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Abstract

Fuzzy logic has been applied to a wide range of problems, including process control,
object recognition, image and signal processing, prediction, classification, decision-making,
optimization, and time series analysis. These apply to solar energy systems. Though
experts in renewable energy prefer fuzzy logic techniques, their contribution to the decision-
making process of solar energy systems lies in the possibility of illustrating risk factors and
introducing the concepts of linguistic variables of data from solar energy applications. In
solar energy systems, the primary beneficiaries and audience of the fuzzy logic techniques
are solar energy policy makers, as it concerns decision-making models, ranking of criteria
or weights, and assessment of the potential location of the installation of solar energy
plants, depending on the case. In a real-world scenario, fuzzy logic allows easy and
efficient controller configuration in a non-linear control system, such as a solar panel. This
study attempts to review the role and contribution of fuzzy logic in solar energy based
on its applications. The findings from the review revealed that the fuzzy logic application
identifies and detects faults in solar energy systems as well as in the optimization of energy
output and the location of solar energy plants. In addition, fuzzy model (predicting),
hybrid model (simulating performance), and multi-criteria decision-making (MCDM) are
components of fuzzy logic techniques. As the review indicated, these are useful as a solution
to the challenges of solar energy systems. Importantly, the integration and incorporation
of fuzzy logic and neural networks should be recommended for the efficient and effective
performance of solar energy systems.

Keywords: decision making; renewable energy; uncertainty; fuzzy model; neural network

1. Introduction

Energy is vital for every country. The increase in population has increased energy
use and consumption [1]. Due to the depletion rate of fossil fuels, many researchers have
identified renewable energy-based systems. Fossil fuels include coal, peat, oil, and uranium
ore. Also, when burned, they release carbon dioxide, contributing to global warming and
the greenhouse effect [2]. Among fossil fuels, oil and coal are used for electricity generation,
lighting, heating, and cooling. Global warming, which is a worldwide phenomenon, is
the result of the use of fossil fuels. Using fossil fuels also produces greenhouse gases such
as methane, carbon dioxide, and nitrous oxide [3]. Renewable energy is environmentally
friendly; about 16% of global energy consumption comes from renewable energy. Its
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sources are natural resources or processes from which energy is obtained and which are
inexhaustible or renewable faster than consumed. They do not cause any greenhouse gases
or carbon dioxide. Renewable energy is also cost-efficient and is from limitless resources,
implying it can be used repeatedly. Examples of renewable energies include solar, wind,
hydro, tidal, geothermal, and biomass [4].

Renewable energy sources have been used for many years, even in ancient times. Still,
due to the discovery of fossil fuels, they lost ground in the 19th and 20th centuries, with the
majority being used for heating and transportation [1]. Due to the depletion of fossil fuels
and the negative impact on the environment, in the late 20th century, renewable energy
sources have become much more widely used. They can be produced by collecting different
energy forms from other sources [1]. Hence, they are vital in sustainable development
and face the problem of depletion of non-renewable and limited resources. These energy
sources are considered “clean”, and their use contributes to energy stability, stability in
energy supply, which is essential to situations of energy crises [5]. Renewable energy is
being applied in science and technology, from automobiles to industrial and thermal power
plants. In the past decade, renewable energy has been used in automobiles (bikes, cars,
etc.), replacing fossil fuels with solar energy and electricity; this represents sustainable
development [1]. Hence, they are the best option for eliminating fossil fuels, which are
limited and harm the environment.

In briefly discussing examples of renewable energy sources, as mentioned earlier,
solar energy is defined as the radiant ionization energy emitted by the sun. It is one of the
highly used energies [6]. Two types of solar energy systems are commonly implemented
in developing and developed countries: photovoltaic (PV) and solar thermal energy. PV
energy is one of the preferred solar energy technologies and acts as a prospective energy
source for the future [7]. In 2021, it supplied approximately 2% of the global electricity
demand [8]. Examples of PV technologies include multi-junction solar cells, concentrator
photovoltaic systems, hot-carrier converters, floating PV power generation, and down
conversion of high-energy photons [9].

On the other hand, solar thermal energy is produced by converting radiation energy
into thermal energy [10]. Solar thermal energy technologies include the solar heating of
water and air, solar cooking, and concentrating solar power (CSP). Wind energy is consid-
ered the second most preferred renewable energy source for electricity generation [11], and
it is converted into electricity by wind turbine-based power plants. There are two types:
the onshore wind farms (installed on land) and the offshore wind farms (installed at sea
or freshwater) [12]. Wind energy depends on wind, and the location of the wind farms
depends on the yearly average speed of wind, which should be enough to generate the
estimated power [9]. For bioenergy, this originates from biomass sourced either by modern
methods or traditional methods [13], and it contributes to the heating, transport sector, and
the generation of environmentally friendly electricity [14]. The modern bioenergy is used in
generating heat and electricity with the products of biogas, biochar, and biodiesel through
different thermal conversion technologies such as gasification, carbonization, torrefaction,
combustion, and pyrolysis. At the same time, in the traditional method, it comes from
agricultural materials such as charcoal, crop residues, fuelwood, and animal secretion [15].
Hydropower is also known as hydroelectric power (hydraulic power). The electrical energy
is generated from the harvested energy of moving water, contributing 20 per cent of elec-
tricity generation worldwide. Compared to other renewable energy sources, hydropower
has the highest conversion efficiency, about 90%, for generating electricity [16]. There
are various types of hydropower, including pumped storage systems, cascaded reservoir
hydropower plants, and small hydropower plants. Another example of renewable energy is
tidal energy, which is produced by converting kinetic energy from the tidal stream into elec-
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trical energy [17] and is produced by the difference in height between two water bodies [18].
There are two types of tidal energy: hydrokinetic and oscillating water columns. Finally,
geothermal energy is the thermal energy from the radioactive decay of mineral resources
and the primitive structure of the Earth [19]. Geothermal energy is rich and inexhaustible
inside the Earth compared to other renewable energy sources [20], it is naturally stable, and
it has no carbon dioxide emissions [21]. There are two types of geothermal power plants,
which are binary power cycles (organic Rankine cycles) and steam power cycles [22]. Most
of these geothermal plants are built near their resources (usually not more than 10 km) to
reduce heat loss of the geothermal energy in thermally insulated pipelines [23].

Having looked at the general overview of the need for renewable energy, applications,
sources, and their examples and technologies, the fuzzy logic techniques of one of the
sources of renewable energy technologies need to be conducted. In this case, solar energy
is considered in the study because of its abundance, sustainability, and increasing cost effec-
tiveness compared to other renewable energy technologies. Therefore, it is at the forefront
of renewable energy. Previous studies on this fuzzy logic technique have been conducted
primarily focusing on the general renewable energy sources [24], hybrid studies [25], spe-
cific applications of solar energy, such as solar panels [26], solar radiation [27], grid, and
standalone solar energy [28]. However, an existing study that covers all the examples of
solar energy technologies about the fuzzy logic technique remains unclear, mainly as it
concerns reducing uncertainty and enhancing decision-making processes. Therefore, the
review aimed to provide a representative development of the description of the fuzzy logic
concept concerning solar energy systems and their application. To contribute to academic
knowledge, the review provides concise, comprehensive, and detailed information through
a rigorous review process. Thus, the significant contribution of the evaluation is as follows:

e To provide existing applications of various fuzzy logic techniques on solar energy
technologies, thereby identifying their advantages and disadvantages.

e To provide an extension and combination of other models with fuzzy logic to address
the limitations of selection and the decision-making of solar energy systems.

o To reveal the capability that enhances the reliability of results based on fuzzy logic
techniques in solving complex problems associated with solar energy systems.

e To propose a recommendation for a suitable fuzzy logic technique to reduce the
uncertainty in solar energy processes, based on the literature.

With the authors’ contribution in the present study, the structured review starts with
a general description of solar energy technologies, thereby focusing on various existing
models used in the literature in relation to the technology. The overview of fuzzy logic
techniques, detailing its classification in solar energy systems applications and previous
studies on the application of fuzzy logic techniques in solar energy systems, was presented.
The review also looked at the solar energy challenges with possible solutions via fuzzy
logic technique and, finally, concluded with the limitations, future directions, and recom-
mendations of the study. All these were considered in the study to answer the following
research questions:

e  Are there existing models for solar energy technologies aside from the fuzzy logic
techniques?

e  What are the existing fuzzy logic techniques used in the solar energy industries for
modelling, optimization, and prediction capability?

e In what ways are the applications of fuzzy logic techniques compared with other
conventional methods?

e  Can fuzzy logic enhance the efficiency of solar energy processes and decision-making
under uncertainties?

e  Are fuzzy logic techniques capable of addressing the challenges of solar energy systems?
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2. Methodologies

The review used Science Direct, Scopus, Web of Science, and renewable energy reports
as databases. Using a Boolean operator and adhering to the criteria of each database, the
fundamental short phrases utilized to investigate the data from these databases combine
the same terms. Keywords include application AND fuzzy logic technique OR model
AND solar energy AND technology OR system OR process. These keywords or concepts
were employed to find pertinent research and literature from peer-reviewed publications.
This was not constrained by the search time; therefore, coverage was examined from the
beginning of the fuzzy logic model in 1965 until 30 April 2025. The study considered book
chapters, review articles, and original articles. Interestingly, publications containing specific
keywords in the topic, abstract, contributors, and keywords are included in the search
results. Considering the inclusion and exclusion criteria is a standard requirement when
designing high-quality research. Inclusion criteria are the key features that the researcher
employed in the study, whereas the exclusion criteria are defined as the features that were
not employed in the study, thereby interfering with the success of the study [29]. The
inclusion and exclusion criteria of the study are presented in Table 1. This is related to the
study conducted by Zenani et al. [30].

Table 1. Selection of data based on criteria [Adopted from Zenani et al. [30].

Study Inclusion Criteria

Study Exclusion Criteria

Scholarly published contributions in the form of original ~Published contributions outside the original articles,
articles, review papers, book chapters from review papers, book chapters from peer-reviewed
peer-reviewed journals, and energy reports journals, and energy reports are excluded.

Time span of 1965-2025

Outside the time span of 1965-2025

Only publications written in the English language are Publications written in non-English languages are
included excluded
The type of publication considered is a narrative Not any other review as publication type (systematic

(literature) review article

review, etc.)

In Table 1, the literature was identified using publication contributions from original
articles, review papers, book chapters, and energy reports. This is necessary to build and
have a solid foundation of the topic knowledge and identify the research gaps, thereby
contextualizing the authors” own work. Only publications in the English language were
included. The reason for this is that English is known as the international language of
science, and it leads to more and better citations. Therefore, it achieves a global reach
and an international audience. The date of publication was restricted from 1965 (to state
and recognize the first publication on fuzzy logic technique) onward, to identify the most
up-to-date literature. The type of publication considered is review articles because they are
flexible and less time consuming than other types of reviews, such as the systematic review,
which was an exclusion criterion. Having established that, the exclusion criteria focus on
and deal with other criteria features outside and in addition to inclusion, and this has the
tendency to affect the results of the study. It is interesting to mention that the references
are up to date and current, making them relevant to the topic. The reference lists of each
included article were searched manually to obtain the potentially eligible articles. This was
performed by screening titles and abstracts of retrieved articles to exclude articles that are
irrelevant to the review. Thereafter, the full texts of the potentially relevant papers were
reviewed further to examine their eligibility with reference to the Smela et al. [31] study.
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3. Solar Energy Briefly

Solar energy is the renewable energy that can be obtained from the Sun, and it reaches
the Earth in various forms of heat and light. It is used in generating electricity, desalinating
water, and generating heat, etc. [32]. Among the other renewable energies, solar energy
could be the best option for the future since it is the most abundant renewable energy
source [33]. Further, solar energy is the best option for the future because it is inexhaustible,
giving solid and increasing output efficiencies that other renewable energy sources do
not [34]. The energy source is not harmful to the ecosystem, which means the natural
balance is kept consistent for the betterment of the living organisms [35]. As mentioned
previously, solar energy has two main types, which are photovoltaic energy (PV) and
solar thermal energy. There are various PV technologies, which include concentrated
photovoltaic (CPV) systems, multi-junction solar cells (MJSC), floating PV (FPV) power
generation, down conversion of high-energy photons, photovoltaic thermal systems, and
hot-carrier converters.

CPV is a technique for focusing the solar light on a PV receiver, using concentrating
optics on a small area of solar cells, and its purpose is to collect beam radiation and
scattered radiation, which are then focused on the solar cells [36]. The CPV has three types,
which are low concentration, medium concentration, and high concentration, which are
based on the factor of concentration [37]. The high-concentration photovoltaics have the
highest efficiency, so they have the most potential [38]; however, the low-concentration
photovoltaics are more critical due to high tracker tolerance, low cost of manufacturing, and
passive heat sinks [39]. The main types of CPV are parabolic dish, quantum dot, Fresnel
lens, parabolic trough, compound parabolic, and non-imaging dish concentrators [40].
These types can be classified into low concentration and high concentration. Under high
concentration, it is a parabolic dish, a non-imaging dish, and a Fresnel lens; then under low
concentration, it is a parabolic trough, a quantum dot, and a compound parabolic [40].

To increase the efficiency of solar energy conversion, multi-junction solar cells (MJSC),
sometimes called tandem cells, comprise several semiconductor sub-cells stacked and
connected in series [41]. Because of their high optical transparency and low electrical
resistance, interconnectors usually use Esaki interbond tunnel diodes to prevent current
blockage between sub-cells [42]. With Indium Gallium Phosphide (InGaP)/Indium Gallium
Arsenic (InGaAs)/Germanium (Ge) materials, the maximum efficiency for MJSCs ever
recorded is 40.7% [43]. Selecting the right materials for the top cell is essential; InGaP is
favoured over AlGaAs because of its superior interface qualities, low oxygen sensitivity,
and compatibility with Ge or GaAs [44]. The InGaAs increases open-circuit voltage and
short-circuit current when paired with Ge; it is perfect for the middle sub-cell [45]. Ge
works well as the bottom cell for absorbing longer wavelengths due to its low bandgap [46].

Using floating platforms, like pontoons or rafts, floating photovoltaic (FPV) systems
are solar-powered and are installed on water surfaces like lakes, ponds, and reservoirs [47].
FPVs, which are widely used in nations like China, Brazil, Italy, Japan, and the United
States [48], use traditional PV arrays but also benefit from the water’s natural cooling,
which reduces overheating and slightly increases energy efficiency [49]. Both parties gain
from FPV systems; the water surface helps cool the solar panels, improving performance,
decreasing water evaporation, and preventing algal growth [50]. Furthermore, FPVs
preserve land and encourage sustainable land use without posing environmental issues
because they are situated on bodies of water [51]. The most extensive FPV system in the
world, the Saemangeum system in Korea, which spans 30 km? and produces 2.1 GW of
electricity, is a noteworthy example [52].

By splitting high-energy photons, which are typically wasted in traditional solar cells,
into two lower-energy photons, down conversion allows for creating multiple electron—
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hole pairs per original photon, increasing solar-cell efficiency [53]. A photoluminescent
converter, which divides high-energy photons into two useful lower-energy photons, is
positioned in front of the solar cell in this procedure [54]. Vos et al. [55] claim that photons
with energies higher than twice the band gap (2Eg) can be used more efficiently in the
converter through radiative transitions, involving impurity levels, or between the valence
and conduction bands. Through this technique, solar-cell efficiency can be increased by
about 39.63% [56].

Solar energy is converted into electrical and thermal energy simultaneously by photo-
voltaic thermal (PV/T) systems, which combine solar cells and solar collectors [57]. PV/T
systems use this excess heat, increasing overall efficiency, in contrast to conventional PV
systems [58], which only convert about 20% of solar radiation into electricity and waste
the remainder as heat [59]. The solar collector in PV /T aids in absorbing and reusing the
heat, preserving electrical performance, as solar cell efficiency declines with increasing
temperature. Utilizing a glazing cover to direct sunlight onto the PV cells, the system
transforms some of the radiation into electricity and the remainder into heat, which is then
collected by a fluid-based collector. The PV /T systems provide a cost-effective dual energy
solution and perform noticeably better than standalone PV or thermal units.

Advanced solar cells called hot-carrier converters are made to use extra photon en-
ergy [60], which is typically lost as heat in traditional solar cells, to produce more electricity.
Conventional solar cells use energy transitions between the valence and conduction bands,
but thermal loss usually wastes any photon energy above the bandgap [61]. To address this,
hot-carrier converters slow down the cooling of photo-excited carriers, giving high-energy
carriers more time to contribute to the production of electricity [62]. This method can
greatly increase solar conversion efficiency, surpassing that of traditional photovoltaic
cells by up to 65% [63]. Converting solar radiation into heat is known as solar thermal
energy (STE), and it is frequently utilized for power generation, industrial process heat,
and home space or water heating [10]. Three different types of collectors, low, medium,
and high temperature, are used in this technology to capture solar energy using a fluid
underneath a receiver [64]. Applications such as pool and home heating use low /medium
collectors, which are usually flat plates. The main purpose of high-temperature collectors,
which employ mirrors or lenses, is to generate electricity. STE has a higher energy con-
version efficiency than photovoltaic (PV) systems because it can absorb more than 90% of
solar radiation [65].

4. Studies on Various Models Used in Solar Energy Technology

Planning at every level, whether global, national, or regional, is crucial for managing
energy use and its environmental effects. Researchers, policymakers, and industrialists
must collaborate in creating energy models that will help in sustainable development and
decrease the production of greenhouse gases and carbon dioxide. Most modelling methods
are used for forecasting and planning, such as time series, regression analysis, ARIMA,
and artificial intelligence techniques, including neural networks, fuzzy logic, and genetic
algorithms. These models assist in evaluating energy supply, economic elements, emissions,
technology, and public acceptance.

Mellit et al. [66] presented four applications of machine learning and deep learning
algorithms for PV systems. These applications covered the modelling and estimation of PV
power, forecasting of PV output power for a PV plant, and fault classification of a PV string,
which is solved by Fuzzy Logic, k-Nearest Neighbours (k-NNs), deep neural networks
(DNNs), long short-term memory (LSTM), and multilayer perceptron (MLP). To use the
listed algorithms, knowledge of MATLAB or Simulink was required. Kumari et al. [67]
published a review article on solar irradiance forecasting models based on deep learning.
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The deep learning models used are long short-term memory (LSTM), recurrent neural
network (RNN), deep neural network (DNN), dynamic Bayesian network (DBN), echo
state network (ESN), and convolutional neural network (CNN). Kazem et al. [68] reviewed
the algorithm models, thereby describing, evaluating, and comparing most of the software
(photovoltaic system simulation programme (PVSS) software, SOLSTOR software, SOLCEL
software, SolarPro software, clean power estimator (CPE) software, and more) to design
PV systems in the past eight decades and hybrid systems as well. In another study, Kazem
et al. [68] recommended linking the available software to MATLAB/Simulink and adding
the social impact in addition to environmental evaluation to PV system design software.
Also, to improve the flexibility for the end user by upgrading the optimization methods
and software.

Farhana et al. [69] highlighted the potential of hybrid AI models in addressing grid
stability problems within renewable energy sources, such as solar energy networks. In
reviewing many articles, it is evident that hybrid Al is more efficient and surpasses tradi-
tional methods in predictive modelling and fault detection. Also, the review focuses on the
progress made in real-time data processing and the adaptability of hybrid Al systems to
complicated and geographically distributed networks, offering a solution for future smart
grids, but the real-time data standardization continues. As the role of renewable energy
grows, the use of hybrid Al models will play an essential role in advancing innovative grid
technologies and supporting global sustainability goals [69].

Reliable grid management and the mitigation of operational risks depend on accurate
solar output forecasting. To predict solar irradiance and photovoltaic (PV) power output,
Jailani et al. [70] focused on long short-term memory (LSTM) models, which are especially
useful in time-series forecasting. For forecasting, LSTM models outperform conventional
machine learning models. Since the hybrid models must extract both spatial and temporal
features, they typically perform more accurately than standalone LSTM models. Still, they
also require more complex input data (such as images for CNN layers) and longer training
times [70]. Batch size affects model performance; higher batch sizes result in lower accuracy.

The use of artificial neural networks (ANNSs) for modelling solar energy (SE) devices
is reviewed by Elsheikh et al. [71], with an emphasis on the benefits of ANNs over conven-
tional theoretical and experimental approaches. ANNs save time and money by eliminating
the need for intricate mathematical models and time-consuming experimental testing while
providing high accuracy, generalization, and quick computation. Following its robustness
and simplicity, the multilayer perceptron (MLP), with the Levenberg-Marquardt algorithm,
is frequently utilized. The study recommends investigating other ANN types, such as
ANFIS and recurrent neural networks. To improve performance by identifying the best
network parameters, it also highlights the expanding trend of combining ANNs with
metaheuristic optimization techniques such as genetic algorithm (GA), particle swarm
optimization (PSO), grey wolf optimiser (GWO), and sine cosine algorithm (SCA). Further-
more, more sophisticated ANN variations, such as deep neural networks, extreme machine
learning (EML), and ANFIS, are being developed.

5. General Overview of Fuzzy Logic

Fuzzy logic is a two-word concept consisting of “fuzzy” and “logic.” The word “fuzzy”
deals with uncertainty in a process or data, whereas “logic” is the study of correct rea-
soning. In this context, reasoning focuses on drawing conclusions based on available
information [72]. Therefore, in combination with these phrases, fuzzy logic is defined as an
artificial intelligence technique that has to do with the performance of reasoning, thereby
facilitating the analysis and interpretation of imprecise data [73]. An advantage of fuzzy
logic is the reduction in the complexity of modelling systems, which it offers because it
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needs fewer extensive mathematical formulations. Models associated with fuzzy rules
are said to be easy to understand because of the employment of the IF-THEN rules and
linguistic terms, and, hence, do not require learning algorithms. To compare fuzzy, vague,
or ambiguous objects, Shimura [74] introduces a relativity notion. In this case, p and q are
variables defined by the universe (U), and define two pairwise functions, fq(p) and fp(q),
as the membership function of q with respect to p and p with respect to q, respectively.
Considering the membership value measurement whereby p is chosen over q, Equation (1)
(relativity function) applies:

f(pla) = fq (p)max [fq(p), fp (q)] 1)

where f(p|q) is the relative function, which represents the membership of p to 4. The C
matrix (C for comparison) is used to rank different fuzzy sets. For instance, take the following:

Cj' = max f(pjlS),j = 1,2...., m. )

or
Cj" = min f(pjlS), j=1,2...., m )

where

Cj’ or Cj" is the membership ranking value for the jth variable. The maximum and
minimum functions are used to rank different options in terms of the benefit and cost of a
solar energy system, respectively. However, in fuzzy logic, the membership function is an
essential factor and plays a critical role, especially in facilitating the conversion between
crisp and fuzzy data. The membership function of a fuzzy set A is denoted as na, and
the membership value of x in A is represented as pa (x). Importantly, the membership
function is commonly triangular and trapezoidal in shape and is used and applied by
researchers. The FL also helps in the design consideration, thereby characterizing the fuzzy
set while developing a fuzzy logic system. A popular example of the membership function
is the triangular membership function, which is used to explain and show the different
speeds of a fuzzy set. Examples of fuzzy logic techniques include fuzzy inference systems
(FIS), adaptive neuro-fuzzy inference systems (ANFIS), and fuzzy c-means techniques
(FCM) [72]. Despite the application of fuzzy logic in well-established fields, its combination
with more artificial intelligence, such as deep learning, genetic algorithms, etc., provides
more problem-solving capability. The study by Das [75] mentioned that integrating deep
learning and fuzzy logic helps facilitate the imprecision handling, thereby providing a
scenario for complex learning capabilities.

With fuzzy logic, the criteria weight is measured and is of importance in the decision-
making process. One fuzzy measure concept, as proposed by Grabisch [76], is stated as
X = {x1, x2,...x,, } and is a universe of discourse and is finite; P(X) is the power set
of X. Therefore, a fuzzy measure on X is a set function m: P(X) — [0,1] to satisfy the
following conditions:

1. m(@)=0,m(X) =1 (boundary conditions);
2. IfA,BeP(X)and A C Bthen m(A) < m(B) (monotonicity).

From the above expression, it is evidently clear that the measurement of fuzzy employs
the use of monotonicity instead of the additivity property. This shows that the weight
criteria are independent and can be regarded as good modelling phenomena used for
decision-making, as mentioned in Murofushi and Sugeno [77]; Liginlal and Ow [78]. The
monotonicity of the fuzzy measure distinguishes it from other traditional and conventional
weighting methods. Nevertheless, fuzzy logic combined with a genetic algorithm provides
an enhanced optimization capability, such as effectiveness in engineering applications [79].
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To address the intermittency of electricity from renewable energy and its unreliability, and to
educate energy users on the necessity of using clean energy sources, a realistic and reliable
model needs to be developed. Fuzzy logic is an example of such a model. The model is
important in ensuring fair budget reallocation and spending towards enhancing the use of
renewable energy. According to Suganthi et al. [24], the fuzzy logic model can be employed
to plan energy, thereby arriving at pragmatic solutions effectively. This also conceptualized
the system fuzziness into a crisp, quantifiable parameter, as mentioned in the Suganthi
et al. [24] study. It is interesting to state that, in relation to energy systems, fuzzy logic is
classified broadly as fuzzy models, hybrid models, and multi-criterion decision models, as
presented in Figure 1.

Fuzzy logic techniques

\
[ \

Fuzzy rr:odels Hybrid models MC'DM
e Fuzzy delphi e ANFIS e Tuzzy VIKOR
e Fuzzy regression e Tuzzy GA e TFuzzy TOPSIS
e Fuzzy grey pre- e Fuzzy expert e Tuzzy PSO
diction system e Fuzzy HBO
e Fuzzy AHP/ANP e Fuzzy DSS e TFuzzy SVM
e Fuzzy clustering e Fuzzy DEA

Figure 1. Classification of fuzzy logic techniques for solar energy applications.

To illustrate Figure 1 further, Tables 2—4 briefly describe the application of these
classifications of fuzzy logic techniques in relation to solar energy systems. The fuzzy
model, as illustrated in Table 2, is classified as ‘simple” based on its complexity features,
which is an advantage for mainly predicting or grading solar energy systems. For the hybrid
models in Table 3, the essential ones are classified as ‘medium’ in complexity. Potentially
applicable for the accurate simulation of the performance of solar energy systems. The
model is said to progress based on the justification of the accuracy relating to cost and
complexity. Similar to other models, the MCDM is categorized as ‘complex’. This is because
experts are required to run and operate the packages as well as interpret the results. An
area of application regarding the importance of the MCDM deals with testing the numerical
and simulation analysis of renewable energy systems [24].
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Table 2. Classification of fuzzy models in relation to solar energy systems.

Fuzzy Delphi

Fuzzy Regression

Fuzzy Grey Prediction

Fuzzy AHP and ANP

Fuzzy Clustering

Fuzzy Approach

Used when the expert’s
response is of a fuzzy nature.
Also used for the prediction
purposes of solar energy
performance.

The Fuzzy Delphi steps are
collections of opinions of a
decision group; set up
triangular fuzzy numbers;
defuzzification; and screen
evaluation indexes [80].
Under set up triangular fuzzy
numbers the fuzzy weight

w] = (ﬂ]‘,b]‘,Cj) where aj =
H . 1 .
m}?”{aij}r bj = 1 bips

¢ = mlgx{c,]} for
i=12,...,nj=12,...,m
Under defuzzification the
fuzzy weight is defuzzified
and the formula,

S;j= 7ai+?+ci for
j=1,2,...,m. These Fuzzy
Delphi methods are used in
lubricant regenerative
technology selection.

The variables (independent
and dependent) in terms of
data are captured in a fuzzy
manner. Hence, the derived
regression equation is used to
determine the effect of the
variables.

The Fuzzy regression analysis
can be shown as the formula,
Y =AoXo+ A1 X1+ A2 Xo +
e+ AXi e+ ApXy
when A; is set as triangle
fuzzy numbers for
i=0,12,...,pand Xy =

1, X;>0,i=1,2,...,pare
all variables with crisp values
while assuming fuzzy
parameter

Ai = (Ci/ai/bi)/ i= 1,2,. -, P

Then, according to triangular
fuzzy numbers of calcu-
lations, the fuzzy number Y =

(257:0 cixi, Yb_oaixi, YF_, bz’xi)

The Fuzzy regression can be
applied on air cargo volume
forecast [81].

The grey area is captured by
the fuzziness in the variables
which is considered for the

dependency prediction. Also

used for prediction purposes.

GM(1,1) is the most
commonly used grey
prediction [82], described as
x(1) =
IAGO.GM(1,1).AGO.x(®)
where x(0)
(x<0> 1),x©(2),...,x© (k))

is a non-negative original

data sequence for k > 4. x(
is a prediction value of x(o),
AGO takes the accumulated
generating operation on x(),
and TAGO takes the inverse
accumulated generating
operation on x(). Hence
xM (k4 p) =

x() (1) — bal — efe—a(ktp-1)
where p is the forecasting
step, a and b are the
development coefficient and
the grey input, respectively
[83]. Y.F Wang [84] used the
formula x(V) (k 4 p) =
x(0(1) = bal — ee—(ktp=1)
to predict solar energy price.

Employed to determine or
finding the relative
importance of the variables
and energy resources (in
terms of energy systems). To
calculate the value of Fuzzy
Synthesis the formula

S M g x [T O M g
where M is the triangular
fuzzy number, m is the
number of criteria, 7 is the
rows, j columns and g is
parameter (I,m,u). The
formula above is used in
decision support system for
solar PV recommendation
[85].

[E—1

Fuzzy clustering is applicable
for grouping of solar energy
resources based on cost,
availability, etc. Also help to
demarcate the clusters and
draw boundaries. In Fuzzy
clustering the formula [, =

2
2 o 1 <
m < oo where m is any real
number greater than 1, ujj is
the degree of membership of
x; in the cluster j. x; is the
d-dimensional measured
data, cjis the d-dimensional
centre of the cluster, and |||
is any norm expressing the
similarity between any

x,-—cj

measured data and the centre.

[86]. This formula is applied
in developing a fuzzy
clustering model for better
solar energy use as regards
management systems.

Essentially used to accurately
capture fuzziness while
ranking the variables.

One of the steps for the Fuzzy
approach is defuzzification.
There are many methods
used for defuzzification; one
of the most popular methods
is the Centre of Gravity
(COG) method. According to
the COG, the output crisp
value is calculated using the
¥ ci [ myi(x)dx

Y [ myi(x)dx
where ¢; is the centre of the
membership function, the
integral [ m,;(x)dx represent
the area under the
membership function m,;(x)
corresponding to the attribute
of the output linguistic
variable y [87]. The formula
stated above is used for solar
energy estimation.

formula ycrisp
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Table 3. Classification of the hybrid model in relation to solar energy.

ANFIS

Fuzzy GA

Fuzzy Expert System

Fuzzy DSS

Fuzzy DEA

Employed in solar PV control and
smart grid systems. There are two
rules under ANFIS, Rule 1: If (v is
V1) and (d is D;) then
fi=p1v+q1d+r;;Rule2: If (vis
V5) and (d is D;) then

f2 = p1v + g2d + rp where
P1,P2,91,92, 11 and rp are linear
parameters and Vi, V,, Dq and D,
are non-linear parameters, in which
V1 and D; are the membership
functions of ANFIS. The
layer-by-layer ANFIS formulae are.
Layer 1: O1; = pp(v) fori =1,2;
04,) = pa,j(v) for j = 1,2 where
01,; and O, j represent the output
function and y,,; and p ; denote
membership function

Layer 2: Op; = w; = Jy,i(v).upj(d)
fori=1,2

Layer 3: O3; = w; =
i=1,2

Layer 4:

Oy = wif; = wi(piv + qid + ;) for
i=1,2

Layer 5: Os; = Y; Wi f;i = %’f;{; for
i = 1,2 [88]. These formulae can be
used for modelling and simulation
of an ANFIS.

for

w1+wz

Used in control solar PV for finding
the best solar energy generation
terrain. One of the formulae used
under Optimized Fuzzy Genetic
Algorithm (OFGA), it denotes the
population selection where for every
population y = (y1,¥2,¥3,---,Yn), it
defines the rules to separate the data
into various clusters

C = (cq,¢2,¢3,...,Cm) to minimize
the data feature. The partition
matrix W = w;; which indicates that
element y; belongs to C;:

C]‘

arg_mén :Z Z] —1 Wij|y
[89]. This formula is used to
enhance a multimodal biometric
recognition approach for smart
cities based on an optimized fuzzy
genetic algorithm.

These are Al systems used to
identify the best solar energy
resource thereby maximizing its
available resources. A formula
which is used under the Fuzzy
Expert System for Solar PV Plant is
the formula for calculating the
Pearson’s coefficient of correlation r
between x and y, and the formula is

as follows:
_ L(xi=x)(yi—y)

(n— 1)(7th1
the respective means of x and y, 1 is
the population size.

where X and ¥ are

Ox = ):Ez‘iﬁ) is the standard
deviation of x; oy, = Z((Zi:fj)) is

the standard deviation of y [90]. The
formula above is used for a Fuzzy
Expert System for determining state
of solar PV power plant based on
real-time data.

Helps to identify the decision model
given in a solar energy situation
The formula that is used to optimize
the path planning of industrial
robots is optimized by fuzzy
reasoning mechanism. The variables
are defined by fuzzy sets

A = {A;, Ay, A3} each representing
different fuzzy state (near, middle,
long, respectively). Each fuzzy set
has its membership function,

for example:

pa(x) = ﬁ where c is the

membership centre and x is the
value of the input variable. The
formula for calculating fuzzy
reasoning is poytput(z) =

min (Vinputl (X), Hinput2 (y)> where
Hinputl (x), Hinput2 () respectively
for the membership of the input
variable poytput () as output
variable of membership degree.
These formulas are used for the
design and implementation of
industrial robot path planning
based on fuzzy decision support
systems [91].

Help in determining the best
combination of solar energy
resources used in various
situations/regions

Fuzzy DEA slacks-based model uses
the formula:

Assuming that there are
j=1{1,2,...,N} decision-making
units (DMUs), each with M fuzzy

’ x;/[j) €

,and S fuzzy outputs

inputs X; = <x1]-, .
M
(TrEN)Z

Y;= <yN1jr---r]/NSj> (TrFN) then,
Trpea = {(;,;) S (TVFN)IJ\:HnS :
EZJN L Ax, YN AV,

z Y1 Aj =1, A € RY}, where FDEA

stands for Fuzzy DEA. Calculating
the slacks—based ‘measure of

~

inefficiency I X,,,Yp

Max Z 1 ﬁl + Zr 1 yr [92]. This
formula is used for a fuzzy DEA
slacks-based approach.
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Table 4. Classification of the MCDM in relation to solar energy.

Fuzzy VIKOR and TOPSIS

Fuzzy SVM/PSO/HBO

Basically, they are used for the optimization of solar
energy systems. Applicable in the solar energy sector for
control systems.

Fuzzy TOPSIS is used to solve the Multi-Criteria Decision
Analysis (MCDA) problems of uncertainty, vagueness,
and crisp data that are insufficient to simulate real-world
situations [93]. Assuming a panel of k experts

(D1, Dy, ..., Dy) evaluated m pathways (P, Py, ..., Py)
with respect to n criteria (C1, Cy, ..., Cy), the fuzzy
decision matrix is given by the following:

C1 G Cn
Py x X12 X1n
D= P | X22 X2on . The D matrix is
P Xm1 Xm2 Xmn

normalized by using the linear scale, and the following is
obtained:

D= [ry] sy Whererj; = . The formula stated

Xjj
maxxij
above is used for an integrated fuzzy decision support
system for analyzing challenges and pathways to

promote green and climate-smart mining [94].

These are machine learning tools used to unpack the
mystery behind solar energy data as well as for the
accurate prediction of outcomes. Applicable in the solar
energy sector for control systems. The Fuzzy SVM
optimization function can be written as follows:
min %HwH2 + CY!'; sigj such that
yi(w* ¢(x;) +b) > 1 — ¢, for e; > 0 where w? represents
the margin ratio of the generalization ability of the
learning model, s; represents the fuzzy membership
value corresponding to different samples, ¢; is the
acceptable training error degree of the corresponding
instance x;, and C > 0 is called the penalty parameter.
The formula above is used for deep learning-based
imbalanced classification with fuzzy SVM [95].

The contribution of fuzzy logic models to the decision-making process of solar energy

systems lies in making it possible to illustrate risk factors and introducing the concepts

of linguistic variables of data from solar energy applications. In solar energy industries,

fuzzy sets allow the formalization of the relationship between the factors of risks and the

real interactions studied in the electricity power industries. Furthermore, in connecting

solar energy to the power supply system, decision-making is required. This is possible

through the fuzzy methods under incomplete information conditions, thereby synthesizing

and analyzing qualitative values [96]. As mentioned in Zenani et al. [30] and Stepanenko

et al. [96], the mechanism of fuzzy logical inference involves four stages. These are the

fuzzification method, the base of rule, the aggregation method, and the defuzzification

method, as shown in Figure 2.

X Crisp value

4

Fuzzification method

Fuzzificator

Base of rules

¥

Fuzzy logical output

¥

Aggregation method

 ———

Composition

v

Defuzzification methods

Defuzzificator

v

Y Fuzzy value

Figure 2. Schematic diagram of a fuzzy logic model system.
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6. Studies on the Application of Fuzzy Logic in Solar Energy Systems

One of the benefits of fuzzy logic deals with decision-making. This was seen in the
study on comparing different solar systems for various applications conducted by Mamlook
et al. [97]. The authors employed fuzzy logic to determine the order of priority of solar
systems in Jordan based on costs and benefits. For comparison’s sake, the various solar
system applications studied include solar water pumping (SWP), solar distillation (STILL),
solar water heating (SWH), solar photovoltaic (PV), solar pond (POND), and solar space
heating (SSH). With the application of fuzzy set data, used for the comparison analysis,
in terms of the benefit, STILL has the highest priority because of its highest overall fuzzy
relative weight of 2.29, followed by POND (1.62), SWP (1.39), and SSH of 1.06. On the
other hand, as regards cost, SWH is the least attractive because of its highest fuzzy relative
weight of 1.78, followed by PV (0.71), SWP (0.61), and SSH (0.49). STILL (0.41) and POND
(0.46) are the most attractive, respectively, based on their lowest relative weight. Therefore,
from the benefit-to-cost ratio, the STILL (5.58 relative weight) was reported to be the best
choice and preferred. Hence, it was regarded as the highest priority.

Preliminary results were obtained in a study by Charabi and Gasti [98] on assessing
solar energy resources in Oman. With the application of the GIS-based spatial fuzzy
multi-criteria evaluation approach, the land suitability for implementing PV farms was
assessed. The assessment approach was based on the FLOWA module, which applies fuzzy
quantifiers within the ArcGIS environment. This plays a vital role by incorporating the
uncertainty of expert opinion in relation to their criteria and weight, as well as providing a
mechanism to guide decision-making using a combination of multi-criteria procedures. To
determine the relative importance of land suitability with respect to PV farms, according
to the pairwise comparison for objectives (solar radiation, constant layer, and distance to
major roads), these were calculated against each other (solar radiation, constant layer, and
distance to major roads). The reported weights include solar radiation at 0.545, constant
layer at 0.287, and distance to major road at 0.168. This implies that solar radiation (0.287)
is a relative intensity importance factor affecting the location of large PV farms in Oman,
while the distance to major roads is the least (0.168). However, the development of the first
geographical mapping model to locate the most suitable and appropriate site for different
PV technologies in Oman was considered in the study. Based on the resultant maps of the
analysis, 0.5% of the land area was said to be highly suitable for the implementation of the
PV farm. However, with reference to the different PV technologies considered in the study,
the CPV technology provided the features required for the implementation of the large
solar plants, thereby generating 45.5 times the present total power demand in the country.

Over the years, the site selection for solar thermal power plants (STPPs) has faced
some challenges, such as the independence of the assumption of the MCDM method used
and the lack of quality information for evaluating the site. These challenges increase the
possibility of decision-making mistakes and decrease evaluation quality. To address this
problem, Wu et al. [99] proposed a decision framework to evaluate and select the best site
for a solar thermal power plant (STPP). The study is critical because it examines the role
and contribution of site selection when considering the life cycle of a solar thermal power
plant. Therefore, the fuzzy logic method’s multi-criteria decision-making (MCDM) tends to
be vital in the selection process of STPP. Based on this, the authors employed a linguistic
Choquet integral (LCI) with a decision-making method to rank the alternative sites. The
fuzzy measure was adopted to solve the critical expert’s dependence problem. In the study,
Wau et al. [99] identified the criteria and sub-criteria for selecting the STPP site, thereby
providing a practical framework to evaluate the selected site. The study mentioned energy,
infrastructure, land, and environmental and social factors as the criteria used. From the
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theoretical modelling and empirical results, these challenges were handled through the
decision framework, resulting in an outstanding result.

The complexity of energy management in a commercial building seems to be a problem
because of various factors such as the production of PV, electricity price variation, kinds of
consumption, and the agreement of purchase. To address this problem, Zhang et al. [100]
modelled a commercial building integrated with PV and storage systems and proposed a
methodology for designing an energy-management strategy. This is necessary to achieve
the aim of the study, which deals with reducing the cost of energy bills and emissions due
to CO;. Therefore, the methodology developed in the study was based on a graphical
approach and a fuzzy logic supervision strategy. The proposed fuzzy logic supervision
strategy should be able to satisfy the economic and ecological objectives of the controlled
system on which the simulation results are based. In the study, the economic criteria are
based on the annual premium (€) and the electricity cost of consumption (kWh), whereas
the ecological criteria are the emission of CO,. From the simulation results, two cases were
used: Case A (configuration without storage and PV system) and Case B (configuration
with storage and PV system). These results were formulated under the annual premium,
consumption for one week, and CO; emission. It was reported that case A has an annual
premium of EUR 79,344, consumption for 1 week of EUR 8782, and CO, emission of
11.604 T. On the other hand, case B has EUR 54,747 €, EUR 6066, and 8.541 T for annual
premium, electricity consumption, and emission of CO,, respectively. Considering the
differences in annual premium, consumption for one week, and CO, emission for cases
A and B, the following were reported: EUR —24.597 (—31.00%), —2716 € (—30.93%), and
—3.063 T (—26.40%), respectively. This implies that the annual premium and electricity
consumption can be reduced by 31% for one year and 30.93% for one week, respectively,
whereas the CO, emission can be reduced by 26.40% for the same one week. Therefore, the
reduction, as seen in the result, is based on the proposed fuzzy logic supervision strategy
used in the study. Hence, this is based on the attributes of the evaluation carried out by
some economic and ecological indicators.

To determine the role of consumer acceptance and the model effect on residential PV
adoption, a survey was conducted to understand the perceptions of the technology. These
variables’ perceptions include perceived cost, perceived maintenance requirement, and
environmental concern. According to the customer maintenance survey, they are regarded
as the top three variables that affect customers’ decision-making process to purchase solar
panels. To this effect, Zhai and Williams [101] conducted a study to evaluate the purchasing
probability of a residential PV system using fuzzy logic. Also, the study focuses on building
a fuzzy logic model to relate the perception variable of the consumers, known as the model
input, with the purchasing probability, referred to as the model output. From the statistical
result, the peak of the purchasing probability distribution of adopters, non-adopters, and
the mean value of the probability are 100%, 20%, and 30%, respectively. Based on the fuzzy
logic model, the purchasing probability distribution for adopters approaches 1.0, which
is an indication that a purchase has already been made by the adopters. It is interesting
to point out that the output of the fuzzy logic model is the adopter and non-adopter. In
addressing the social issue of PV technology and dealing with imprecision and insufficient
information, the fuzzy logic inference model has the potential to provide an alternative
solution. Despite the study’s success, the authors lamented data limitations (a relatively
small sample of adopters) as a significant barrier to the study. Therefore, further study
recommends a larger data sample for the validation of the model.

The exploration of the primary resistance and key factors that affect the application of
renewable energy technologies in Taiwan buildings was conducted by Liu et al. [102]. Tai-
wan is regarded as highly vulnerable in terms of energy security; however, its geographic
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condition and features for solar energy development have resulted in a considerable advan-
tage. Based on the evaluation decision-making system model and expert decision-making
groups, the study employed the fuzzy set methodology through the Fuzzy Delphi Method
(FDM) to assess the application of solar energy systems. Also, the conversion of fuzzy
ranges to crisp variables helps to accurately sieve through the decision-making process
in the minds of consumers. Figure 3 shows the application steps, operational process,
and framework of the FDM. However, due to the lack of ambiguity of the traditional
Delphi method, the FDM is combined with fuzzy theory to address the challenge. To
avoid the impact of extreme values, as mentioned in Ishikawa et al. [103], the opinions of
expert decision-making groups are integrated into fuzzy numbers, thereby utilizing the
geometric mean for the basis of decision-making and screening assessment by the specialist
decision-making group. Therefore, findings from the study stated that the main influences
and key factors, as well as the proposed energy development strategies, are required to
improve the quality and quantity of the application of renewable energy and national
energy competitiveness.

eration process

FDM research

formwork and the op- sion-making system evaluation

on Set up the hierarchical structure and level framework for the deci-

U

Gathering opinions of the expert decision-making group

U

FDM results

Establishing the triangular fuzzy function

Establish threshold

value —> @

Screening and establishment of assessment factors

Figure 3. The Process of the Fuzzy Delphi Method.

Due to the easy implementation of the perturbation and observation (P&O), maximum
power point tracking (MPPT) algorithms are widely employed in PV systems. To this
effect, a comparative study was conducted on the potential and actual performance of four
P&O MPPT algorithms. In the study, as well, the performances of three variable-size P&O
MPPT algorithms were discussed. These included the peak current controlled scheme,
the based plane region, and the non-switching circuit zones. In the study, the features of
the four peak current controls based on the P&O MPPT scheme included scheme III.A
(standard), scheme III.B, scheme III.C, and scheme III.D. These were employed for the
simulation result dealing with the rise time from start up to peak power and power drop
(steady state). It was observed that 0.32 ms, 0.27 ms, 0.17 ms, and 0.17 ms were reported for
scheme III.A (standard), B, C, and D, respectively, for the rise time from start up to peak
power, while the power drop (steady state) has scheme III. A, B, C, and D of high, lowest,
lowest than standard scheme, and lowest, respectively. This finding revealed that the fuzzy
scheme presents a faster transient response and high-power yield in the steady state when
compared to the standard P&O MPPT algorithm. In the study, D’Souza et al. [104] also
looked at the use of fuzzy logic integrated with a non-switching zones scheme to implement
variable size perturbation. This is necessary for the improved transient and steady-state
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responses. Based on this, the study mentioned that the non-switching zones with a reduced
fuzzy controller in the MPP region have the best performance. The assumption for this
performance is based on the absence of the processing speed of the digital signal processor
(DSP) and the computation burden of the algorithms. With reference to D’Souza et al. [105],
the reduced fuzzy and non-switching zones are often used to improve the performance
of the previous scheme under steady-state conditions. It was reported that three of the
P&O MPPTs use variable-size perturbation to improve the transient and steady-state
performances, whereas the fourth one deals with fixed-size perturbation. The study was
simulated in a MATLAB/Simulink environment to verify the potential performance of the
four schemes. With the reduced fuzzy P&O MPPT algorithm, an improved outcome was
yielded. Hence, these are used to reduce oscillations and increase steady-state power yield.

Niapour et al. [106] propose a single-stage Z-source inverter (ZSI) for the extraction
of the maximum power of the PV array as well as for the supply of the brushless DC
(BLDC) using a fuzzy logic incremental conductance (FL-IC) MPPT scheme. The FL-IC
was implemented for the precise performance of the maximum power point tracking of the
PV array. The study was motivated to reveal that a considerable amount of energy can be
saved in the PV water-pumping systems by replacing conventional DC with BLDC motor,
thereby utilizing ZSI as opposed to the use of a traditional double-stage converter. The
water-pumping system comprised a brushless DC (BLDC) motor with a centrifugal pump
supported by a ZSI. According to the author, the ZSI was fed by a PV array that needs to
be improved. Although there has been a conventional method of double-stage convert-
ers, the proposed FL-IC MPPT provides some modifications. The authors employed the
PSCAD/EMTDC linked to MATLAB software to simulate the different PV array operation
conditions in the study. In terms of validation, the simulation result was compared with
previous work under the same operational conditions. The authors highlighted that the
study could simulate water-pumping systems to widely accommodate worldwide, thereby
utilizing solar power as a clean energy source and improving efficiencies.

A novel multi-model neuro-fuzzy-based MPPT for a three-phase grid-connected PV
system was conducted by Chaouachi et al. [107]. With the proposed model, the reference
PV voltage that guarantees optimal power transfer is said to be predicted. This occurred
between the PV generator and the primary utility grid. Comparing the neuro-fuzzy
network model and the conventional single neural network, the study states that the former
has the advantage of distinct generalization ability based on the non-linear and dynamic
behaviour of a PV generator. Furthermore, the application of a neuro-fuzzy network in
the study offers a set of local models that emulate the behaviour of PV generators in terms
of complexity and nonlinearity within a wide range of operating conditions. However,
for the simulation process, the study considered evaluating the estimation error of the
performance of the neuro-fuzzy network and a single ANN. Hence, estimation error refers
to the statistical approach to the differences between the experimental and the estimated
values. Therefore, the study reported 0.139 and 2.496 as the mean absolute error (MEA)
for the neuro-fuzzy and single ANN estimators, respectively. Conversely, based on the
power efficiency, the neuro-fuzzy method was said to have achieved 6.85% power efficiency
when compared with the single ANN. Also, it was said to have a 2.73% comparison to the
experimental dispositive based on the P&O algorithm. This shows that the neuro-fuzzy
MPPT methodology has a better performance than the single ANN.

In a similar study, Sarah and Ouali carried out a comparison of fuzzy logic and neural
networks in MPPT for PV systems [108]. In this case, the solar radiation and PV cell
temperature, the two MPPT parameters, were used as the input, while the maximum power
was the output. It is interesting to point out that both fuzzy logic and neural networks
can model dynamic complex systems with respect to time, following non-linear laws. The
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fuzzy logic and neural network employed the DC-DC inverter to arrive at the MPPT, from
which the data for climatic conditions for the solar radiation and PV cell temperature were
obtained. For the optimum duty cycle error and maximum power error, the fuzzy logic
reported 2.70 and 0.07, compared to the neural network with 17.15 and 0.53, respectively.
This indicates that fuzzy logic is the best method among the neural networks because
the former gives the minimum total error compared to the neural method. Therefore, the
experimental result of the MPPT controller via fuzzy logic has higher power efficiency than
the neural network. Hence, there is a need to integrate or combine fuzzy logic and neural
networks for efficient system performance.

In handling complexity, uncertainty, and non-linearity, Azadeh et al. [109] presented
an approach based on the flexible neuro-fuzzy for location optimization of solar plants.
The flexible approach includes ANN and fuzzy data environmental analysis (FDEA). The
use of FDEA and ANN in the study was based on a normality test. Hence, these methods
were essential to determine the ranking and assess the potential location for installing solar
plants. The data environmental analysis (DEA) and FDEA are employed for the ranking of
150 solar power units (SPU). The input variables include the cost of land and the intensity of
natural disaster occurrence, while the output variable includes population, human labour,
solar global radiation, and distance of power distribution, as well as availability of water
and proper topographical areas. With the fuzzy logic technique employed in the study,
the DEA was used for the ranking of the SPUs as well as validation and verification of
the obtained results of FDEA at « = 1 using the Spearman correlation test. The Spearman
non-parametric test was useful for testing the correlation of the ranking data. The « values
used in the study were at 0.1, 0.3, 0.5, 0.7, 0.9, and 1 with their corresponding Spearman
correlation index of 0.46, 0.45, 0.48, 0.63, 0.78, and 0.87, respectively, for DEA and FDEA
values. Having the highest Spearman correlation index of 0.87 for « = 1 means that the
ranking results by both DEA and FDEA are verified and have a relatively high degree
of confidence. On the other hand, for the normality test, the Kolmogorov-Smirnov Test
was used. The data generated was the same for o values as seen previously using the
Spearman correlation with their corresponding p-values at 0.029, 0.080, 0.020, 0.007, 0.000,
and 0.000. The result indicates that the FDEA at o« = 0.3 is the preferred model because of
its higher p-value of 0.080 for ranking of SPUs. A previous study conducted by Azadeh
et al. [110] used the data environmental analysis (DEA) as an optimization tool for the
efficient location of solar plants. In the study, certain limitations were observed using DEA,
which include easy detection of noise or error from data, thereby resulting in vibration
caused in the obtained solution. Another limitation deals with the inaccurately measured
and imprecisely defined data associated with evaluating solar plant units (SPUs). Therefore,
to address and overcome these limitations, FDEA was employed while the ANN was used
to deal with the data corruption based on complexity and non-linearity. Employing the
Spearman correlation test reveals that the best model was reported at FDEA o = 0.3 for the
location optimization of solar units in Iran. The proposed model can handle uncertainty and
noise in the dataset, according to Azadeh et al. [109], and is recommended for optimization
problems of different solar locations.

A conceptual model using fuzzy analytical network process (FANP) with interpretive
structural modelling (ISM), as well as benefits, opportunities, costs, and risks (BOCR),
was developed in a study conducted by Lee et al. [111]. The essence was to facilitate the
prosperity of the PV silicone solar cell power and have the potential to handle complicated
product-strategy problems, thereby leading to an outstanding result. In addition, the FANP
+ ISM + BOCR helps to analyze the correct strategic process of a large firm in a PV silicone
solar-cell power network. As seen in Figure 4, the FANP + ISM + BOCR consists of five
steps. A successful implementation of these steps is an instrument for receiving support
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from central authorities at the industrial level, for instance, in Taiwan, where the study
was conducted. Also, the model can be utilized to design a development plan. From the
findings of the study, the proposed strategic products are being supported by the central
authorities, as they match the future of solar PV. As a methodology in relation to the
developed model, it is recommended that multiple-goal programming be combined into
the developed model; this will reduce the resources of time and cost.

Construction of an evaluation network for
Stepl — E——)

product strategy

Step 2 — Determination of interdependence among criteria

Step 3 — Calculation of the priorities of the merit

Step 4 — Calculation of the priorities under the four

merits

Step 5 — Calculation of the final product strategy pri-

orities

Figure 4. Flowchart of the FANP + ISM + BOCR.

To evaluate the viability of developing a solar PV project owned by large investor
utilities in Florida was the aim of the study conducted by Zeng et al. [112]. Considering
various factors such as the trade-off between the cost of generating electricity and the
risk of investor-owned utilities, the authors developed a multi-objective decision model
to determine the proportion of different sources of energy generation, thereby assisting
in the decision-making process. This is necessary as it will help to reduce the risk of
financial health and survival of investors, as well as lowering the cost of energy generation.
Therefore, to calculate the total risk priority number (RPN) for each energy source, the
failure mode and effect analysis was employed. The results revealed that solar PV has
the lowest risk priority of 956 when compared to other energy sources considered in the
study, such as coal and natural gas, with risk priorities of 1901 and 1873, respectively. From
the study, it was deduced that the RPN for an investor-owned utility is determined based
on the type of failure and failure mode number in the study area (Florida). Due to the
uncertainties of the levelized cost of electricity (LCOE) and the risk level of the failure
modes, the authors also used the fuzzy methods, incorporated with an equivalent crisp
model. This is derived and solved by an optimization algorithm for multi-objective particle
swarm optimization (PSO). To determine the most cost-effective solutions, the monetary
value needs to be assigned to the risk. This was the case in the study, thereby showing that
Florida Power and Light reduced RPN by 21 in 2016. The results increase the cost per kWh
by USD 0.004 kWh. Thus, the authors opined that transferring the risk-priority number into
a cost per kWh value is a possible way to select the most cost-effective solution. However,
the PSO is regarded as an optimization technique dealing with swarm intelligence. Hence,
its involvement in the study solves problems such as non-linear, discontinuous, and non-
convex objective functions as well as constraints. Notably, the LCOE is mentioned in the
study because it is most frequently used when comparing the generation of electricity
technologies and discussing grid parties for emerging technologies [113]. For the decision
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makers, the multi-objective model helps determine the proposition of different generations
of energy, thereby reducing risk related to financial health and survival of investor-owned
utilities. The study’s findings were used to evaluate the investor-owned solar PV projects
in Florida.

Having looked at the previous studies of fuzzy logic application to solar energy
systems, Table 5 presents a comparison summary detailing the type of application and a
brief discussion from various studies.

Evidently, decision-making selection has been seen as one of the objectives of fuzzy
logic techniques. Based on this, Figure 5 presents the schematic flow diagram of the
procedure required for the decision-making selection specifically for renewable energy
systems. One factor to consider in the decision-making process deals with the determination
of weight criteria (Refer to Figure 5).

Identification of problem

Data collection

I
v v

Determination of criteria weight

Data focusing on quantita-

\ 4

tive and qualitative

A 4

Application of the specified fuzzy technique

Final decision as per sensitivity analysis

Figure 5. Flow diagram illustrating the decision-making selection procedure of solar energy systems
{Extracted from Taylan et al. [125]}.

To conclude this section, it is necessary to briefly summarize the advantages and
limitations of the fuzzy logic techniques in relation to solar energy processes. This is
presented in Table 6.
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Table 5. Summary comparison of fuzzy logic techniques with their respective application type and findings in relation to solar energy systems, including advantages

and disadvantages.

Fuzzy Logic

Technique Type of Application

Brief Discussion

Advantages of FLT

Disadvantages of FLT References

PV silicone solar cell and

FAHP and FANP
solar power plant

The techniques are used to organize
complex things into a well-structured
hierarchical order. Furthermore, it
handled a complicated strategic
problem, thereby achieving an
outstanding performance. They are
used to choose the best criteria with
high priorities by considering other
factors. The techniques employ the
pairwise comparison matrix of
Triangular Fuzzy Number (TFN)
calculation to rank the criteria and
available alternatives. Also, they are
regarded as the best method for
solving multi-criteria issues as well as
making a selection for the best site of a
solar power plant (SPP). Solar
radiation is regarded as the highest
priority attribute of the fuzzy
techniques. In determining the weight
of different criteria from linguistic
evaluation by different experts, the
FAHP is suitable and can be
employed.

Easy to use when
compared to other
methods/can be easily
understood /can capture
subjective and objective
measurements of variables

There is consistency of
results with expert
judgement/can be subject
to inconsistency in
judgement and ranking
criteria/can become
computationally complex
to implement

Lee etal. [111]; Liu
et al. [114]; Valipour
etal. [115]; [116]
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Table 5. Cont.

Fuzzy Logic

Technique Type of Application

Brief Discussion

Advantages of FLT

Disadvantages of FLT

References

PV standalone and latent
ANFIS heat storage systems and
solar farms.

The ANFIS was introduced to
improve the learning capabilities of
ANN, thereby obtaining more
accurate approximations. It is said to
be a multilayer neural network with
the aim of mapping non-linear or
models that relate inputs to output
values. Considering the quantitative
analysis of the ANFIS, it deals with
performance measurement using
statistical metrics (R, RMSE, and
MAPE). The application of ANFIS to
model solar energy systems provides
greater accuracy, flexibility, and
superior predictive capability

compared to other traditional models.

ANFIS has the potential to optimize
the design and operation as well as
enhance system performance and
efficiency of solar energy applications
such as latent heat storage systems,
thereby resulting in greater energy
efficiency and cost savings. The
objective of ANFIS is to lessen the
difference between the actual and
desired value through optimizing its
parameters. In a solar farm, the
ANFIS provides coherent

approximations per potential location.

It can solve problems both
linear and non-linear/has
learning capabilities, and
pattern matching.
Provides accelerated
learning capacity and
adaptive interpretation
essential to model
complex patterns

Loss of interpretability in
larger units/high
computational expense,
and complexity. Need to
select an appropriate
membership function.

Arulmurugan and
Suthanthiravanitha
[117]; Sallah et al. [118];
Jagirdar et al. [119];
Tavana et al. [120];
Chekired et al. [121]
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Table 5. Cont.

Fuzzy Logic

Technique Type of Application

Brief Discussion

Advantages of FLT

Disadvantages of FLT

References

Solar thermal plant,

Fuzzy MCDM PV-technology

Considering the qualitative and
quantitative analysis of the techniques,
this involves linguistic evaluation of
subjective criteria, such as the
socio-political factors and expert
opinions for the qualitative analysis.
On the contrary, the quantitative
analysis focuses on the numerical data
and objective criteria (solar irradiation
and cost) to rank alternatives. With
the aid of fuzzy MCDMV,, it was
reported that the evaluation index of
the solar thermal plant was
established. Solar energy technologies
experience uncertainties because of
the increasing complexity of problems
associated with energy policy and
decision-making. To address this
problem, the fuzzy MCDM is an
analytic and effective approach to
employ. Similarly, the technique has
facilitated identifying the importance
of different energy alternatives,
scenario analysis, schemes, and
decisions based on the plans and
investments of projects.

Essentially applicable for
solar energy site selection
and evaluating its
resources and technology.
Hence, assist in
determining energy policy
and investment.

Experiences difficulties in
result validation of solar
energy data due to
inherent fuzziness, as well
as increased complexity
and computational
demands

Wau et al. [99]; Kaya
etal. [122];
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Table 5. Cont.

Fuzzy Logic
Technique

Type of Application

Brief Discussion

Advantages of FLT

Disadvantages of FLT References

Fuzzy TOPSIS
and VIKOR

Solar dish Stirling engine,
solar PV

The fuzzy TOPSIS and VIKOR
provide both quantitative (cost) and
qualitative (environmental impact)
analysis in relation to solar energy
selection and project evaluation of the
technology. In solar dish, Stirling
engine, and other elements in the solar
energy sector, the techniques help to
handle the ambiguity and subjectivity
of expert opinions and linguistic
terms. Furthermore, it helps to select
the best opinions on various solar
energy technologies. A study on the
solar dish Stirling engine reported a
maximum error of output power 2.5%;
thermal efficiency 8.4% and rate of
entropy 6.8% as well as average error
of Output power 1.3%; thermal
efficiency 4.4% and rate of entropy
3.5% with the employment of fuzzy
TOPSIS and VIKOR. Based on the
priority of investment, the fuzzy
TOPSIS and VIKOR are used for the
ordering of alternative solar energy
systems. Therefore, findings revealed
that solar PV is the paramount
renewable energy for investment with
reference to the technique’s
approaches.

Assist in optimizing
configuration and

decision-making processes.

This progresses in
handling uncertainties and
subjective evaluation of
solar energy projects,
thereby permitting robust
and realistic assessments.

Computationally complex,

especially when dealing Ahmadi et al. [123];
with a huge number of Sengul et al. [124];
data/alternatives and Taylan et al. [125]
criteria.
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Table 5. Cont.

Fuzzy Logic

Technique Type of Application

Brief Discussion

Advantages of FLT

Disadvantages of FLT

References

Fuzzy particle

swarm Photovoltaic farms and
optimization solar PV systems
(FPSO)

The FPSO in relation to solar energy is
regarded as a hybrid technique for the
optimization of solar energy systems.
In this case, it offers quantitative
advantages in power output increase,
maximum power point tracking, as
well as qualitative benefits (improved
power quality and stable dynamic
conditions). To overcome the
limitations of traditional methods, the
FPSO provides and offers the
combination of adaptive control of
fuzzy logic with particle swarm
optimization for an efficient and stable
approach for solar PV systems. From
the simulation result of the design and
evaluation of FPSO-based MPPT on
PV system, it was revealed that FPSO
based MPPT was 14% and 30% faster
under partial shading conditions on
average and uniform irradiation,
respectively, than the settling time
using the conventional method. In a
development, it was revealed that
Sugeno fuzzy logic control plus PSO
was a smart renewable energy source
to contribute to the frequency
stabilizing service in the smart grid.
Comparing FPSO with other models,
the techniques have a higher degree of
accuracy than the Fuzzy -GA model.

Addresses the challenges
of balancing exploration
and exploitation in
optimization problems to
enhance convergence
speed and solution
accuracy with robustness

Presence of potential for
premature convergence,
sensitivity to parameter
turning, and complexity in
implementation in relation
to solar energy

Sangawong and
Ngamroo [126];
Ibrahim et al. [127];
Guo et al. [128]
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Table 5. Cont.

Fuzzy Logic

Technique Type of Application

Brief Discussion

Advantages of FLT

Disadvantages of FLT

References

Fuzzy genetic
algorithms
(Fuzzy- GA)

Solar radiation; solar PV
system

With respect to the solar energy
system, the fuzzy GA combines fuzzy
logic to handle inherent uncertainties
in a qualitative manner and deals with
the quantitative aspect, focusing on
genetic algorithms to find optimal
solutions. The measurable outcomes,
such as power loss, energy generation,
and power voltage, for example, are
quantitatively analyzed by Fuzzy GA
for solar energy systems, while, on the
contrary, incorporating expert
judgement, subjective criteria, and
linguistic variables with fuzzy logic to
improve decision-making (site or
technology) selection is regarded as
the qualitative analysis of the
technique. A study revealed that the
fuzzy GA is superior and performs
better than the optimal ANN model in
estimating solar radiation. In another
study, the techniques were used to
choose the best configuration with the
lowest cost for the techno-economic
optimization of a standalone

PV system.

Improve the
decision-making process,
thereby producing better
resource management and
a reduction in operational
inefficiencies. This fosters
increased adaptability to
changing conditions.

High cost and complexity
of the implementation of
solar energy data
modelling

Kisi [129]; Erdogdu
et al. [130]; Benmouiza
etal. [131]
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Table 5. Cont.

Fuzzy Logic
Technique

Type of Application

Brief Discussion

Advantages of FLT

Disadvantages of FLT References

Fuzzy
optimization

PV water pumping system

To prevent the errors associated with
conventional methods regarding the
generation scheduling problems of
solar energy systems, the fuzzy
optimization technique is employed
for this purpose. In this case, the
technique is known to have the
feature associated with generation
scheduling, such as forecasting hourly
load and solar radiation errors. These
are considered using the fuzzy set to
obtain an optimal generation schedule
under a certain environment.
Interestingly, the technique involves
quantitative analysis of complex
factors via linguistic terms and fuzzy
numbers. This is essential to model
uncertainty and achieve precise
numerical outcomes. On the contrary,
the qualitative analysis of the
techniques provides key factors used
for the model, such as technical,
environmental, and economic aspects.
In this case, it assists in guiding the
selection of criteria. It is reported that
fuzzy optimization has a good
performance in terms of global
efficiency, as well as optimizing the
output power of the system.

Improved solar energy
output and accuracy
through the optimization
of the tilt angle monthly

High computational
overhead as well as a lack
of experimental validation,
and no real-time
adaptability to changing
environmental impact

Benlarbi et al. [132];
Guler et al. [133]; Liang
and Liao [134]
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Table 5. Cont.

Fuzzy Logic

Technique Type of Application

Brief Discussion Advantages of FLT

Disadvantages of FLT

References

Solar radiation; solar PV
system

Fuzzy c-means
clustering (FCM)

In terms of quantitative and
qualitative analysis of the techniques,
the quantitative focus is on the
numerical data. Here, the observation
consists of n measured variables
grouped into an n-dimensional
column. The qualitative aspect of the
technique deals with the categorical
data. Conversely, the technique was
employed to extract useful
information from hourly solar
radiation for optimal standalone PV
system sizing with an inclination
angle equal to 32°. Therefore, the
simulation revealed that the sizing in
the hourly solar radiation scale of
capacity of the PV panel array (Cy)
and total component cost (Cc) of 0.91
and 3.2 gives a better result than the
daily solar radiation scale of 1.09 (Cp)
and 4.4 (Cg), respectively. In another
study related to solar radiation, the
techniques show a good modelling
accuracy despite the spatially and
temporary independent data of the
training and testing data of the
proposed model.

For the effective and
efficient determination of
the best location for the
installation of solar power
plants in unproductive
areas

Limited to single feature
input data/their
robustness to noise and
effectiveness depend on
crucial parameters.
Difficult to find the
optimal value, which is
usually experimentally
selected

Almaraashi [135]; de
Barros et al. [136];
Memon and Lee [137];
Benmouiza et al. [131];
Kaushik and Hermanta
[138]
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Table 6. Advantages and limitations of fuzzy logic techniques in relation to solar energy systems.

Advantages of Fuzzy Logic Techniques to Solar
Energy Systems

Limitations of Fuzzy Logic to Solar Energy Systems

FL is an effective tool for the handling of spatial data
from GIS, simulation, and index data from reliability
models to identify potential sites for the solar installation
on building rooftops, especially at large-scale solar farms.

The FL may require extensive or large solar energy data
for optimization and development of complex models.
This is due to computational complexity because of
multiple calculations for fuzzification, inference, and
defuzzification.

It is used to reduce the cost of solar energy, thereby
creating an adaptable control system that can optimize
energy usage, battery management that results in lower
electricity bills, peak demand reduction, and improved
battery efficiency.

The techniques lack transparency in the decision model,
thereby resulting in hindrances to the adoption of solar
energy industries.

Provides a better result in terms of maximum power
point tracking in solar energy systems by providing fast
and stable responses. It also handles the non-linear
nature of PV systems as well as strong robustness against
changes in solar irradiance.

With the potential of the FL techniques, its reliance on
thermal imagery restricts the capacity to identify faults in
solar energy technologies that do not exhibit thermal
characteristics. This is because the technique depends on
thermal data to respond to changes in temperature.

With FL, higher precision of the accuracy of solar energy
data is produced, as well as better prediction modelling
capability. This is important in optimizing solar panel
performance and efficiency.

Careful design and control strategies are required for the
implementation of fuzzy logic techniques, which are
complex in solar energy applications. However, FL
application in solar energy requires precise modelling and
significant fuzzy rules. Therefore, extensive knowledge
and expertise are required for its optimal performance.

FL enhances solar energy systems by improving efficiency
through intelligent power management. This ensures and
provides improved stability and better adaptability to
changing weather conditions in solar energy systems.

Fuzzy logic is said to struggle in terms of predicting the
future demand of solar energy. This is because it is
computationally complex, especially with large and
uncertain imprecise datasets from the measurement of
selected solar energy, such as solar radiation, angle of
incidence, and tilt of solar PV modules via a data
acquisition system.

7. Solar Energy Challenges with a Possible Solution via Fuzzy

Logic Technique

The challenges of solar energy can be classified into three stages: evaluation/diagnosis,

installation, and operation. The evaluation/diagnosis stage consists of the process/system

modelling, evaluation/assessment, and prediction/forecasting of the solar energy system.

On the other hand, the operation stage consists of the management and maintenance.

Table 7 shows the stages associated with the challenges of solar energy systems and their

possible solutions using fuzzy logic.

Table 7. Challenges of solar energy systems and their possible solutions via FL.

Solar Energy Challenges Factor Responsible

Possible Solution via FL

Aim or Purpose

To determine the most eligible

Fuzzy ANP and solar energy technology for
Evaluating and assessing Technical /economic AHP/MCDM/Fuzzy investment. To rank the weights
solar energy systems and environmental Delphi/ANFIS/Grey of the criteria as well as to select
' considerations. AHP/TOPSIS and the best option for a particular
VIKOR. solar energy system. To evaluate

and assess solar energy systems.
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Table 7. Cont.

Solar Energy Challenges

Factor Responsible

Possible Solution via FL

Aim or Purpose

To predict the best position for the

Weather and Fuzzy c— installation of solar energy plants,
Prediction and cooraphical means/ANFIS/Fuzzy as well as solar radiation, and to
forecasting of solar \%arigabiﬁ ty/data ANN/Fuzzy optimize the performance of the
energy systems. re uiremZnt / SVM/TOPSIS/Neuro system. To forecast the solar
d fuzzy system. radiation and detect faults in the
system
To optimize and enhance the
Sunlight ANFIS/Fuzzy GA/Fuzzy modelling and control of the solar
. variability /energy ANN/Fuzzy energy systems. To handle tasks
Process and modelling of storage limitationsand ~ PSO/ANFIS in relation to maximum power

solar energy systems.

complexities of grid

controller /Fuzzy logic

point tracking (MPPT) and energy

integration. controller. management, as well as
improving solar energy output.
Skilled personnel/ To improve the performance of a
Management and hich upfront standalone solar energy system,
maintenance of solar 51 uptron ANFIS and Fuzzy ANN.  as well as provide high accuracy
cost/intermittent

energy systems.

and reliability for its performance

power generation. through prediction.

8. Technological Development Trends and Application Prospect

The development trends of fuzzy logic and its application prospects include energy
management systems (EMS), MPPT, demand side management (DSM), microgrids and
off-grid systems, and smart home and building energy management. The EMS decision-
making process is carried out by a fuzzy logic controller (FLC), which controls the hybrid
energy resources by continuously observing the load demand, battery charging, and
discharging conditions. This is to regulate the system power without cutting off the load
supply [139]. With the aid of MATLAB Simulink, the battery energy storage system (ESS)
in a microgrid is charged and discharged using the fuzzy logic-based EMS [140]. According
to Subudhi and Pradhan [141], varieties of MPPT algorithms have been developed to
maximize solar PV system power output. Some of these typical methods include the
constant velocity (CV) [142], ANN [143], P&O [144], incremental conductance (IC) [145],
and fuzzy logic control (FLC) [146]. In comparison, the MPPT techniques provide better
tracking accuracy and have a high computational cost. For the battery-powered hybrid
systems, stability is being increased with better change controllers [147]. It is interesting
to mention that, generally, the development trends and application prospects of fuzzy
logic seen in solar energy systems improve the effectiveness and efficiency of managing
and handling ambiguous data as well as uncertainty behaviour [148]. The DSM stresses
the efficiency of energy use, whereas the supply side management (S5SM) deals with
energy generation and delivery [149]. Demand response (DR) is a crucial element of the
DSM, which allows users to modify their electricity consumption in response to supply
conditions or price changes, thereby lowering the cost and improving grid reliability [139].
The integration of a grid-connected renewable energy system at the household level impacts
the power quality and distribution network stability. This is said to be driven by the growth
of residential smart microgrids [150]. To this effect, several energy-management strategies
have been developed to balance the microgrid’s generation and consumption, thereby
minimizing the user inference and reducing the cost of energy through shifting the load
during the off-peak hours [151]. To reduce transmission losses, Livengood and Larson [152]
mentioned that peak demand and the requirement for backup solar power plants help the
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grid. With the application of solar energy with respect to the solar microgrid, its energy
management is of two types, namely the rule-based techniques (fuzzy or deterministic) and
the optimization method. For rule-based methods, the fuzzy logic controller is commonly
employed because of its capability to manage non-linearities without the need for intricate
mathematical models [153]. Solar energies are often used in smart homes [154]; however,
how the energy is captured, used, or stored determines how sustainable they are [155].
Therefore, to integrate a hybrid-battery energy management system, Zhang et al. [156]
proposed a fuzzy expert system for efficient smart-home management (FES-ESHMS). The
findings show that by increasing the energy efficiency and reducing overall cost, smart
homes with solar microgrids achieve larger smart grids (5G) and demand side management
(DSM) side objectives. The advantage is that the system improves the dependability, user
comfort, and energy sustainability as part of the development of smart cities [156].

9. Conclusions, Limitations, and Recommendations

This paper reviews the fuzzy logic techniques with an emphasis on solar energy
systems. One benefit of the study deals with the potential contribution in promoting the
application of fuzzy logic techniques as an aspect of methodologies employed in solar
energy systems. Having looked at the advantages and disadvantages of FL, this provides
a guide to the decision makers and stakeholders to select and implement an appropriate
and suitable fuzzy logic method for solar energy projects. The reviews address the concern
and demonstrate the possible challenges of solar energy systems and projects, with a
possible solution of employing fuzzy logic to improve their performance. Fuzzy logic
techniques, in relation to solar energy processes, deal with fuzzy models (for predicting
solar energy systems), hybrid models (simulating the system’s performance), and MCDM
for testing numerical and simulation purposes. According to the study, these are necessary
for the decision-making model, ranking of alternative criteria and weight, and assessing
the potential location for the installation of solar energy plants. The development and
implementation of relevant policies need to be established to promote and improve the
adoption of fuzzy logic techniques in the solar energy field and its related industries and
sectors. Training programmes need to be mapped out and established to educate the
stakeholders in the PV solar energy industry about the importance and relevance of fuzzy
logic techniques. Government, industries, research bodies, and institutions need to fund
research and development as well as projects in relation to the promotion of the use of
fuzzy logic techniques in PV solar energy, especially as it concerns academic research
and industry collaboration. Importantly, for the efficient and effective performance of
solar energy systems, the integration or incorporation of fuzzy logic and neural networks
is recommended.

9.1. Practical Implications of the Study

From the review findings, the technique evidently provides a better optimization of
energy output in real-world scenarios because of its intelligent maximum power point
tracking (MPPT) and its adjustment of tilt angle during the design of solar energy systems,
managing the intermittent nature of solar power as well as improving the resilience of solar
energy via adaptive control. This is especially important in solar energy industries, such as
photovoltaic energy, solar farms, and solar thermal heating systems. Also, in solar battery
(hybrid) industries, the study facilitates the optimal performance of energy management

9.2. Future Studies/Direction

Looking ahead, future studies should focus on the integration of fuzzy logic with the
multi-goal programming model, as well as conduct studies to address the limitations asso-
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ciated with the resources of time and cost. In enhancing fault detection and classification
in PV systems based on a fuzzy logic algorithm, there is a need to integrate complemen-
tary diagnostic methods to broaden the spectrum of detectable faults. Through this, the
robustness of fault detection across various conditions of PV panels is enhanced. Further
research could also explore the combination of fuzzy logic with other algorithms in relation
to a particular solar energy technology as a hybrid optimization technique. The study will
focus on dynamically adjusting fuzzy rules and controlling the threshold based on the
performance feedback of the solar energy system.
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