Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (112)

Search Parameters:
Keywords = fungal remediation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12860 KiB  
Article
Antimicrobial Composite Films Based on Alginate–Chitosan with Honey, Propolis, Royal Jelly and Green-Synthesized Silver Nanoparticles
by Corina Dana Dumitru, Cornelia-Ioana Ilie, Ionela Andreea Neacsu, Ludmila Motelica, Ovidiu Cristian Oprea, Alexandra Ripszky, Silviu Mirel Pițuru, Bianca Voicu Bălașea, Florica Marinescu and Ecaterina Andronescu
Int. J. Mol. Sci. 2025, 26(14), 6809; https://doi.org/10.3390/ijms26146809 - 16 Jul 2025
Viewed by 370
Abstract
Honey, propolis or royal jelly are considered natural remedies with therapeutic properties since antiquity. Many papers explore the development of antimicrobial biomaterials based on individual bee products, but there is a lack of studies on their synergistic effects. Combining honey, propolis and royal [...] Read more.
Honey, propolis or royal jelly are considered natural remedies with therapeutic properties since antiquity. Many papers explore the development of antimicrobial biomaterials based on individual bee products, but there is a lack of studies on their synergistic effects. Combining honey, propolis and royal jelly with silver nanoparticles in a biopolymer matrix offers a synergistic strategy to combat antibiotic-resistant bacterial infections. This approach supports progress in wound healing, soft tissue engineering and other domains where elimination of the microorganisms is needed like food packaging. In this study we have obtained antimicrobial films based on bee products and silver nanoparticles (AgNPs) incorporated in an alginate–chitosan blend. The novel biomaterials were analyzed by UV-Vis, fluorescence and FTIR spectroscopy or microscopy, SEM and thermal analysis. Antibacterial tests were conducted against both Gram-positive and Gram-negative bacteria, while the antifungal properties were tested against Candida albicans. The diameters for growth inhibition zones were up to 10 mm for bacterial strains and 8 mm for the fungal strain. Additionally, cytotoxicity assays were performed to evaluate the biocompatibility of the materials, the results indicating that the combination of honey, propolis, royal jelly and AgNPs does not produce synergistic toxicity. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

16 pages, 3380 KiB  
Article
Native Fungi as a Nature-Based Solution to Mitigate Toxic Metal(loid) Accumulation in Rice
by Laura Canonica, Michele Pesenti, Fabrizio Araniti, Jens Laurids Sørensen, Jens Muff, Grazia Cecchi, Simone Di Piazza, Fabio Francesco Nocito and Mirca Zotti
Microorganisms 2025, 13(7), 1667; https://doi.org/10.3390/microorganisms13071667 - 16 Jul 2025
Viewed by 330
Abstract
Heavy metal contamination in paddy fields poses serious risks to food safety and crop productivity. This study evaluated the potential of native soil fungi as bioinoculants to reduce metal uptake in rice cultivated under contaminated conditions. Eight fungal strains—four indigenous and four allochthonous—were [...] Read more.
Heavy metal contamination in paddy fields poses serious risks to food safety and crop productivity. This study evaluated the potential of native soil fungi as bioinoculants to reduce metal uptake in rice cultivated under contaminated conditions. Eight fungal strains—four indigenous and four allochthonous—were selected based on their plant growth-promoting traits, including siderophore production and phosphate solubilization. Additional metabolic analysis confirmed the production of bioactive secondary metabolites. In a greenhouse experiment, three rice cultivars were grown under permanent flooding (PF) and alternate wetting and drying (AWD) in soil enriched with arsenic, cadmium, chromium, and copper. Inoculation with indigenous fungi under AWD significantly reduced the arsenic accumulation in rice shoots by up to 75%. While AWD increased cadmium uptake across all cultivars, fungal inoculation led to a moderate reduction in cadmium accumulation—ranging from 15% to 25%—in some varieties. These effects were not observed under PF conditions. The results demonstrate the potential of native fungi as a nature-based solution to mitigate heavy metal stress in rice cultivation, supporting both environmental remediation and sustainable agriculture. Full article
(This article belongs to the Special Issue Plant and Microbial Interactions in Soil Remediation)
Show Figures

Figure 1

27 pages, 3832 KiB  
Article
Regulation of the Microbiome in Soil Contaminated with Diesel Oil and Gasoline
by Agata Borowik, Jadwiga Wyszkowska, Magdalena Zaborowska and Jan Kucharski
Int. J. Mol. Sci. 2025, 26(13), 6491; https://doi.org/10.3390/ijms26136491 - 5 Jul 2025
Viewed by 309
Abstract
Petroleum-derived contaminants pose a significant threat to the soil microbiome. Therefore, it is essential to explore materials and techniques that can restore homeostasis in disturbed environments. The aim of the study was to assess the response of the soil microbiome to contamination with [...] Read more.
Petroleum-derived contaminants pose a significant threat to the soil microbiome. Therefore, it is essential to explore materials and techniques that can restore homeostasis in disturbed environments. The aim of the study was to assess the response of the soil microbiome to contamination with diesel oil (DO) and gasoline (G) and to determine the capacity of sorbents, vermiculite (V), dolomite (D), perlite (P) and agrobasalt (A), to enhance the activity of microorganisms under Zea mays cultivation conditions in pot experiments. The restoration and activity of the soil microbiome were evaluated based on the abundance and diversity of bacteria and fungi, using both classical microbiological methods and Next Generation Sequencing (NGS). Bioinformatic tools were employed to calculate the physicochemical properties of proteins. DO increased the abundance of cultured microorganisms, whereas G significantly reduced it. Both DO and G increased the number of ASVs of Proteobacteria and decreased the relative abundance of Gemmatimonadetes, Chloroflexi, Acidobacteria, Verrucomicrobia, Planctomycetes, and fungal OTUs. These contaminants stimulated the growth of bacteria from the genera Rhodanobacter, Sphingomonas, Burkholderia, Sphingobium, and Mycobacterium, as well as fungi belonging to the Penicillium genus. Conversely, they had a negative effect on Kaistobacter, Rhodoplanes, and Ralstonia, as well as the fungi Chaetomium, Pseudaleuria, and Mortierella. DO caused greater changes in microbial alpha diversity than G. The stability of microbial proteins was higher at 17 °C than at −1 °C. The most stable proteins were found in bacteria and fungi identified within the core soil microbiome. These organisms exhibited greater diversity and more compact RNA secondary structures. The application of sorbents to contaminated soil altered the composition of bacterial and fungal communities. All sorbents enhanced the growth of organotrophic bacteria (Org) and fungi (Fun) in DO-contaminated soils, and actinobacteria (Act) and fungi in G-contaminated soils. V and A had the most beneficial effects on cultured microorganisms. In DO-contaminated soils, all sorbents inhibited the growth of Rhodanobacter, Parvibaculum, Sphingomonas, and Burkholderia, while stimulating Salinibacterium and Penicillium. In G-contaminated but otherwise unamended soils, all sorbents negatively affected the growth of Burkholderia, Sphingomonas, Kaistobacter, Rhodoplanes, Pseudonocardia, and Ralstonia and increased the abundance of Gymnostellatospora. The results of this study provide a valuable foundation for developing effective strategies to remediate soils contaminated with petroleum-derived compounds. Full article
Show Figures

Figure 1

12 pages, 2664 KiB  
Article
Heavy Metal Immobilization by Phosphate-Solubilizing Fungus and Phosphogypsum Under the Co-Existence of Pb(II) and Cd(II)
by Xu Li, Zhenyu Chao, Haoxuan Li, Jiakai Ji, Xin Sun, Yingxi Chen, Zhengda Li, Zhen Li, Chuanhao Li, Jun Yao and Lan Xiang
Agronomy 2025, 15(7), 1632; https://doi.org/10.3390/agronomy15071632 - 4 Jul 2025
Viewed by 336
Abstract
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) [...] Read more.
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) remediation by PG and A. niger under the co-existence of Pb and Cd. It demonstrated that 1 mmol/L Pb2+ stimulated the bioactivity of A. niger during incubation, based on the CO2 emission rate. PG successfully functioned as P source for the fungus, and promoted the growth of the fungal cells. Meanwhile, it also provided sulfates to immobilize Pb in the solution. The subsequently generated anglesite was confirmed using SEM imaging. The immobilization rate of Pb reached over 95%. Under co-existence, Pb2+ and 0.01 mmol/L Cd2+ maximized the stimulating effect of A. niger. However, the biotoxicity of Pb2+ and elevated Cd2+ (0.1 mmol/L) counterbalanced the stimulating effect. Finally, 1 mmol/L Cd2+ dramatically reduced the fungal activity. In addition, organic matters from the debris of A. niger could still bind Pb2+ and Cd2+ according to the significantly lowered water-soluble Pb and Cd concentrations. In all treatments with the addition of Cd2+, the relatively high biotoxicity of Cd2+ induced A. niger to absorb more Pb2+ to minimize the sorption of Cd2+ based on the XRD results. The functional group analysis of ATR-IR also confirmed the phenomenon. This pathway maintained the stability of Pb2+ immobilization using the fungus and PG. This study, hence, shed light on the application of A. niger and solid waste PG to remediate the pollution of Pb and Cd. Full article
Show Figures

Figure 1

25 pages, 24039 KiB  
Article
Response of Endophytic Microbial Communities and Quality of Salvia miltiorrhiza to Fertilization Treatments
by Wenjing Chen, Wanyun Li, Yangyang Pan, Xin Zheng, Xinxin Fu, Menghui Wang, Wenyi Shi, Zhenzhou Wang, Xueli He, Chao He and Xianen Li
Microorganisms 2025, 13(6), 1429; https://doi.org/10.3390/microorganisms13061429 - 19 Jun 2025
Viewed by 494
Abstract
Salvia miltiorrhiza is a traditional herbal remedy for cardiovascular diseases and is in high demand in the market. Excessive chemical fertilizer application, resulting from unscientific fertilization practices, reduced the tanshinone content in S. miltiorrhiza roots. This study investigated how different fertilization types alter [...] Read more.
Salvia miltiorrhiza is a traditional herbal remedy for cardiovascular diseases and is in high demand in the market. Excessive chemical fertilizer application, resulting from unscientific fertilization practices, reduced the tanshinone content in S. miltiorrhiza roots. This study investigated how different fertilization types alter the endophytic microbial community composition of S. miltiorrhiza through field experiments, aiming to understand how fertilization affects its medicinal quality. The results showed that root fertilizers (F1) significantly increased root biomass and tanshinone I content, whereas foliar fertilizers (F2) increased tanshinone IIA content. High-throughput sequencing further revealed that F2 treatment significantly decreased the Shannon index of endophytic bacteria while significantly increasing the Shannon index of endophytic fungi. Co-occurrence network analysis revealed that fertilization significantly altered fungal community complexity and modularity, with F1 increasing network nodes and edges. Variance partitioning analysis indicated fungal diversity more strongly influenced medicinal compound levels under F2 and a combination of both (F3) than bacterial diversity. Septoria and Gibberella were positively correlated with tanshinone I and cryptotanshinone content under F2 treatment, respectively. Notably, the unique strains were isolated from different fertilization treatments for subsequent bacterial fertilizer development. These findings elucidate microbial responses to fertilization, guiding optimized cultivation for improved S. miltiorrhiza quality. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

30 pages, 1493 KiB  
Review
Improving the Properties of Laccase Through Heterologous Expression and Protein Engineering
by Guoqiang Guan, Beidian Li, Ling Xu, Jingya Qian, Bin Zou, Shuhao Huo, Zhongyang Ding, Kai Cui and Feng Wang
Microorganisms 2025, 13(6), 1422; https://doi.org/10.3390/microorganisms13061422 - 18 Jun 2025
Viewed by 711
Abstract
Laccase, a member of the blue multicopper oxidase family, is widely distributed across diverse taxonomic groups, including fungi, bacteria, plants, and insects. This enzyme drives biocatalytic processes through the oxidation of phenolic compounds, aromatic amines, and lignin derivatives, underpinning its significant potential in [...] Read more.
Laccase, a member of the blue multicopper oxidase family, is widely distributed across diverse taxonomic groups, including fungi, bacteria, plants, and insects. This enzyme drives biocatalytic processes through the oxidation of phenolic compounds, aromatic amines, and lignin derivatives, underpinning its significant potential in the food industry, cosmetics, and environmental remediation. However, wild-type laccases face critical limitations, such as low catalytic efficiency, insufficient expression yields, and poor stability. To address these bottlenecks, this review systematically examines optimization strategies for heterologous laccase expression by fungal and bacterial systems. Additionally, we discuss protein engineering for laccase modification, with a focus on the structural basis and active-site redesign. The comprehensive analysis presented herein provides strategic suggestions for advancing laccase engineering, ultimately establishing a theoretical framework for developing high-efficiency, low-cost engineered variants for large-scale biomanufacturing and green chemistry applications. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

31 pages, 1013 KiB  
Review
Reviewing Treatment Options for Organohalogen Contamination: From Established Methods to Fungal Prospects
by Gerardo Aguilar, Leadin Khudur, Attila Tottszer, Julie A. Besedin, Sali K. Biek and Andrew S. Ball
Environments 2025, 12(6), 194; https://doi.org/10.3390/environments12060194 - 9 Jun 2025
Viewed by 1772
Abstract
Persistent organohalogen pollutants—including halogenated nitrophenols (HNCs), trichloroethylene (TCE), and per- and polyfluoroalkyl substances (PFAS)—pose serious environmental and health risks due to their stability, toxicity, and bioaccumulation potential. This review critically assesses current remediation technologies including advanced oxidation processes (AOPs), adsorption, membrane filtration, and [...] Read more.
Persistent organohalogen pollutants—including halogenated nitrophenols (HNCs), trichloroethylene (TCE), and per- and polyfluoroalkyl substances (PFAS)—pose serious environmental and health risks due to their stability, toxicity, and bioaccumulation potential. This review critically assesses current remediation technologies including advanced oxidation processes (AOPs), adsorption, membrane filtration, and thermal treatments. While these methods can be effective, they are often limited by high costs, energy demands, toxic byproduct formation, and sustainability concerns. Emerging biological approaches offer promising alternatives. Among these, fungal-based degradation methods (mycodegradation) remain significantly underrepresented in the literature, despite fungi demonstrating a high tolerance to contaminants and the ability to degrade structurally complex compounds. Key findings reveal that white-rot fungi such as Phanerochaete chrysosporium and Trametes versicolor possess enzymatic systems capable of breaking down persistent organohalogens under conditions that inhibit bacterial activity. This review also identifies critical research gaps, including the need for direct comparative studies between fungal and bacterial systems. The findings suggest that integrating mycodegradation into broader treatment frameworks could enhance the environmental performance and reduce the long-term remediation costs. Overall, this review highlights the importance of diversifying remediation strategies to include scalable, low-impact biological methods for addressing the global challenge of organohalogen contamination. Full article
Show Figures

Figure 1

25 pages, 962 KiB  
Review
Xeno-Fungusphere: Fungal-Enhanced Microbial Fuel Cells for Agricultural Remediation with a Focus on Medicinal Plants
by Da-Cheng Hao, Xuanqi Li, Yaoxuan Wang, Jie Li, Chengxun Li and Peigen Xiao
Agronomy 2025, 15(6), 1392; https://doi.org/10.3390/agronomy15061392 - 5 Jun 2025
Viewed by 876
Abstract
The xeno-fungusphere, a novel microbial ecosystem formed by integrating exogenous fungi, indigenous soil microbiota, and electroactive microorganisms within microbial fuel cells (MFCs), offers a transformative approach for agricultural remediation and medicinal plant conservation. By leveraging fungal enzymatic versatility (e.g., laccases, cytochrome P450s) and [...] Read more.
The xeno-fungusphere, a novel microbial ecosystem formed by integrating exogenous fungi, indigenous soil microbiota, and electroactive microorganisms within microbial fuel cells (MFCs), offers a transformative approach for agricultural remediation and medicinal plant conservation. By leveraging fungal enzymatic versatility (e.g., laccases, cytochrome P450s) and conductive hyphae, this system achieves dual benefits. First, it enables efficient degradation of recalcitrant agrochemicals, such as haloxyfop-P, with a removal efficiency of 97.9% (vs. 72.4% by fungi alone) and a 27.6% reduction in activation energy. This is driven by a bioelectric field (0.2–0.5 V/cm), which enhances enzymatic activity and accelerates electron transfer. Second, it generates bioelectricity, up to 9.3 μW/cm2, demonstrating real-world applicability. In medicinal plant soils, xeno-fungusphere MFCs restore soil health by stabilizing the pH, enriching dehydrogenase activity, and promoting nutrient cycling, thereby mitigating agrochemical-induced inhibition of secondary metabolite synthesis (e.g., ginsenosides, taxol). Field trials show 97.9% herbicide removal in 60 days, outperforming conventional methods. Innovations, such as adaptive electrodes, engineered strains, and phytoremediation-integrated systems, have been used to address soil and fungal limitations. This technology bridges sustainable agriculture and bioenergy recovery, offering the dual benefits of soil detoxification and enhanced crop quality. Future IoT-enabled monitoring and circular economy integration promise scalable, precision-based applications for global agroecological resilience. Full article
Show Figures

Figure 1

20 pages, 14184 KiB  
Article
Effects of Rare Earth Element-Rich Biochar on Soil Quality and Microbial Community Dynamics of Citrus grandis (L.) Osbeck. cv. Guanximiyou
by Zhiqi Chen, Liujun Feng, Zhiqiang Chen, Zhibiao Chen, Jie Wu and Qiang Lin
Agriculture 2025, 15(8), 895; https://doi.org/10.3390/agriculture15080895 - 20 Apr 2025
Viewed by 556
Abstract
Rare earth elements (REEs) are key resources of strategic importance, but pollution has increased due to uncontrolled mining. Although heavy metal hyperaccumulating plants are environmentally friendly, they require strict control during post-treatment, or they may cause secondary pollution. Therefore, their safe disposal plays [...] Read more.
Rare earth elements (REEs) are key resources of strategic importance, but pollution has increased due to uncontrolled mining. Although heavy metal hyperaccumulating plants are environmentally friendly, they require strict control during post-treatment, or they may cause secondary pollution. Therefore, their safe disposal plays a key role in the ecological restoration of REE mines. In this study, rare earth element (REE)-rich biochar was produced by pyrolyzing the REE hyperaccumulator Dicranopteris pedata. This biochar was then applied to the Citrus grandis (L.) Osbeck. cv. Guanximiyou soil amendment experiment to evaluate its effects on soil physicochemical properties and microbial indicators. Four treatments were established: CK (0% REE-rich biochar), BC1 (1% REE-rich biochar), BC3 (3% REE-rich biochar), and BC5 (5% REE-rich biochar). The BC5 treatment decreased soil REE bioavailability, thereby preventing REE pollution. The BC5 treatment also demonstrated the highest efficacy in improving soil total organic carbon (229.11%), total nitrogen (53.92%), total phosphorus (55.61%), total potassium (55.50%), available nitrogen (14.76%), available phosphorus (46.79%), and available potassium (159.42%) contents compared to CK. Furthermore, soil enzyme activities were significantly increased by BC5 treatment (p < 0.05). At the bacterial phylum level of classification, the bacterial diversity index (Chao1 and Shannon) exhibited elevated levels under BC5 conditions. Furthermore, the Chao1 index of fungal diversity exhibited a substantial augmentation of 55.67% (p < 0.05) in the BC5 treatment in comparison to the CK, and also significantly higher than the other treatments (p < 0.05). Our study showed that the composition of soil microorganisms was altered by REE-rich biochar. Proteobacteria, Acidobacteria, Actinobacteriota, and Chloroflexi are dominant among bacteria, while Ascomycota is dominant among fungi. Mantel and redundancy analyses showed that the most important environmental factor affecting the structure of soil microbial communities was pH, especially in the case of bacteria. In summary, this study showed that the application of 5% REE-rich biochar provided the best improvement in soil physicochemical properties and microbial diversity. These findings highlight its potential for soil remediation and provide new ideas for recycling heavy metal hyperaccumulating plant waste. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

37 pages, 9660 KiB  
Review
Fungi for Sustainable Pharmaceutical Remediation: Enzymatic Innovations, Challenges, and Applications—A Review
by Mohd Faheem Khan
Processes 2025, 13(4), 1034; https://doi.org/10.3390/pr13041034 - 31 Mar 2025
Cited by 5 | Viewed by 1815
Abstract
The extensive use of pharmaceuticals in human and veterinary medicine has led to their persistent environmental release, posing ecological and public health risks. Major sources include manufacturing effluents, excretion, aquaculture, and improper disposal, contributing to bioaccumulation and ecotoxicity. Mycoremediation is the fungal-mediated biodegradation [...] Read more.
The extensive use of pharmaceuticals in human and veterinary medicine has led to their persistent environmental release, posing ecological and public health risks. Major sources include manufacturing effluents, excretion, aquaculture, and improper disposal, contributing to bioaccumulation and ecotoxicity. Mycoremediation is the fungal-mediated biodegradation of pharmaceuticals, offers a promising and sustainable approach to mitigate pharmaceutical pollution. Studies have reported that certain fungal species, including Trametes versicolor and Pleurotus ostreatus, can degrade up to 90% of pharmaceutical contaminants, such as diclofenac, carbamazepine, and ibuprofen, within days to weeks, depending on environmental conditions. Fungi produce a range of extracellular enzymes, such as laccases and peroxidases, alongside intracellular enzymes like cytochrome P450 monooxygenases, which catalyze the transformation of complex pharmaceutical compounds. These enzymes play an essential role in modifying, detoxifying, and mineralizing xenobiotics, thereby reducing their environmental persistence and toxicity. The effectiveness of fungal biotransformation is influenced by factors such as substrate specificity, enzyme stability, and environmental conditions. Optimal degradation typically occurs at pH 4.5–6.0 and temperatures of 20–30 °C. Recent advancements in enzyme engineering, immobilization techniques, and bioreactor design have improved catalytic efficiency and process feasibility. However, scaling up fungal-based remediation systems for large-scale applications remains a challenge. Addressing these limitations with synthetic biology, metabolic engineering, and other biotechnological innovations could further enhance the enzymatic degradation of pharmaceuticals. This review highlights the enzymatic innovations, applications, and challenges of pharmaceutical mycoremediation, emphasizing the potential of fungi as a transformative solution for sustainable pharmaceutical waste management. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

24 pages, 31812 KiB  
Article
The Complex Co-Occurrence Network Under N Deposition Resulting in the Change of Soil Bacterial Structure and the Decrease of Bacterial Abundance in Subtropical Quercus aquifolioides Forest
by Wen Chen, Zheng Hou, Donghui Zhang, Keqin Wang, Jinmei Xing and Yali Song
Forests 2025, 16(3), 481; https://doi.org/10.3390/f16030481 - 10 Mar 2025
Viewed by 763
Abstract
Atmospheric nitrogen deposition has a profound impact on soil nitrogen (N) cycling within terrestrial ecosystems, altering the microbial community structure and composition. To investigate how nitrogen deposition impacts microbial communities across different seasons, this study focused on a mature subtropical Quercus aquifolioides forest. [...] Read more.
Atmospheric nitrogen deposition has a profound impact on soil nitrogen (N) cycling within terrestrial ecosystems, altering the microbial community structure and composition. To investigate how nitrogen deposition impacts microbial communities across different seasons, this study focused on a mature subtropical Quercus aquifolioides forest. Four nitrogen treatments were applied, and high-throughput sequencing was utilized to analyze soil microbial composition and structure changes during dry and wet seasons. Additionally, the study explored the interactions between soil nutrients, microbial communities, and nitrogen treatments. Following four years of nitrogen supplementation, the results revealed that: (1) Soil chemistry and enzyme activity shifted significantly due to the combined effects of nitrogen addition and seasonal variations. A marked reduction in soil pH indicated substantial acidification, although the wet season’s increased soil moisture mitigated these effects. (2) Fungal richness and diversity were more sensitive to nitrogen addition than bacterial diversity. (3) During the wet season, nitrogen deposition caused notable shifts in soil microbial community composition, with a notable elevation in the relative proportion of the fungal genus Sebacina (↑112.68%) under MN treatment. (4) Nitrogen addition affected the co-occurrence network complexity of soil bacteria and fungi in a season-dependent manner. During the dry season, bacterial network complexity decreased significantly while fungal network complexity increased. In contrast, the wet season showed an elevation in bacterial network complexity and a reduction in fungal network complexity. (5) The fungal community structure remained stable across seasons and nitrogen treatments, whereas the bacterial community structure showed significant differences after nitrogen addition. Environmental factors influencing bacterial and fungal community structures varied depending on water conditions. These findings provide insights into forest soil management and microbial remediation strategies in response to future atmospheric nitrogen deposition. Full article
Show Figures

Figure 1

18 pages, 3310 KiB  
Article
Effects of Different Biological Amendments on Rice Physiology, Yield, Quality, and Soil Microbial Community of Rice–Crab Co-Culture in Saline–Alkali Soil
by Yang Guo, Juncang Tian and Zhi Wang
Agronomy 2025, 15(3), 649; https://doi.org/10.3390/agronomy15030649 - 5 Mar 2025
Viewed by 1102
Abstract
The yield and quality of rice are influenced by soil conditions, and the soil issues in saline–alkaline land limit agricultural productivity. The saline–alkaline fields in the northern irrigation area of Yinchuan, Ningxia, China, face challenges such as low rice yield, poor quality, low [...] Read more.
The yield and quality of rice are influenced by soil conditions, and the soil issues in saline–alkaline land limit agricultural productivity. The saline–alkaline fields in the northern irrigation area of Yinchuan, Ningxia, China, face challenges such as low rice yield, poor quality, low fertilizer utilization efficiency, and soil salinity and alkalinity obstacles. To improve this situation, this study conducted experiments in 2022–2023 in the saline–alkaline rice–crab integrated fields of Tongbei Village, Tonggui Township, Yinchuan. This study employed a single-factor comparative design, applying 150 mL·hm−2 of brassinolide (A1), 15 kg·hm−2 of diatomaceous (A2), 30 kg·hm−2 of Bacillus subtilis agent (A3), and an untreated control (CK) to analyze the effects of different biological amendments on rice growth, photosynthesis, yield, quality, and microbial communities. The results indicated that, compared with CK, the A3 increased the SPAD value and net photosynthetic rate by 2.26% and 28.59%, respectively. Rice yield increased by 12.34%, water use efficiency (WUE) by 10.67%, and the palatability score by 2.82%, while amylose content decreased by 8.00%. The bacterial OTUs (Operational Taxonomic Units) and fungal OTUs increased by 2.18% and 22.39%, respectively. Under the condition of applying 30 kg·hm−2 of Bacillus subtilis agent (A3), rice showed superior growth, the highest yield (8804.4 kg·hm−2), and the highest microbial OTUs. These findings provide theoretical and technical support for utilizing biological remediation agents to achieve desalinization, yield enhancement, quality improvement, and efficiency in saline–alkali rice–crab co–culture paddies. Full article
Show Figures

Figure 1

24 pages, 7039 KiB  
Article
Microbial Biodegradation of Synthetic Polyethylene and Polyurethane Polymers by Pedospheric Microbes: Towards Sustainable Environmental Management
by Maryam Najam, Sana Javaid, Shazia Iram, Kingkham Pasertsakoun, Marianna Oláh, András Székács and László Aleksza
Polymers 2025, 17(2), 169; https://doi.org/10.3390/polym17020169 - 11 Jan 2025
Cited by 4 | Viewed by 3234
Abstract
This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted [...] Read more.
This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted by the isolated fungi, i.e., Aspergillus flavus, A terreus, A. clavatus, A. nigers and bacterial coccus and filamentous microbes and assessed in a biotransformative assay under simulated conditions. Commendable biodegradative potentials were exhibited by the isolated microbes against polymers that were analyzed over a span of 30 days. Among the selected fungal microbes, the highest activity was achieved by A. niger, expressing 55% and 40% conversion of LDPE and PUR, respectively. In the case of bacterial strains, 50% and 40% conversion of LDPE and PUR degradation was achieved by coccus. Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were utilized to analyze the degradative patterns in terms of vibrational and thermal characteristics, and stereomicroscopic analysis was performed for the visual assessment of morphological variations. Profound structural transformations were detected in FT-IR spectra and TGA thermograms for the selected microbes. Stereomicroscopic analysis was also indicative of the remarkable transformation of the surface morphology of these polymers after degradation by microbes in comparison to the reference samples not treated with any pedospheric microbes. The results are supportive of the utilization of the selected pedospheric microbes as environmental remediators for the cleanup of persistent polymeric toxins. This current work can be further extended for the successful optimization of further augmented percentages by using other pedospheric microbes for the successful adoption of these biotechnological tools at a practical level. Full article
(This article belongs to the Special Issue Degradation and Recycling of Polymer Materials)
Show Figures

Figure 1

27 pages, 4302 KiB  
Article
Soil Microbial Responses to Varying Environmental Conditions in a Copper Belt Region of Africa: Phytoremediation Perspectives
by Kabwe Nkongolo, John B. Mukalay, Antoine K. Lubobo and Paul Michael
Microorganisms 2025, 13(1), 31; https://doi.org/10.3390/microorganisms13010031 - 27 Dec 2024
Cited by 1 | Viewed by 917
Abstract
The mining industry in the copper belt region of Africa was initiated in the early 1900s, with copper being the main ore extracted to date. The main objectives of the present study are (1) to characterize the microbial structure, abundance, and diversity in [...] Read more.
The mining industry in the copper belt region of Africa was initiated in the early 1900s, with copper being the main ore extracted to date. The main objectives of the present study are (1) to characterize the microbial structure, abundance, and diversity in different ecological conditions in the cupriferous city of Lubumbashi and (2) to assess the metal phytoextraction potential of Leucaena leucocephala, a main plant species used in tailing. Four ecologically different sites were selected. They include a residential area (site 1), an agricultural dry field (site 2), and an agricultural wetland (site 3), all located within the vicinity of a copper/cobalt mining plant. A remediated tailing was also added as a highly stressed area (site 4). As expected, the highest levels of copper and cobalt among the sites studied were found at the remediated tailing, with 9447 mg/kg and 2228 mg/kg for copper and cobalt, respectively. The levels of these metals at the other sites were low, varying from 41 mg/kg to 579 mg/kg for copper and from 4 mg/kg to 110 mg/kg for cobalt. Interestingly, this study revealed that the Leucaena leucocephala grown on the remediated sites is a copper/cobalt excluder species as it accumulates soil bioavailable metals from the rhizosphere in its roots. Amplicon sequence analysis showed significant differences among the sites in bacterial and fungal composition and abundance. Site-specific genera were identified. Acidibacter was the most abundant bacterial genus in the residential and remediated tailing sites, with 11.1% and 4.4%, respectively. Bacillus was predominant in both dry (19.3%) and wet agricultural lands (4.8%). For fungi, Fusarium exhibited the highest proportion of the fungal genera at all the sites, with a relative abundance ranging from 15.6% to 20.3%. Shannon diversity entropy indices were high and similar, ranging from 8.3 to 9 for bacteria and 7.0 and 7.4 for fungi. Β diversity analysis confirmed the closeness of the four sites regardless of the environmental conditions. This lack of differences in the microbial community diversity and structures among the sites suggests microbial resilience and physiological adaptations. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community, 3rd Edition)
Show Figures

Figure 1

18 pages, 3147 KiB  
Article
Effects of Microbial Fertilizer Application on Soil Ecology in Saline–Alkali Fields
by Xingguo Tian, Xiu Zhang, Guoping Yang, Yu Wang, Qianru Liu and Jingjing Song
Agronomy 2025, 15(1), 14; https://doi.org/10.3390/agronomy15010014 - 25 Dec 2024
Cited by 1 | Viewed by 1299
Abstract
Microbial fertilizer is an environment-friendly fertilizer that can effectively improve the microecological environment of soil, playing an important role in the remediation of saline–alkali soil and promoting sustainable agricultural development. In this study, we examined the impact of microbial fertilizer application on saline–alkali [...] Read more.
Microbial fertilizer is an environment-friendly fertilizer that can effectively improve the microecological environment of soil, playing an important role in the remediation of saline–alkali soil and promoting sustainable agricultural development. In this study, we examined the impact of microbial fertilizer application on saline–alkali field improvement over two years. The results indicated that, compared to NS0 and NS2 (the initial sowing period without microbial fertilizer addition), the soil pH and electrical conductivity (EC) levels significantly decreased by 4.1% and 8.49% and 60.56% and 39.66% for NS1 (after the first harvest) and NS3 (after the second harvest), respectively. Compared to NS0, the concentrations of Na+ and Cl, among the eight major ions in the soil, decreased significantly by 87.23% and 80.91% in the second year, while Ca2+ increased significantly in NS1 and NS3, being 5.27 times and 2.46 times higher than before sowing. Comparing NS3 to NS0, the sodium adsorption ratio decreased by 87.04%. The activities of soil urease, alkaline phosphatase, and invertase in NS3 increased significantly by 90.18%, 45.67%, and 82.31% compared to those in NS0. In contrast, the activity of catalase decreased by 2.79% (p < 0.05). Alpha diversity analysis demonstrated that the Ace, Chao1, and Sobs indices for both bacteria and fungi were significantly higher at NS3 than before sowing, indicating the highest species richness at this stage. The Shannon index exhibited an ascending trend, and the difference in the Simpson index was not significant. After applying microbial fertilizer in the saline–alkali field, the number of bacterial and fungal operational taxonomic units (OTUs) significantly increased. In the bacteria, the proportion of Proteobacteria rose, while Actinobacteriota exhibited a significant reduction. Among fungi, the proportion of Ascomycota decreased and Basidiomycota increased. Principal component analysis (PCA) revealed distinct separation among treatments, indicating significant differences in microbial communities. Redundancy analysis (RDA) identified that the key physicochemical factors influencing bacterial community structure were available phosphorus (AP), electrical conductivity (EC), and pH, whereas for fungi, they were AP, available potassium (AK), and dissolved organic carbon (DOC). This research presents the effects of microbial fertilizer application on the improvement in a saline–alkali field over two years. It provides a scientific basis for the remediation of the saline–alkali field via microbe-induced changes in soil physicochemical properties, enzyme activity, microbial diversity, and community structure at different periods. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop