Effects of Rare Earth Element-Rich Biochar on Soil Quality and Microbial Community Dynamics of Citrus grandis (L.) Osbeck. cv. Guanximiyou
Abstract
:1. Introduction
2. Materials and Methods
2.1. REE-Rich Biochar Production
2.2. Physicochemical Properties and Characterization of REE-Rich Biochar
2.3. Pot Plant Experiment
2.4. Soil Column Experiment
2.5. Analysis of Indicators
2.5.1. Analysis of Soil REE Content and Chemical Speciation
2.5.2. Analysis of Soil Chemical Properties and Enzyme Activities
2.5.3. Analysis of Soil Microbial Diversity and Community Composition
2.6. Data Analysis
3. Results
3.1. Characterization of REE-Rich Biochar Biochar
3.2. Changes in REE Content and Chemical Speciation of the Soil After Application of REE-Rich Biochar
3.3. Changes in Physicochemical Properties and Enzyme Activities of the Soil After Application of REE-Rich Biochar
3.4. Changes in Soil Microbial Diversity After Application of REE-Rich Biochar
3.4.1. OTU Analysis of Soil Microorganisms
3.4.2. Analysis of Alpha Diversity of Soil Microorganisms
3.4.3. Analysis of Soil Microbial Community Structure
3.5. Migration Risk of REE-Rich Biochar
3.6. Coupling of Soil Environmental Factors with Microbial Community Structure
4. Discussion
4.1. Effects of REE-Rich Biochar Application on REE Content and Chemical Speciation of the Soil
4.2. Effect of REE-Rich Biochar Application on Physicochemical Properties of the Soil
4.3. Effects of REE-Rich Biochar Application on the Soil Microbial Community
4.4. REE-Rich Biochar Migration Risk and Environmental Applicability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.X.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, H.; An, Y.; Ma, J.; Zhao, W.; Qu, Y.; Chen, H.; Liu, L.; Wu, F. Source, environmental behavior and potential health risk of rare earth elements in Beijing urban park soils. J. Hazard. Mater. 2023, 445, 130451. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Li, F.; Li, X.; Rong, X.; Oh, K. Biochar-clay, biochar-microorganism and biochar-enzyme composites for environmental remediation: A review. Environ. Chem. Lett. 2023, 21, 1837–1862. [Google Scholar] [CrossRef]
- Mai, X.; Tang, J.; Tang, J.; Zhu, X.; Yang, Z.; Liu, X.; Zhuang, X.; Feng, G.; Tang, L. Research progress on the environmental risk assessment and remediation technologies of heavy metal pollution in agricultural soil. J. Environ. Sci. 2025, 149, 1–20. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, X.; Zhu, Y.; Zhuo, R. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol. Adv. 2024, 72, 108337. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. A technical review of bioenergy and resource recovery from municipal solid waste. J. Hazard. Mater. 2021, 403, 123970. [Google Scholar] [CrossRef]
- Bai, J.; Song, J.; Chen, D.; Zhang, Z.; Yu, Q.; Ren, G.; Han, X.; Wang, X.; Ren, C.; Yang, G.; et al. Biochar combined with N fertilization and straw return in wheat-maize agroecosystem: Key practices to enhance crop yields and minimize carbon and nitrogen footprints. Agric. Ecosyst. Environ. 2023, 347, 108366. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Zhu, Z.; Yu, M.; Cheng, H.; Shi, H.; Xiao, Y.; Song, H.; Zuo, W.; Zhou, H.; et al. Attempts to obtain clean biochar from hyperaccumulator through pyrolysis: Removal of heavy metals and transformation of phosphorus. J. Hazard. Mater. 2024, 468, 133837. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, W.; Wan, X.; Lei, M.; Chen, T. Potential in treating arsenic-contaminated water of the biochars produced from hyperaccumulator Pteris vittata and its environmental safety. Environ. Pollut. 2024, 356, 124320. [Google Scholar] [CrossRef]
- Xia, Y.; Ouyang, G.; Ma, X.; Hou, B.; Huang, J.; Hu, H.; Fan, G. Trapping tephritid fruit flies (Diptera: Tephritidae) in citrus groves of Fujian Province of. China. J. Asia-Pac. Entomol. 2020, 23, 879–882. [Google Scholar] [CrossRef]
- Yan, X.; Yang, W.; Muneer, M.A.; Zhang, S.; Wang, M.; Wu, L. Land-use change affects stoichiometric patterns of soil organic carbon, nitrogen, and phosphorus in the red soil of Southeast China. J. Soil Sediment. 2021, 21, 2639–2649. [Google Scholar] [CrossRef]
- Song, Q.; Fu, H.; Shi, Q.; Shan, X.; Wang, Z.; Sun, Z.; Li, T. Overfertilization reduces tomato yield under long-term continuous cropping system via regulation of soil microbial community composition. Front. Microbiol. 2022, 13, 952021. [Google Scholar] [CrossRef]
- Rabbani, M.; Rabbani, M.T.; Muthoni, F.; Sun, Y.; Vahidi, E. Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction. Bioresour. Technol. 2024, 401, 130751. [Google Scholar] [CrossRef]
- Montreemuk, J.; Stewart, T.N.; Prapagdee, B. Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions. Environ. Technol. Innov. 2024, 33, 103488. [Google Scholar] [CrossRef]
- IUSS Working Group WRB; World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 236. Available online: https://www3.ls.tum.de/boku/?id=1419 (accessed on 27 December 2024).
- Luo, Y.; Zhang, Z.; Lin, J.; Owens, G.; Chen, Z.; Chen, Z. Rare earth elements redistribution in mine tailings soil: A comparative study of sunlit and shady slopes after in-situ leaching. J. Hazard. Mater. 2024, 476, 135095. [Google Scholar] [CrossRef] [PubMed]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monitor. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agricultural Press: Beijing, China, 1999; Available online: https://www.researchgate.net/publication/301822463_Soil_and_agricultural_chemistry_analysis (accessed on 22 December 2024). (In Chinese)
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Government Printing Office: Washington, DC, USA, 1954. Available online: https://api.semanticscholar.org/CorpusID:3684522 (accessed on 29 December 2024).
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The effects of long term nitrogen deposition on extracellular enzyme activity in an forest soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Li, X.; Lin, S.; Ouvrard, S.; Sirguey, C.; Qiu, R.; Wu, B. Environmental remediation potential of a pioneer plant (sp.) from abandoned mine into biochar: Heavy metal stabilization and environmental application. J. Environ. Manag. 2024, 366, 121751. [Google Scholar] [CrossRef] [PubMed]
- Arwenyo, B.; Varco, J.J.; Dygert, A.; Brown, S.; Pittman, C.U.; Mlsna, T. Contribution of modified P-enriched biochar on pH buffering capacity of acidic soil. J. Environ. Manag. 2023, 339, 117863. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Liao, J.; Ding, L.; Zhang, Y.; Zhu, W. Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. J. Hazard. Mater. 2022, 423, 127190. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hou, Y.; Long, M.; Wen, X.; Han, J.; Liao, Y. Long-term effects of biochar application on rhizobacteria community and winter wheat growth on the Loess Plateau in China. Geoderma 2023, 429, 116250. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Huot, H.; Liu, C.; Guo, M.; Qiu, R.; Morel, J.L.; Tang, Y. Phytoextraction of rare earth elements from ion-adsorption mine tailings by: Effects of organic material and biochar amendment. J. Clean. Prod. 2020, 275, 122959. [Google Scholar] [CrossRef]
- Hagemann, N.; Joseph, S.; Schmidt, H.P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, K.W.; et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, C.; Chen, Z.; Liu, Y.; Zhang, Y.; Gou, P.; Zhao, X.; Ma, D.; Kang, G.; Wang, C.; et al. Successive biochar amendment affected crop yield by regulating soil nitrogen functional microbes in wheat-maize rotation farmland. Environ. Res. 2021, 194, 110671. [Google Scholar] [CrossRef]
- Yan, H.; Cong, M.; Hu, Y.; Qiu, C.; Yang, Z.; Tang, G.; Xu, W.; Zhu, X.; Sun, X.; Jia, H. Biochar-mediated changes in the microbial communities of rhizosphere soil alter the architecture of maize roots. Front. Microbiol. 2022, 13, 1023444. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Zuccarini, P.; Sardans, J.; Asensio, L.; Peñuelas, J. Altered activities of extracellular soil enzymes by the interacting global environmental changes. Glob. Change Biol. 2023, 29, 2067–2091. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Piao, J.; Miao, S.; Che, W.; Li, X.; Li, X.; Shiraiwa, T.; Tanaka, T.; Taniyoshi, K.; Hua, S.; et al. Long-term effects of biochar one-off application on soil physicochemical properties, salt concentration, nutrient availability, enzyme activity, and rice yield of highly saline-alkali paddy soils: Based on a 6-year field experiment. Biochar 2024, 6, 40. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, H.; Zhang, Z.; Sun, Z.; Liu, S.; Ma, C.; Wang, X.; Liu, Z. Effects of microbial communities during the cultivation of three salt-tolerant plants in saline-alkali land improvement. Front. Microbiol. 2024, 15, 1470081. [Google Scholar] [CrossRef]
- Wang, D.; Lan, Y.; Chen, W.; Liu, Z.; Gao, J.; Cao, D.; Wang, Q.; Mazhang, C.; An, X. Response of bacterial communities, enzyme activities and dynamic changes of soil organic nitrogen fractions to six-year different application levels of biochar retention in Northeast China. Soil Till. Res. 2024, 240, 106097. [Google Scholar] [CrossRef]
- Liu, J.; Wazir, Z.G.; Hou, G.; Wang, G.; Rong, F.; Xu, Y.; Liu, K.; Li, M.; Liu, A.; Liu, H. The dependent correlation between soil multifunctionality and bacterial community across different farmland soils. Front. Microbiol. 2023, 14, 1144823. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, B.; Zhu, L.; Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Y.; Liang, C.; Luo, Y.; Xu, Q.; Han, C.; Zhao, Q.; Sun, B. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 2019, 7, 77. [Google Scholar] [CrossRef]
- Yao, Q.; Liu, J.; Yu, Z.; Li, Y.; Jin, J.; Liu, X.; Wang, G. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol. Biochem. 2017, 110, 56–67. [Google Scholar] [CrossRef]
- Violle, C.; Pu, Z.; Jiang, L. Experimental demonstration of the importance of competition under disturbance. Proc. Natl. Acad. Sci. USA 2010, 107, 12925–12929. [Google Scholar] [CrossRef]
- Luo, S.; Wang, S.; Zhang, H.; Zhang, J.; Tian, C. Plastic film mulching reduces microbial interactions in black soil of northeastern China. Appl. Soil Ecol. 2022, 169, 104187. [Google Scholar] [CrossRef]
- Wang, J.; Huang, R.; Zhu, L.; Guan, H.; Lin, L.; Fang, H.; Yang, M.; Ji, S.; Zou, X.; Li, X. The Effects of Biochar on Microbial Community Composition in and Beneath Biological Soil Crusts in a Lamb. Plantation. Forests 2022, 13, 1141. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Zheng, J.; Zhang, B.; Lu, H.; Chi, Z.; Pan, G.; Li, L.; Zheng, J.; Zhang, X.; et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl. Soil Ecol. 2013, 71, 33–44. [Google Scholar] [CrossRef]
- Zhalnina, K.; Dias, R.; de Quadros, P.D.; Davis-Richardson, A.; Camargo, F.A.O.; Clark, I.M.; McGrath, S.P.; Hirsch, P.R.; Triplett, E.W. Soil pH Determines Microbial Diversity and Composition in the Park Grass Experiment. Microb. Ecol. 2015, 69, 395–406. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Ayres, E.; Wall, D.H.; Bardgett, R.D. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity-function relationships. Eur. J. Soil Sci. 2011, 62, 105–116. [Google Scholar] [CrossRef]
- Jin, S.; Hu, Z.; Man, B.; Pan, H.; Kong, X.; Jin, D. Application of phosphate-containing materials affects bioavailability of rare earth elements and bacterial community in soils. Sci. China Technol. Sci. 2019, 62, 1616–1627. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, S.; Shao, P.; Zhang, H.; Feng, J.; Wu, D.; Yang, W. Investigation on intake allowance of rare earthda study on bio-effect of rare earth in south Jiangxi. China Environ. Sci. 1997, 17, 63–66. [Google Scholar]
- Chen, Z.; Liu, Y.; Wu, Y.; Yang, S.; Lu, C. Study on the background value of soil environment in Fujian Province. Environ. Sci. 1992, 4, 70–75. (In Chinese) [Google Scholar] [CrossRef]
REE Content of D. pedata and Carbonized Material | Index | Content | |
---|---|---|---|
REEs (mg kg−1) | D. pedata | Light REEs | 3232.42 |
Heavy REEs | 136.41 | ||
Total REEs | 3368.83 | ||
REE-rich biochar | Light REEs | 4419.53 | |
Heavy REEs | 173.78 | ||
Total REEs | 4593.31 |
Basic Chemical Properties of Soil | Index | Content |
---|---|---|
Chemical properties | pH | 5.61 |
Total organic carbon (TOC, g kg−1) | 23.14 | |
Total nitrogen (TN, g kg−1) | 1.13 | |
Total phosphorus (TP, g kg−1) | 0.97 | |
Total potassium (TK, g kg−1) | 197.81 | |
Available nitrogen (AN, g kg−1) | 0.24 | |
Available potassium (AK, g kg−1) | 375.84 | |
REEs | Light REEs(LREEs, mg kg−1) | 17.54 |
Heavy REEs(HREEs, mg kg−1) | 14.37 | |
Total REEs(TREEs, mg kg−1) | 31.91 |
Fraction | Extraction Method |
---|---|
F1 | 0.5 g soil sample + 20 mL CH3COOH (0.11 mol L−1), shaken for 16 h (25 °C, 180 rpm) and filtration. |
F2 | F1 residue + 20 mL NH2OH HCl (0.5 M, pH 1.5), shaken for 16 h (25 °C, 180 rpm) and filtration. |
F3 | F2 residue + 5 mL H2O2 (30%, pH 2–3), shaken for 1 h (25 °C) and placed in a water bath for 1 h (85 °C). When the solution was reduced to 1–2 mL, 5 mL of H2O2 was added again and heated at 85 °C to near dryness. After cooling, 25 mL of 1 mol L−1 NH4Ac (pH 2) was added and shaken for 16 h (25 °C, 180 rpm), followed by filtration. |
F4 | F3 residue was dried and digested with HF-HCl-HNO3 (v/v/v = 1:3:1). |
Biochar | Mass percentage of elements/(%) | Surface area /(m2 g−1) | Pore size /(nm) | Pore volume /(cm3 g−1) | ||
C | H | N | ||||
72.87 | 0.74 | 0.61 | 439.48 | 1.71 | 0.19 |
Microorganism | Treatments | Chao1 Index | Shannon Index |
---|---|---|---|
Bacteria | CK | 4571.63 ± 34.94 a | 10.21 ± 0.11 a |
BC1 | 4623.78 ± 123.19 a | 9.92 ± 0.27 a | |
BC3 | 4531.01 ± 70.13 a | 9.90 ± 0.07 a | |
BC5 | 4788.11 ± 80.11 a | 10.35 ± 0.05 a | |
Fungi | CK | 784.62 ± 25.01 b | 5.40 ± 0.20 bc |
BC1 | 776.94 ± 50.85 b | 5.32 ± 0.35 c | |
BC3 | 774.10 ± 21.75 b | 6.35 ± 0.28 a | |
BC5 | 1197.87 ± 60.30 a | 6.01 ± 0.40 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Feng, L.; Chen, Z.; Chen, Z.; Wu, J.; Lin, Q. Effects of Rare Earth Element-Rich Biochar on Soil Quality and Microbial Community Dynamics of Citrus grandis (L.) Osbeck. cv. Guanximiyou. Agriculture 2025, 15, 895. https://doi.org/10.3390/agriculture15080895
Chen Z, Feng L, Chen Z, Chen Z, Wu J, Lin Q. Effects of Rare Earth Element-Rich Biochar on Soil Quality and Microbial Community Dynamics of Citrus grandis (L.) Osbeck. cv. Guanximiyou. Agriculture. 2025; 15(8):895. https://doi.org/10.3390/agriculture15080895
Chicago/Turabian StyleChen, Zhiqi, Liujun Feng, Zhiqiang Chen, Zhibiao Chen, Jie Wu, and Qiang Lin. 2025. "Effects of Rare Earth Element-Rich Biochar on Soil Quality and Microbial Community Dynamics of Citrus grandis (L.) Osbeck. cv. Guanximiyou" Agriculture 15, no. 8: 895. https://doi.org/10.3390/agriculture15080895
APA StyleChen, Z., Feng, L., Chen, Z., Chen, Z., Wu, J., & Lin, Q. (2025). Effects of Rare Earth Element-Rich Biochar on Soil Quality and Microbial Community Dynamics of Citrus grandis (L.) Osbeck. cv. Guanximiyou. Agriculture, 15(8), 895. https://doi.org/10.3390/agriculture15080895