine Tool Thermal Error Compensation Based on an Optimized LSTM Model
by Xiangrui Zhao, Zhiwei Hu, Jonathan Tang and Zhenlei Chen
Actuators 2025, 14(12), 567; https://doi.org/10.3390/act14120567 - 23 Nov 2025
Viewed by 1068
Abstract
Thermal error is a significant factor affecting the machining accuracy of machine tools, and error compensation is an economical and effective method to improve machine tool accuracy. However, traditional modeling methods face challenges such as insufficient nonlinear mapping capability and difficulty in parameter [...] Read more.
Thermal error is a significant factor affecting the machining accuracy of machine tools, and error compensation is an economical and effective method to improve machine tool accuracy. However, traditional modeling methods face challenges such as insufficient nonlinear mapping capability and difficulty in parameter optimization when processing time-series data. This paper establishes a thermal error model using a Long Short-Term Memory (LSTM) neural network optimized by the Particle Swarm Optimization (PSO) algorithm (PSO-LSTM). Through thermal characteristic experiments, thermal error data and temperature rise data at various points of the T55II-500 CNC machine tool during actual machining were collected. First, fuzzy clustering and global sensitivity analysis were employed to identify the temperature-sensitive points of the machine tool. Using the temperature rise data of these sensitive points and the thermal errors of machined workpieces as data samples and optimizing the LSTM prediction model with the PSO algorithm, a PSO-LSTM thermal error prediction model was established. To verify its superiority and practicality, this paper conducts a comparative analysis with traditional thermal error prediction models based on Backpropagation (BP) neural network, Long Short-Term Memory (LSTM) network, Multiple Linear Regression (MLR), and Multivariate Nonlinear Regression (MNR). The results show that the PSO-LSTM model outperforms the other models in terms of relative error, average residual, maximum residual, and mean squared error. On this basis, a real-time thermal error compensation system was developed. Under the conditions of near-constant temperature (19.34–20.36 °C), warm natural ventilation (20.63–22.13 °C), and a wider variable temperature range (18.64–28.24 °C), the compensated thermal errors converge from 52 μm, 57 μm, and 67 μm to 4–12 μm, 6–11 μm, and 5–9 μm, respectively, with precision improved by 86%, 88%, and 86%. This effectively reduces the impact of thermal errors and improves the machining accuracy of the machine tool. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

2076 KB  
Proceeding Paper
Entropy Knows You’re Low: Wearable Signal Coupling Patterns Reveal Glucose State
by Salma Khurshe, Thilini Savindya Karunarathna, Cleber Franca Carvalho, Nhung Huyen Hoang and Zilu Liang
Eng. Proc. 2025, 118(1), 96; https://doi.org/10.3390/ECSA-12-26590 - 7 Nov 2025
Viewed by 76
Abstract
Wearable sensors enable continuous monitoring of physiological signals, offering opportunities for the early detection of metabolic dysfunction. In this study, we propose the use of cross-fuzzy entropy (X-FuzzEn) to quantify the dynamic coupling between wearable-derived time series, i.e., heart rate (HR), electrodermal activity [...] Read more.
Wearable sensors enable continuous monitoring of physiological signals, offering opportunities for the early detection of metabolic dysfunction. In this study, we propose the use of cross-fuzzy entropy (X-FuzzEn) to quantify the dynamic coupling between wearable-derived time series, i.e., heart rate (HR), electrodermal activity (EDA), and body acceleration (ACC), across four clinically relevant glucose ranges. Analysis revealed differences in signal coordination across both metabolic and demographic groups. Prediabetic individuals exhibited elevated X-FuzzEn between HR and EDA during hypoglycemia compared to normoglycemic individuals, indicating potential autonomic dysregulation. Males showed lower X-FuzzEn compared to females, indicating more coherent and adaptive autonomic regulation. A similar pattern was observed in HR–ACC coupling, with lower X-FuzzEn in males during hypoglycemia. These findings suggest that cross-fuzzy entropy may serve as a sensitive, non-invasive biomarker of physiological resilience and autonomic stability in response to metabolic stress. Full article
Show Figures

Figure 1

23 pages, 2258 KB  
Article
A Reputation-Enhanced Shapley–FAHP Method for Multi-Dimensional Food Safety Evaluation
by Xiaobo Yang, Hanning Wei, Binghui Guo, Min Zuo, Lipo Mo and Haiwei Gao
Appl. Sci. 2025, 15(19), 10787; https://doi.org/10.3390/app151910787 - 7 Oct 2025
Viewed by 675
Abstract
Ensuring food safety in complex supply chains requires evaluation frameworks that integrate multiple indicators, account for their interdependencies, and incorporate historical performance. This study proposes a novel RM–Shapley–FAHP framework that combines the Fuzzy Analytic Hierarchy Process, Shapley value contribution analysis, and a reputation [...] Read more.
Ensuring food safety in complex supply chains requires evaluation frameworks that integrate multiple indicators, account for their interdependencies, and incorporate historical performance. This study proposes a novel RM–Shapley–FAHP framework that combines the Fuzzy Analytic Hierarchy Process, Shapley value contribution analysis, and a reputation decay mechanism to construct a dynamic, multi-year assessment model. The framework evaluates six governance subsystems, mitigates indicator redundancy, and links past performance to current risk posture. Applied to a leading food enterprise over three years, the method demonstrated superior consistency, interpretability, and operational relevance compared to FAHP, entropy weighting, and equal-weight baselines. The results demonstrate that RM–Shapley–FAHP framework effectively supports balanced development in food safety governance by capturing temporal dynamics and interdependencies, offering interpretable and operationally relevant guidance for decision makers. In future work, this framework may be extended with machine learning to improve adaptability for multi-dimensional and time-series evaluations, noted here as a research prospect rather than a present contribution. Full article
Show Figures

Figure 1

37 pages, 905 KB  
Review
Application of Fuzzy Logic Techniques in Solar Energy Systems: A Review
by Siviwe Maqekeni, KeChrist Obileke, Odilo Ndiweni and Patrick Mukumba
Appl. Syst. Innov. 2025, 8(5), 144; https://doi.org/10.3390/asi8050144 - 30 Sep 2025
Cited by 2 | Viewed by 1776
Abstract
Fuzzy logic has been applied to a wide range of problems, including process control, object recognition, image and signal processing, prediction, classification, decision-making, optimization, and time series analysis. These apply to solar energy systems. Though experts in renewable energy prefer fuzzy logic techniques, [...] Read more.
Fuzzy logic has been applied to a wide range of problems, including process control, object recognition, image and signal processing, prediction, classification, decision-making, optimization, and time series analysis. These apply to solar energy systems. Though experts in renewable energy prefer fuzzy logic techniques, their contribution to the decision-making process of solar energy systems lies in the possibility of illustrating risk factors and introducing the concepts of linguistic variables of data from solar energy applications. In solar energy systems, the primary beneficiaries and audience of the fuzzy logic techniques are solar energy policy makers, as it concerns decision-making models, ranking of criteria or weights, and assessment of the potential location of the installation of solar energy plants, depending on the case. In a real-world scenario, fuzzy logic allows easy and efficient controller configuration in a non-linear control system, such as a solar panel. This study attempts to review the role and contribution of fuzzy logic in solar energy based on its applications. The findings from the review revealed that the fuzzy logic application identifies and detects faults in solar energy systems as well as in the optimization of energy output and the location of solar energy plants. In addition, fuzzy model (predicting), hybrid model (simulating performance), and multi-criteria decision-making (MCDM) are components of fuzzy logic techniques. As the review indicated, these are useful as a solution to the challenges of solar energy systems. Importantly, the integration and incorporation of fuzzy logic and neural networks should be recommended for the efficient and effective performance of solar energy systems. Full article
Show Figures

Figure 1

21 pages, 6814 KB  
Article
Urban Land Subsidence Analyzed Through Time-Series InSAR Coupled with Refined Risk Modeling: A Wuhan Case Study
by Lv Zhou, Liqi Liang, Quanyu Chen, Haotian He, Hongming Li, Jie Qin, Fei Yang, Xinyi Li and Jie Bai
ISPRS Int. J. Geo-Inf. 2025, 14(9), 320; https://doi.org/10.3390/ijgi14090320 - 22 Aug 2025
Viewed by 2271
Abstract
Due to extensive soft soil and high human activities, Wuhan is a hotspot for land subsidence. This study used the time-series InSAR to calculate the spatial and temporal distribution map of subsidence in Wuhan and analyze the causes of subsidence. An improved fuzzy [...] Read more.
Due to extensive soft soil and high human activities, Wuhan is a hotspot for land subsidence. This study used the time-series InSAR to calculate the spatial and temporal distribution map of subsidence in Wuhan and analyze the causes of subsidence. An improved fuzzy analytic hierarchy process (GD-FAHP) was proposed and integrated with the Entropy Weight Method (EWM) to assess the hazard and vulnerability of land subsidence using multiple evaluation factors, thereby deriving the spatial distribution characteristics of subsidence risk in Wuhan. Results indicated the following: (1) Maximum subsidence rates reached −49 mm/a, with the most severe deformation localized in Hongshan District, exhibiting a cumulative displacement of −135 mm. Comparative validation between InSAR results and leveling was conducted, demonstrating the reliability of InSAR monitoring. (2) Areas with frequent urban construction largely coincided with subsidence locations. In addition, the analysis indicated that rainfall and hydrogeological conditions were also correlated with land subsidence. (3) The proposed risk assessment model effectively identified high-risk areas concentrated in central urban zones, particularly the Hongshan and Wuchang Districts. This research establishes a methodological framework for urban hazard mitigation and provides actionable insights for subsidence risk reduction strategies. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation, 2nd Edition)
Show Figures

Figure 1

19 pages, 34418 KB  
Article
Rapid Flood Mapping and Disaster Assessment Based on GEE Platform: Case Study of a Rainstorm from July to August 2024 in Liaoning Province, China
by Wei Shan, Jiawen Liu and Ying Guo
Water 2025, 17(16), 2416; https://doi.org/10.3390/w17162416 - 15 Aug 2025
Viewed by 1327
Abstract
Intensified by climate change and anthropogenic activities, flood disasters necessitate rapid and accurate mapping for effective disaster management. This study develops an integrated framework leveraging synthetic aperture radar (SAR) and cloud computing to enhance flood monitoring, with a focus on a 2024 extreme [...] Read more.
Intensified by climate change and anthropogenic activities, flood disasters necessitate rapid and accurate mapping for effective disaster management. This study develops an integrated framework leveraging synthetic aperture radar (SAR) and cloud computing to enhance flood monitoring, with a focus on a 2024 extreme rainfall event in Liaoning Province, China. Utilizing the Google Earth Engine (GEE) platform, we combine three complementary techniques: (1) Otsu automatic thresholding, for efficient extraction of surface water extent from Sentinel-1 GRD time series (154 scenes, January–October 2024), achieving processing times under 2 min with >85% open-water accuracy; (2) random forest (RF) classification, integrating multi-source features (SAR backscatter, terrain parameters from 30 m SRTM DEM, NDVI phenology) to distinguish permanent water bodies, flooded farmland, and urban areas, attaining an overall accuracy of 92.7%; and (3) Fuzzy C-Means (FCM) clustering, incorporating backscatter ratio and topographic constraints to resolve transitional “mixed-pixel” ambiguities in flood boundaries. The RF-FCM synergy effectively mapped submerged agricultural land and urban spill zones, while the Otsu-derived flood frequency highlighted high-risk corridors (recurrence > 10%) along the riverine zones and reservoir. This multi-algorithm approach provides a scalable, high-resolution (10 m) solution for near-real-time flood assessment, supporting emergency response and sustainable water resource management in affected basins. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

28 pages, 3266 KB  
Article
Wavelet Multiresolution Analysis-Based Takagi–Sugeno–Kang Model, with a Projection Step and Surrogate Feature Selection for Spectral Wave Height Prediction
by Panagiotis Korkidis and Anastasios Dounis
Mathematics 2025, 13(15), 2517; https://doi.org/10.3390/math13152517 - 5 Aug 2025
Cited by 1 | Viewed by 831
Abstract
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a [...] Read more.
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a comprehensive predictive methodology for wave height prediction by integrating novel Takagi–Sugeno–Kang fuzzy models within a multiresolution analysis framework. The multiresolution analysis emerges via wavelets, since they are prominent models characterised by their inherent multiresolution nature. The maximal overlap discrete wavelet transform is utilised to generate the detail and resolution components of the time series, resulting from this multiresolution analysis. The novelty of the proposed model lies on its hybrid training approach, which combines least squares with AdaBound, a gradient-based algorithm derived from the deep learning literature. Significant wave height prediction is studied as a time series problem, hence, the appropriate inputs to the model are selected by developing a surrogate-based wrapped algorithm. The developed wrapper-based algorithm, employs Bayesian optimisation to deliver a fast and accurate method for feature selection. In addition, we introduce a projection step, to further refine the approximation capabilities of the resulting predictive system. The proposed methodology is applied to a real-world time series pertaining to spectral wave height and obtained from the Poseidon operational oceanography system at the Institute of Oceanography, part of the Hellenic Center for Marine Research. Numerical studies showcase a high degree of approximation performance. The predictive scheme with the projection step yields a coefficient of determination of 0.9991, indicating a high level of accuracy. Furthermore, it outperforms the second-best comparative model by approximately 49% in terms of root mean squared error. Comparative evaluations against powerful artificial intelligence models, using regression metrics and hypothesis test, underscore the effectiveness of the proposed methodology. Full article
(This article belongs to the Special Issue Applications of Mathematics in Neural Networks and Machine Learning)
Show Figures

Figure 1

32 pages, 7263 KB  
Article
Time Series Prediction and Modeling of Visibility Range with Artificial Neural Network and Hybrid Adaptive Neuro-Fuzzy Inference System
by Okikiade Adewale Layioye, Pius Adewale Owolawi and Joseph Sunday Ojo
Atmosphere 2025, 16(8), 928; https://doi.org/10.3390/atmos16080928 - 31 Jul 2025
Cited by 1 | Viewed by 939
Abstract
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) [...] Read more.
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) techniques for several sub-tropical locations. The initial method used for the prediction of visibility in this study was the SVRA, and the results were enhanced using the ANN and ANFIS techniques. Throughout the study, neural networks with various algorithms and functions were trained with different atmospheric parameters to establish a relationship function between inputs and visibility for all locations. The trained neural models were tested and validated by comparing actual and predicted data to enhance visibility prediction accuracy. Results were compared to assess the efficiency of the proposed systems, measuring the root mean square error (RMSE), coefficient of determination (R2), and mean bias error (MBE) to validate the models. The standard statistical technique, particularly SVRA, revealed that the strongest functional relationship was between visibility and RH, followed by WS, T, and P, in that order. However, to improve accuracy, this study utilized back propagation and hybrid learning algorithms for visibility prediction. Error analysis from the ANN technique showed increased prediction accuracy when all the atmospheric variables were considered together. After testing various neural network models, it was found that the ANFIS model provided the most accurate predicted results, with improvements of 31.59%, 32.70%, 30.53%, 28.95%, 31.82%, and 22.34% over the ANN for Durban, Cape Town, Mthatha, Bloemfontein, Johannesburg, and Mahikeng, respectively. The neuro-fuzzy model demonstrated better accuracy and efficiency by yielding the finest results with the lowest RMSE and highest R2 for all cities involved compared to the ANN model and standard statistical techniques. However, the statistical performance analysis between measured and estimated visibility indicated that the ANN produced satisfactory results. The results will find applications in Optical Wireless Communication (OWC), flight operations, and climate change analysis. Full article
(This article belongs to the Special Issue Atmospheric Modeling with Artificial Intelligence Technologies)
Show Figures

Figure 1

11 pages, 493 KB  
Proceeding Paper
PV Power Generation Forecasting with Fuzzy Inference Systems
by Cinthia Rodriguez, Marco Pacheco, Marley Vellasco, Manoela Kohler and Thiago Medeiros
Eng. Proc. 2025, 101(1), 5; https://doi.org/10.3390/engproc2025101005 - 23 Jul 2025
Viewed by 699
Abstract
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and [...] Read more.
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and evaluated using a sliding window technique and a validation set. The development of the study utilized data collected from 1 May 2018 to 30 June 2018 at the Universidad Autónoma de Occidente campus. The dataset was analyzed in order to identify any discernible trends, seasonal patterns, and instances of stationarity. A comparison of the six models revealed their ability to predict PV power generation, with the model with 13 lags and five fuzzy sets demonstrating results with a reasonable trade-off between training and test performance. The model achieved an R-squared value of 0.8124 and an RMSE of 29.7025 kWh in the test data, indicating that the predictions were closely aligned with the actual values. However, this suggests that the model may be overly simple or may require additional data to more accurately capture the inherent variability of the data. The paper concludes with a discussion of the model’s limitations and potential avenues for future research. Full article
(This article belongs to the Proceedings of The 11th International Conference on Time Series and Forecasting)
Show Figures

Figure 1

Back to TopTop