Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (640)

Search Parameters:
Keywords = fuzzy linear system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1761 KB  
Article
Multi-Objective Optimization Method for Flexible Distribution Networks with F-SOP Based on Fuzzy Chance Constraints
by Zheng Lan, Renyu Tan, Chunzhi Yang, Xi Peng and Ke Zhao
Sustainability 2025, 17(21), 9510; https://doi.org/10.3390/su17219510 - 25 Oct 2025
Viewed by 309
Abstract
With the large-scale integration of single-phase distributed photovoltaic systems into distribution grids, issues such as mismatched generation and load, overvoltage, and three-phase imbalance may arise in the distribution network. A multi-objective optimization method for flexible distribution networks incorporating a four-leg soft open point [...] Read more.
With the large-scale integration of single-phase distributed photovoltaic systems into distribution grids, issues such as mismatched generation and load, overvoltage, and three-phase imbalance may arise in the distribution network. A multi-objective optimization method for flexible distribution networks incorporating a four-leg soft open point (F-SOP) is proposed based on fuzzy chance constraints. First, a mathematical model for the F-SOP’s loss characteristics and power control was established based on the three-phase four-arm topology. Considering the impact of source load uncertainty on voltage regulation, a multi-objective complementary voltage regulation architecture is proposed based on fuzzy chance constraint programming. This architecture integrates F-SOP with conventional reactive power compensation devices. Next, a multi-objective collaborative optimization model for distribution networks is constructed, with network losses, overall voltage deviation, and three-phase imbalance as objective functions. The proposed model is linearized using second-order cone programming. Finally, using an improved IEEE 33-node distribution network as a case study, the effectiveness of the proposed method was analyzed and validated. The results indicate that this method can reduce network losses by 30.17%, decrease voltage deviation by 46.32%, and lower three-phase imbalance by 57.86%. This method holds significant importance for the sustainable development of distribution networks. Full article
Show Figures

Figure 1

28 pages, 6660 KB  
Article
Self-Regulating Fuzzy-LQR Control of an Inverted Pendulum System via Adaptive Hyperbolic Error Modulation
by Omer Saleem, Jamshed Iqbal and Soltan Alharbi
Machines 2025, 13(10), 939; https://doi.org/10.3390/machines13100939 - 12 Oct 2025
Viewed by 413
Abstract
This study introduces an innovative self-regulating intelligent optimal balancing control framework for inverted pendulum-type mechatronic platforms, designed to enhance reference tracking accuracy and improve disturbance rejection capability. The control procedure is synthesized by synergistically integrating a baseline Linear Quadratic Regulator (LQR) with a [...] Read more.
This study introduces an innovative self-regulating intelligent optimal balancing control framework for inverted pendulum-type mechatronic platforms, designed to enhance reference tracking accuracy and improve disturbance rejection capability. The control procedure is synthesized by synergistically integrating a baseline Linear Quadratic Regulator (LQR) with a fuzzy controller via a customized linear decomposition function (LDF). The LDF dissociates and transforms the LQR control law into compounded state tracking error and tracking error derivative variables that are eventually used to drive the fuzzy controller. The principal contribution of this study lies in the adaptive modulation of these compounded variables using reconfigurable tangent hyperbolic functions driven by the cubic power of the error signals. This nonlinear preprocessing of the input variables selectively amplifies large errors while attenuating small ones, thereby improving robustness and reducing oscillations. Moreover, a model-free online self-tuning law dynamically adjusts the variation rates of the hyperbolic functions through dissipative and anti-dissipative terms of the state errors, enabling autonomous reconfiguration of the nonlinear preprocessing layer. This dual-level adaptation enhances the flexibility and resilience of the controller under perturbations. The robustness of the designed controller is substantiated via tailored experimental trials conducted on the Quanser rotary pendulum platform. Comparative results show that the prescribed scheme reduces pendulum angle variance by 41.8%, arm position variance by 34.6%, and average control energy by 28.3% relative to the baseline LQR, while outperforming conventional fuzzy-LQR by similar margins. These results show that the prescribed controller significantly enhances disturbance rejection and tracking accuracy, thereby offering a numerically superior control of inverted pendulum systems. Full article
(This article belongs to the Special Issue Mechatronic Systems: Developments and Applications)
Show Figures

Figure 1

14 pages, 1152 KB  
Article
Financial Swing for Well-Being: Jazz Economy and Modelling the Social Return of Sustainable Capital Markets
by Sonja Brlečić Valčić, Anita Peša and Dijana Čičin-Šain
J. Risk Financial Manag. 2025, 18(10), 568; https://doi.org/10.3390/jrfm18100568 - 7 Oct 2025
Viewed by 383
Abstract
This paper examines how shifts in sustainable capital markets influence societal well-being through the lens of a “Jazz Economy”, highlighting improvisation and adaptability in financial systems while grounding the analysis in empirical modelling. A panel of EUROSTAT indicators for 27 EU member states [...] Read more.
This paper examines how shifts in sustainable capital markets influence societal well-being through the lens of a “Jazz Economy”, highlighting improvisation and adaptability in financial systems while grounding the analysis in empirical modelling. A panel of EUROSTAT indicators for 27 EU member states (2019–2022) was analyzed, including green bond issuance, market capitalization, environmental taxation, social spending, life expectancy, and subjective life satisfaction. Hierarchical clustering grouped these indicators into coherent patterns of “financial swings”, which were then linked to a composite quality-of-life index through an Adaptive Neuro-Fuzzy Inference System (ANFIS), with results benchmarked against linear regression and random forests. The inclusion of time lags between fiscal, financial, and social indicators strengthens the causal interpretation of the results, moving beyond simple correlations. Findings show that higher public environmental protection spending combined with a strong net international investment position consistently predicts greater life satisfaction, whereas income and longevity alone do not guarantee improvements in subjective well-being, reflecting nonlinear interactions among fiscal, financial, and social variables. Robustness checks, including the exclusion of pandemic years, confirm the stability of outcomes. The study concludes that cohesive fiscal–financial strategies, integrating environmental policy and macro-financial resilience, are essential for enhancing quality of life and that sustainable finance can deliver tangible social benefits beyond metaphorical framing. Full article
(This article belongs to the Special Issue Sustainable Finance and Capital Market)
Show Figures

Figure 1

31 pages, 1677 KB  
Review
A Taxonomy of Robust Control Techniques for Hybrid AC/DC Microgrids: A Review
by Pooya Parvizi, Alireza Mohammadi Amidi, Mohammad Reza Zangeneh, Jordi-Roger Riba and Milad Jalilian
Eng 2025, 6(10), 267; https://doi.org/10.3390/eng6100267 - 6 Oct 2025
Viewed by 879
Abstract
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating [...] Read more.
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating points, often fail to maintain stability under large load and generation fluctuations. Optimization-based methods are highly sensitive to model inaccuracies and parameter uncertainties, reducing their reliability in dynamic environments. Intelligent approaches, such as fuzzy logic and ML-based controllers, provide adaptability but suffer from high computational demands, limited interpretability, and challenges in real-time deployment. These limitations highlight the need for robust control strategies that can guarantee reliable operation despite disturbances, uncertainties, and varying operating conditions. Numerical performance indices demonstrate that the reviewed robust control strategies outperform conventional linear, optimization-based, and intelligent controllers in terms of system stability, voltage and current regulation, and dynamic response. This paper provides a comprehensive review of recent robust control strategies for hybrid AC/DC microgrids, systematically categorizing classical model-based, intelligent, and adaptive approaches. Key research gaps are identified, including the lack of unified benchmarking, limited experimental validation, and challenges in integrating decentralized frameworks. Unlike prior surveys that broadly cover microgrid types, this work focuses exclusively on hybrid AC/DC systems, emphasizing hierarchical control architectures and outlining future directions for scalable and certifiable robust controllers. Also, comparative results demonstrate that state of the art robust controllers—including H∞-based, sliding mode, and hybrid intelligent controllers—can achieve performance improvements for metrics such as voltage overshoot, frequency settling time, and THD compared to conventional PID and droop controllers. By synthesizing recent advancements and identifying critical research gaps, this work lays the groundwork for developing robust control strategies capable of ensuring stability and adaptability in future hybrid AC/DC microgrids. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

13 pages, 322 KB  
Article
Observer-Based Exponential Stabilization for Time Delay Takagi–Sugeno–Lipschitz Models
by Omar Kahouli, Hamdi Gassara, Lilia El Amraoui and Mohamed Ayari
Mathematics 2025, 13(19), 3170; https://doi.org/10.3390/math13193170 - 3 Oct 2025
Viewed by 276
Abstract
This paper addresses the problem of observer-based control (OBC) for nonlinear systems with time delay (TD). A novel hybrid modeling framework for nonlinear TD systems is first introduced by synergistically combining TD Takagi–Sugeno (TDTS) fuzzy and Lipschitz approaches. The proposed methodology broadens the [...] Read more.
This paper addresses the problem of observer-based control (OBC) for nonlinear systems with time delay (TD). A novel hybrid modeling framework for nonlinear TD systems is first introduced by synergistically combining TD Takagi–Sugeno (TDTS) fuzzy and Lipschitz approaches. The proposed methodology broadens the range of representable systems by enabling Lipschitz nonlinearities to fulfill dual functions: they may describe essential dynamic behaviors of the system or represent aggregated uncertainties, depending on the specific application. The proposed TDTS–Lipschitz (TDTSL) model class features measurable premise variables while accommodating Lipschitz nonlinearities that may depend on unmeasurable system states. Then, through the construction of an appropriate Lyapunov–Krasovskii (L-K) functional, we derive sufficient conditions to ensure exponential stability of the augmented closed-loop model. Subsequently, through a decoupling methodology, these stability conditions are reformulated as a set of linear matrix inequalities (LMIs). Finally, the proposed OBC design is validated through application to a continuous stirred tank reactor (CSTR) with lumped uncertainties. Full article
(This article belongs to the Special Issue Advances in Nonlinear Analysis: Theory, Methods and Applications)
Show Figures

Figure 1

16 pages, 319 KB  
Article
Fuzzy Graphic Binary Matroid Approach to Power Grid Communication Network Analysis
by Jing Li, Buvaneswari Rangasamy, Saranya Shanmugavel and Aysha Khan
Symmetry 2025, 17(10), 1628; https://doi.org/10.3390/sym17101628 - 2 Oct 2025
Viewed by 302
Abstract
Matroid is a mathematical structure that extends the concept of independence. The fuzzy graphic binary matroid serves as a generalization of linear dependence, and its properties are examined. Power grid networks, which manage the generation, transmission, and distribution of electrical energy from power [...] Read more.
Matroid is a mathematical structure that extends the concept of independence. The fuzzy graphic binary matroid serves as a generalization of linear dependence, and its properties are examined. Power grid networks, which manage the generation, transmission, and distribution of electrical energy from power plants to consumers, are inherently a complex system. A key objective in analyzing these networks is to ensure a reliable and uninterrupted supply of electricity. However, several critical issues must be addressed, including uncertainty in communication links, detection of redundant or sensitive circuits, evaluation of network resilience under partial failures, and optimization of reliability in interconnected network systems. To support this goal, the concept of a fuzzy graphic binary matroid is applied in the analysis of power grid communication network, offering a framework that not only incorporates fuzziness and binary conditions but also enables systematic identification of weak circuits, redundancy planning, and reliability enhancement. This approach provides a more realistic representation of operational conditions, ensuring better fault tolerance and improved efficiency of the grid. Full article
Show Figures

Figure 1

27 pages, 860 KB  
Article
LP-Based Leader-Following Positive Consensus of T-S Fuzzy Multi-Agent Systems
by Qingbo Li, Haoyue Yang and Chongxiang Yu
Mathematics 2025, 13(19), 3146; https://doi.org/10.3390/math13193146 - 1 Oct 2025
Viewed by 345
Abstract
This paper investigates the leader–follower consensus problem for T-S fuzzy multi-agent systems with positive constraints by designing observer-based control protocols, where the T-S fuzzy model is mainly used to characterize the nonlinearity in the system. First, a stable system is chosen as the [...] Read more.
This paper investigates the leader–follower consensus problem for T-S fuzzy multi-agent systems with positive constraints by designing observer-based control protocols, where the T-S fuzzy model is mainly used to characterize the nonlinearity in the system. First, a stable system is chosen as the leader. Then, a fuzzy observer that satisfies the positivity condition is constructed for follower agents. Meanwhile, an observer-based fuzzy controller design is proposed using a matrix decomposition approach. On this basis, the positivity and asymptotic consensus of the system are achieved by a set of sufficient conditions in the form of linear programming. Subsequently, an unstable system is chosen as the leader. A virtual target is introduced. By means of the co-positive Lyapunov function and linear programming approach, an observer and controller are designed to ensure both positivity and practical consensus of systems. Compared to existing literature, the consideration of positivity constraints and the linear programming-based observation-control scheme expand the application scope of multi-agent systems while reducing the computational burden. Finally, two illustrative examples are provided to verify the effectiveness of the obtained results. Full article
Show Figures

Figure 1

37 pages, 905 KB  
Review
Application of Fuzzy Logic Techniques in Solar Energy Systems: A Review
by Siviwe Maqekeni, KeChrist Obileke, Odilo Ndiweni and Patrick Mukumba
Appl. Syst. Innov. 2025, 8(5), 144; https://doi.org/10.3390/asi8050144 - 30 Sep 2025
Viewed by 723
Abstract
Fuzzy logic has been applied to a wide range of problems, including process control, object recognition, image and signal processing, prediction, classification, decision-making, optimization, and time series analysis. These apply to solar energy systems. Though experts in renewable energy prefer fuzzy logic techniques, [...] Read more.
Fuzzy logic has been applied to a wide range of problems, including process control, object recognition, image and signal processing, prediction, classification, decision-making, optimization, and time series analysis. These apply to solar energy systems. Though experts in renewable energy prefer fuzzy logic techniques, their contribution to the decision-making process of solar energy systems lies in the possibility of illustrating risk factors and introducing the concepts of linguistic variables of data from solar energy applications. In solar energy systems, the primary beneficiaries and audience of the fuzzy logic techniques are solar energy policy makers, as it concerns decision-making models, ranking of criteria or weights, and assessment of the potential location of the installation of solar energy plants, depending on the case. In a real-world scenario, fuzzy logic allows easy and efficient controller configuration in a non-linear control system, such as a solar panel. This study attempts to review the role and contribution of fuzzy logic in solar energy based on its applications. The findings from the review revealed that the fuzzy logic application identifies and detects faults in solar energy systems as well as in the optimization of energy output and the location of solar energy plants. In addition, fuzzy model (predicting), hybrid model (simulating performance), and multi-criteria decision-making (MCDM) are components of fuzzy logic techniques. As the review indicated, these are useful as a solution to the challenges of solar energy systems. Importantly, the integration and incorporation of fuzzy logic and neural networks should be recommended for the efficient and effective performance of solar energy systems. Full article
Show Figures

Figure 1

36 pages, 5224 KB  
Article
Adaptive Robust Optimal Control for UAV Taxiing Systems with Uncertainties
by Erdong Wu, Peng Wang and Zheng Guo
Drones 2025, 9(10), 668; https://doi.org/10.3390/drones9100668 - 23 Sep 2025
Cited by 1 | Viewed by 640
Abstract
The ground taxiing phase is a crucial stage for the autonomous takeoff and landing of fixed-wing unmanned aerial vehicles (UAVs), and its trajectory tracking accuracy and stability directly determine the success of the UAV’s autonomous takeoff and landing. Therefore, researching the adaptive robust [...] Read more.
The ground taxiing phase is a crucial stage for the autonomous takeoff and landing of fixed-wing unmanned aerial vehicles (UAVs), and its trajectory tracking accuracy and stability directly determine the success of the UAV’s autonomous takeoff and landing. Therefore, researching the adaptive robust optimal control technology for UAV taxiing is of great significance for enhancing the autonomy and environmental adaptability of UAVs. This study integrates the linear quadratic regulator (LQR) with sliding mode control (SMC). A compensation control signal is generated by the SMC to mitigate the potential effects of uncertain parameters and random external disturbances, which is then added onto the LQR output to achieve a robust optimal controller. On this basis, through ANFIS (Adaptive Neuro-Fuzzy Inference System), the nonlinear mapping relationship between multiple state parameters such as speed, lateral/heading deviation and the weight matrix of the LQR controller is learned, realizing a data-driven adaptive adjustment mechanism for controller parameters to improve the tracking accuracy and anti-interference stability of the UAV’s taxiing trajectory. Full article
Show Figures

Figure 1

32 pages, 1924 KB  
Review
A Review of Mamdani, Takagi–Sugeno, and Type-2 Fuzzy Controllers for MPPT and Power Management in Photovoltaic Systems
by Rodrigo Vidal-Martínez, José R. García-Martínez, Rafael Rojas-Galván, José M. Álvarez-Alvarado, Mario Gozález-Lee and Juvenal Rodríguez-Reséndiz
Technologies 2025, 13(9), 422; https://doi.org/10.3390/technologies13090422 - 20 Sep 2025
Cited by 1 | Viewed by 1466
Abstract
This review presents a synthesis of fuzzy logic-based (FL) controllers applied to photovoltaic (PV) systems over the last decade, with a specific focus on maximum power point tracking (MPPT) and power management. These subsystems are critical for improving the efficiency of PV energy [...] Read more.
This review presents a synthesis of fuzzy logic-based (FL) controllers applied to photovoltaic (PV) systems over the last decade, with a specific focus on maximum power point tracking (MPPT) and power management. These subsystems are critical for improving the efficiency of PV energy conversion, as they directly address the nonlinear, time-varying, and uncertain behavior of solar generation under dynamic environmental conditions. FL-based control has proven to be a powerful and versatile tool for enhancing MPPT accuracy, inverter performance, and hybrid energy management strategies. The analysis concentrates on three main categories, namely, Mamdani, Takagi–Sugeno (T-S), and Type-2, highlighting their architectures, operational characteristics, and application domains. Mamdani controllers remain the most widely adopted due to their simplicity, interpretability, and effectiveness in scenarios with moderate response time requirements. T-S controllers excel in real-time high-frequency operations by eliminating the defuzzification stage and approximating system nonlinearities through local linear models, achieving rapid convergence to the maximum power point (MPP) and improved power quality in grid-connected PV systems. Type-2 fuzzy controllers represent the most advanced evolution, incorporating footprints of uncertainty (FOU) to handle high variability, sensor noise, and environmental disturbances, thereby strengthening MPPT accuracy under challenging conditions. This review also examines the integration of metaheuristic algorithms for automated tuning of membership functions and hybrid architectures that combine fuzzy control with artificial intelligence (AI) techniques. A bibliometric perspective reveals a growing research interest in T-S and Type-2 approaches. Quantitatively, Mamdani controllers account for 54.20% of publications, T-S controllers for 26.72%, and Type-2 fuzzy controllers for 19.08%, reflecting the balance between interpretability, computational performance, and robustness to uncertainty in PV-based MPPT and power management applications. Full article
Show Figures

Graphical abstract

22 pages, 4234 KB  
Article
Speaker Recognition Based on the Combination of SincNet and Neuro-Fuzzy for Intelligent Home Service Robots
by Seo-Hyun Kim, Tae-Wan Kim and Keun-Chang Kwak
Electronics 2025, 14(18), 3581; https://doi.org/10.3390/electronics14183581 - 9 Sep 2025
Viewed by 643
Abstract
Speaker recognition has become a critical component of human–robot interaction (HRI), enabling personalized services based on user identity, as the demand for home service robots increases. In contrast to conventional speech recognition tasks, recognition in home service robot environments is affected by varying [...] Read more.
Speaker recognition has become a critical component of human–robot interaction (HRI), enabling personalized services based on user identity, as the demand for home service robots increases. In contrast to conventional speech recognition tasks, recognition in home service robot environments is affected by varying speaker–robot distances and background noises, which can significantly reduce accuracy. Traditional approaches rely on hand-crafted features, which may lose essential speaker-specific information during extraction like mel-frequency cepstral coefficients (MFCCs). To address this, we propose a novel speaker recognition technique for intelligent robots that combines SincNet-based raw waveform processing with an adaptive neuro-fuzzy inference system (ANFIS). SincNet extracts relevant frequency features by learning low- and high-cutoff frequencies in its convolutional filters, reducing parameter complexity while retaining discriminative power. To improve interpretability and handle non-linearity, ANFIS is used as the classifier, leveraging fuzzy rules generated by fuzzy c-means (FCM) clustering. The model is evaluated on a custom dataset collected in a realistic home environment with background noise, including TV sounds and mechanical noise from robot motion. Our results show that the proposed model outperforms existing CNN, CNN-ANFIS, and SincNet models in terms of accuracy. This approach offers robust performance and enhanced model transparency, making it well-suited for intelligent home robot systems. Full article
(This article belongs to the Special Issue Control and Design of Intelligent Robots)
Show Figures

Figure 1

28 pages, 2702 KB  
Article
An Overview of the Euler-Type Universal Numerical Integrator (E-TUNI): Applications in Non-Linear Dynamics and Predictive Control
by Paulo M. Tasinaffo, Gildárcio S. Gonçalves, Johnny C. Marques, Luiz A. V. Dias and Adilson M. da Cunha
Algorithms 2025, 18(9), 562; https://doi.org/10.3390/a18090562 - 4 Sep 2025
Viewed by 609
Abstract
A Universal Numerical Integrator (UNI) is a computational framework that combines a classical numerical integration method, such as Euler, Runge–Kutta, or Adams–Bashforth, with a universal approximator of functions, such as a feed-forward neural network (including MLP, SVM, RBF, among others) or a fuzzy [...] Read more.
A Universal Numerical Integrator (UNI) is a computational framework that combines a classical numerical integration method, such as Euler, Runge–Kutta, or Adams–Bashforth, with a universal approximator of functions, such as a feed-forward neural network (including MLP, SVM, RBF, among others) or a fuzzy inference system. The Euler-Type Universal Numerical Integrator (E–TUNI) is a particular case of UNI based on the first-order Euler integrator and is designed to model non-linear dynamic systems observed in real-world scenarios accurately. The UNI framework can be organized into three primary methodologies: the NARMAX model (Non-linear AutoRegressive Moving Average with eXogenous input), the mean derivatives approach (which characterizes E–TUNI), and the instantaneous derivatives approach. The E–TUNI methodology relies exclusively on mean derivative functions, distinguishing it from techniques that employ instantaneous derivatives. Although it is based on a first-order scheme, the E–TUNI achieves an accuracy level comparable to that of higher-order integrators. This performance is made possible by the incorporation of a neural network acting as a universal approximator, which significantly reduces the approximation error. This article provides a comprehensive overview of the E–TUNI methodology, focusing on its application to the modeling of non-linear autonomous dynamic systems and its use in predictive control. Several computational experiments are presented to illustrate and validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

19 pages, 17084 KB  
Article
SPADE: Superpixel Adjacency Driven Embedding for Three-Class Melanoma Segmentation
by Pablo Ordóñez, Ying Xie, Xinyue Zhang, Chloe Yixin Xie, Santiago Acosta and Issac Guitierrez
Algorithms 2025, 18(9), 551; https://doi.org/10.3390/a18090551 - 2 Sep 2025
Viewed by 653
Abstract
The accurate segmentation of pigmented skin lesions is a critical prerequisite for reliable melanoma detection, yet approximately 30% of lesions exhibit fuzzy or poorly defined borders. This ambiguity makes the definition of a single contour unreliable and limits the effectiveness of computer-assisted diagnosis [...] Read more.
The accurate segmentation of pigmented skin lesions is a critical prerequisite for reliable melanoma detection, yet approximately 30% of lesions exhibit fuzzy or poorly defined borders. This ambiguity makes the definition of a single contour unreliable and limits the effectiveness of computer-assisted diagnosis (CAD) systems. While clinical assessment based on the ABCDE criteria (asymmetry, border, color, diameter, and evolution), dermoscopic imaging, and scoring systems remains the standard, these methods are inherently subjective and vary with clinician experience. We address this challenge by reframing segmentation into three distinct regions: background, border, and lesion core. These regions are delineated using superpixels generated via the Simple Linear Iterative Clustering (SLIC) algorithm, which provides meaningful structural units for analysis. Our contributions are fourfold: (1) redefining lesion borders as regions, rather than sharp lines; (2) generating superpixel-level embeddings with a transformer-based autoencoder; (3) incorporating these embeddings as features for superpixel classification; and (4) integrating neighborhood information to construct enhanced feature vectors. Unlike pixel-level algorithms that often overlook boundary context, our pipeline fuses global class information with local spatial relationships, significantly improving precision and recall in challenging border regions. An evaluation on the HAM10000 melanoma dataset demonstrates that our superpixel–RAG–transformer (region adjacency graph) pipeline achieves exceptional performance (100% F1 score, accuracy, and precision) in classifying background, border, and lesion core superpixels. By transforming raw dermoscopic images into region-based structured representations, the proposed method generates more informative inputs for downstream deep learning models. This strategy not only advances melanoma analysis but also provides a generalizable framework for other medical image segmentation and classification tasks. Full article
Show Figures

Figure 1

23 pages, 3338 KB  
Article
Hierarchical Fuzzy-Adaptive Position Control of an Active Mass Damper for Enhanced Structural Vibration Suppression
by Omer Saleem, Massimo Leonardo Filograno, Soltan Alharbi and Jamshed Iqbal
Mathematics 2025, 13(17), 2816; https://doi.org/10.3390/math13172816 - 2 Sep 2025
Viewed by 751
Abstract
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the [...] Read more.
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the baseline regulator. To address the limitations of this baseline PID controller under varying seismic excitations, an auxiliary fuzzy adaptation layer is integrated to adjust the state-weighting matrices of the LQR performance index dynamically. The online modification of the state weightages alters the Riccati equation’s solution, thereby updating the PID gains at each sampling instant. The fuzzy adaptive mechanism modulates the said weighting parameters as nonlinear functions of the classical displacement error and normalized acceleration. Normalized acceleration provides fast, scalable, and effective feedback for vibration mitigation in structural control using AMDs. By incorporating the system’s normalized acceleration into the adaptation scheme, the controller achieves improved self-tuning, allowing it to respond efficiently and effectively to changing conditions. The hierarchical design enables robust real-time PID gain adaptation while maintaining the controller’s asymptotic stability. The effectiveness of the proposed controller is validated through customized MATLAB/SIMULINK-based simulations. Results demonstrate that the proposed adaptive PID controller significantly outperforms the baseline PID controller in mitigating structural vibrations during seismic events, confirming its suitability for intelligent structural control applications. Full article
Show Figures

Figure 1

20 pages, 3333 KB  
Article
A New Hybrid Intelligent System for Predicting Bottom-Hole Pressure in Vertical Oil Wells: A Case Study
by Kheireddine Redouane and Ashkan Jahanbani Ghahfarokhi
Algorithms 2025, 18(9), 549; https://doi.org/10.3390/a18090549 - 1 Sep 2025
Viewed by 611
Abstract
The evaluation of pressure drops across the length of production wells is a crucial task, as it influences both the cost-effective selection of tubing and the development of an efficient production strategy, both of which are vital for maximizing oil recovery while minimizing [...] Read more.
The evaluation of pressure drops across the length of production wells is a crucial task, as it influences both the cost-effective selection of tubing and the development of an efficient production strategy, both of which are vital for maximizing oil recovery while minimizing operational expenses. To address this, our study proposes an innovative hybrid intelligent system designed to predict bottom-hole flowing pressure in vertical multiphase conditions with superior accuracy compared to existing methods using a data set of 150 field measurements amassed from Algerian fields. In this work, the applied hybrid framework is the Adaptive Neuro-Fuzzy Inference System (ANFIS), which integrates artificial neural networks (ANN) with fuzzy logic (FL). The ANFIS model was constructed using a subtractive clustering technique after data filtering, and then its outcomes were evaluated against the most widely utilized correlations and mechanistic models. Graphical inspection and error statistics confirmed that ANFIS consistently outperformed all other approaches in terms of precision, reliability, and effectiveness. For further improvement of the ANFIS performance, a particle swarm optimization (PSO) algorithm is employed to refine the model and optimize the design of the antecedent Gaussian memberships along with the consequent linear coefficient vector. The results achieved by the hybrid ANFIS-PSO model demonstrated greater accuracy in bottom-hole pressure estimation than the conventional hybrid approach. Full article
(This article belongs to the Special Issue AI and Computational Methods in Engineering and Science)
Show Figures

Figure 1

Back to TopTop