Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,943)

Search Parameters:
Keywords = fungal interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2212 KiB  
Article
ANCUT1, a Fungal Cutinase MgCl2-Activated by a Non-Essential Activation Mechanism for Poly(ethylene terephthalate) Hydrolysis
by José Augusto Castro-Rodríguez, Karla Fernanda Ramírez-González, Francisco Franco-Guerrero, Andrea Sabido-Ramos, Ilce Fernanda Abundio-Sánchez, Rogelio Rodríguez-Sotres, Adela Rodríguez-Romero and Amelia Farrés
Catalysts 2025, 15(8), 757; https://doi.org/10.3390/catal15080757 (registering DOI) - 7 Aug 2025
Abstract
Plastic waste, particularly poly(ethylene terephthalate) (PET), negatively impacts the environment and human health. Biotechnology could become an alternative to managing PET waste if enzymes ensure the recovery of terephthalic acid with efficiencies comparable to those of chemical treatments. Recent research has highlighted the [...] Read more.
Plastic waste, particularly poly(ethylene terephthalate) (PET), negatively impacts the environment and human health. Biotechnology could become an alternative to managing PET waste if enzymes ensure the recovery of terephthalic acid with efficiencies comparable to those of chemical treatments. Recent research has highlighted the potential of fungal cutinases, such as wild-type ANCUT1 (ANCUT1wt) from Aspergillus nidulans, in achieving PET depolymerization. Fungal cutinases’ structures differ from those of bacterial cutinases, while their PET depolymerization mechanism has not been well studied. Here, a reliable model of the ANCUT1wt was obtained using AlphaFold 2.0. Computational chemistry revealed potential cation-binding sites, which had not been described regarding enzymatic activation in fungal cutinases. Moreover, it allowed the prediction of residues with the ability to interact with a PET trimer that were mutation candidates to engineer the substrate binding cleft, seeking enhancements of PET hydrolysis. Enzyme kinetics revealed that both ANCUT1wt and ANCUT1N73V/L171Q (DM) were activated by MgCl2, increasing the dissociation constant of the substrate and maximal reaction rate. We found that in the presence of MgCl2, DM hydrolyzed different PET samples and released 9.1-fold more products than ANCUT1wt. Scanning Electron Microscopy revealed a different hydrolysis mode of these enzymes, influenced by the polymer’s crystallinity and structure. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

21 pages, 4258 KiB  
Article
Abscisic Acid Metabolizing Rhodococcus sp. Counteracts Phytopathogenic Effects of Abscisic Acid Producing Botrytis sp. on Sunflower Seedlings
by Alexander I. Shaposhnikov, Oleg S. Yuzikhin, Tatiana S. Azarova, Edgar A. Sekste, Anna L. Sazanova, Nadezhda A. Vishnevskaya, Vlada Y. Shahnazarova, Polina V. Guro, Miroslav I. Lebedinskii, Vera I. Safronova, Yuri V. Gogolev and Andrey A. Belimov
Plants 2025, 14(15), 2442; https://doi.org/10.3390/plants14152442 - 7 Aug 2025
Abstract
One of the important traits of many plant growth-promoting rhizobacteria (PGPR) is the biocontrol of phytopathogens. Some PGPR metabolize phytohormone abscisic acid (ABA); however, the role of this trait in plant–microbe interactions is scarcely understood. Phytopathogenic fungi produce ABA and use this property [...] Read more.
One of the important traits of many plant growth-promoting rhizobacteria (PGPR) is the biocontrol of phytopathogens. Some PGPR metabolize phytohormone abscisic acid (ABA); however, the role of this trait in plant–microbe interactions is scarcely understood. Phytopathogenic fungi produce ABA and use this property as a negative regulator of plant resistance. Therefore, interactions between ABA-producing necrotrophic phytopathogen Botrytis sp. BA3 with ABA-metabolizing rhizobacterium Rhodococcus sp. P1Y were studied in a batch culture and in gnotobiotic hydroponics with sunflower seedlings. Rhizobacterium P1Y possessed no antifungal activity against BA3 and metabolized ABA, which was synthesized by BA3 in vitro and in associations with sunflower plants infected with this fungus. Inoculation with BA3 and the application of exogenous ABA increased the root ABA concentration and inhibited root and shoot growth, suggesting the involvement of this phytohormone in the pathogenesis process. Strain P1Y eliminated negative effects of BA3 and exogenous ABA on root ABA concentration and plant growth. Both microorganisms significantly modulated the hormonal status of plants, affecting indole-3-acetic, salicylic, jasmonic and gibberellic acids, as well as cytokinins concentrations in sunflower roots and/or shoots. The hormonal effects were complex and could be due to the production of phytohormones by microorganisms, changes in ABA concentrations and multiple levels of crosstalk in hormone networks regulating plant defense. The results suggest the counteraction of rhizobacteria to ABA-producing phytopathogenic fungi through the metabolism of fungal ABA. This expands our understanding of the mechanisms related to the biocontrol of phytopathogens by PGPR. Full article
Show Figures

Figure 1

18 pages, 865 KiB  
Review
Proteomics-Based Approaches to Decipher the Molecular Strategies of Botrytis cinerea: A Review
by Olivier B. N. Coste, Almudena Escobar-Niño and Francisco Javier Fernández-Acero
J. Fungi 2025, 11(8), 584; https://doi.org/10.3390/jof11080584 - 6 Aug 2025
Abstract
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. [...] Read more.
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. Recent advances in mass spectrometry-based proteomics—including LC-MS/MS, iTRAQ, MALDI-TOF, and surface shaving—have enabled the in-depth characterization of B. cinerea subproteomes such as the secretome, surfactome, phosphoproteome, and extracellular vesicles, revealing condition-specific pathogenic mechanisms. Notably, in under a decade, the proportion of predicted proteins experimentally identified has increased from 10% to 52%, reflecting the rapid progress in proteomic capabilities. We explore how proteomic studies have significantly enhanced our knowledge of the fungus secretome and the role of extracellular vesicles (EVs), which play key roles in pathogenesis, by identifying secreted proteins—such as pH-responsive elements—that may serve as biomarkers and therapeutic targets. These technologies have also uncovered fine regulatory mechanisms across multiple levels of the fungal proteome, including post-translational modifications (PTMs), the phosphomembranome, and the surfactome, providing a more integrated view of its infection strategy. Moreover, proteomic approaches have contributed to a better understanding of host–pathogen interactions, including aspects of the plant’s defensive responses. Furthermore, this review discusses how proteomic data have helped to identify metabolic pathways affected by novel, more environmentally friendly antifungal compounds. A further update on the advances achieved in the field of proteomics discovery for the organism under consideration is provided in this paper, along with a perspective on emerging tools and future developments expected to accelerate research and improve targeted intervention strategies. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Graphical abstract

10 pages, 481 KiB  
Review
Bacterial–Fungal Interactions: Mutualism, Antagonism, and Competition
by Manyu Zhang, Yuwei Zhang, Zhengge Zhao, Feilong Deng, Hui Jiang, Ce Liu, Ying Li and Jianmin Chai
Life 2025, 15(8), 1242; https://doi.org/10.3390/life15081242 - 5 Aug 2025
Viewed by 51
Abstract
The interaction between bacteria and fungi is one of the key interactions of microbial ecology, including mutualism, antagonism, and competition, which profoundly affects the balance and functions of animal microbial ecosystems. This article reviews the interactive dynamics of bacteria and fungi in more [...] Read more.
The interaction between bacteria and fungi is one of the key interactions of microbial ecology, including mutualism, antagonism, and competition, which profoundly affects the balance and functions of animal microbial ecosystems. This article reviews the interactive dynamics of bacteria and fungi in more concerned microenvironments in animals, such as gut, rumen, and skin. Moreover, we summarize the molecular mechanisms and ecological functions of the interaction between bacteria and fungi. Three major bacterial–fungal interactions (mutualism, antagonism, and competition) are deeply discussed. Understanding of the interactions between bacteria and fungi allows us to understand, modulate, and maintain the community structure and functions. Furthermore, this summarization will provide a comprehensive perspective on animal production and veterinary medicine, as well as guide future research directions. Full article
(This article belongs to the Special Issue Gut Microbes Associating with the Host)
Show Figures

Figure 1

20 pages, 8975 KiB  
Article
Transcriptome Analysis of Potato (Solanum tuberosum L.) Seedlings with Varying Resistance Levels Reveals Diverse Molecular Pathways in Early Blight Resistance
by Jiangtao Li, Jie Li, Hongfei Shen, Rehemutula Gulimila, Yinghong Jiang, Hui Sun, Yan Wu, Binde Xing, Ruwei Yang and Yi Liu
Plants 2025, 14(15), 2422; https://doi.org/10.3390/plants14152422 - 5 Aug 2025
Viewed by 74
Abstract
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily [...] Read more.
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily increasing year after year. This study aimed to elucidate the molecular mechanisms underlying resistance to early blight by comparing gene expression profiles in resistant (B1) and susceptible (D30) potato seedlings. Transcriptome sequencing was conducted at three time points post-infection (3, 7, and 10 dpi) to identify differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and pathway enrichment analyses were performed to explore resistance-associated pathways and hub genes. Over 11,537 DEGs were identified, with the highest number observed at 10 dpi. Genes such as LOC102603761 and LOC102573998 were significantly differentially expressed across multiple comparisons. In the resistant B1 variety, upregulated genes were enriched in plant–pathogen interaction, MAPK signaling, hormonal signaling, and secondary metabolite biosynthesis pathways, particularly flavonoid biosynthesis, which likely contributes to biochemical defense against A. solani. WGCNA identified 24 distinct modules, with hub transcription factors (e.g., WRKY33, MYB, and NAC) as key regulators of resistance. These findings highlight critical molecular pathways and candidate genes involved in early blight resistance, providing a foundation for further functional studies and breeding strategies to enhance potato resilience. Full article
(This article belongs to the Special Issue Advances in Plant Genetics and Breeding Improvement)
Show Figures

Figure 1

12 pages, 2639 KiB  
Article
Interspecies Interactions of Single- and Mixed-Species Biofilms of Candida albicans and Aggregatibacter actinomycetemcomitans
by Adèle Huc, Andreia S. Azevedo, José Carlos Andrade and Célia Fortuna Rodrigues
Biomedicines 2025, 13(8), 1890; https://doi.org/10.3390/biomedicines13081890 - 3 Aug 2025
Viewed by 328
Abstract
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: [...] Read more.
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: This study aimed to assess the interaction dynamics between these two microorganisms and to evaluate their susceptibility to fluconazole and azithromycin in single- and mixed-species forms. Methods: Biofilm biomass was quantified using crystal violet assays, while biofilm cell viability was assessed through CFU enumeration (biofilm viability assay). To assess the resistance properties of single versus mixed-species coincubations, we applied the antimicrobial susceptibility test (AST) to each drug, and analysed spatial organization with confocal laser scanning microscopy, using PNA-FISH. Results: The results indicated that both species can coexist without significant mutual inhibition. However, a non-reciprocal synergism was also observed, whereby mixed-species biofilm conditions promoted the growth of A. actinomycetemcomitans, while C. albicans growth remained stable. As expected, antimicrobial tolerance was elevated in mixed cultures, likely due to enhanced extracellular matrix production and potential quorum-sensing interactions, contributing to increased resistance against azithromycin and fluconazole. Conclusions: This study provides novel insights into previously rarely explored interactions between C. albicans and A. actinomycetemcomitans. These findings underscore the importance of investigating interspecies interactions within polymicrobial biofilms, as understanding their mechanisms, such as quorum-sensing molecules and metabolic cooperation, can contribute to improved diagnostics and more effective targeted therapeutic strategies against polymicrobial infections. Full article
Show Figures

Graphical abstract

17 pages, 3038 KiB  
Article
Neighbor Relatedness Contributes to Improvement in Grain Yields in Rice Cultivar Mixtures
by You Xu, Qin-Hang Han, Shuai-Shuai Xie and Chui-Hua Kong
Plants 2025, 14(15), 2385; https://doi.org/10.3390/plants14152385 - 2 Aug 2025
Viewed by 276
Abstract
The improvement in yield in cultivar mixtures has been well established. Despite increasing knowledge of the improvement involving within-species diversification and resource use efficiency, little is known about the benefits arising from relatedness-mediated intraspecific interactions in cultivar mixtures. This study used a relatedness [...] Read more.
The improvement in yield in cultivar mixtures has been well established. Despite increasing knowledge of the improvement involving within-species diversification and resource use efficiency, little is known about the benefits arising from relatedness-mediated intraspecific interactions in cultivar mixtures. This study used a relatedness gradient of rice cultivars to test whether neighbor relatedness contributes to improvements in grain yields in cultivar mixtures. We experimentally demonstrated the grain yield of rice cultivar mixtures with varying genetic relatedness under both field and controlled conditions. As a result, a closely related cultivar mixture had increased grain yield compared to monoculture and distantly related mixtures by optimizing the root-to-shoot ratio and accelerating flowering. The benefits over monoculture were most pronounced when compared to the significant yield reductions observed in distantly related mixtures. The relatedness-mediated improvement in yields depended on soil volume and nitrogen use level, with effects attenuating under larger soil volumes or nitrogen deficiency. Furthermore, neighbor relatedness enhanced the richness and diversity of both bacterial and fungal communities in the rhizosphere soil, leading to a significant restructuring of the microbial community composition. These findings suggest that neighbor relatedness may improve the grain yield of rice cultivar mixtures. Beneficial plant–plant interactions may be generated by manipulating cultivar kinship within a crop species. A thorough understanding of kinship strategies in cultivar mixtures offers promising prospects for increasing crop production. Full article
(This article belongs to the Special Issue Plant Chemical Ecology—2nd Edition)
Show Figures

Figure 1

21 pages, 6211 KiB  
Article
In Silico and In Vitro Potential Antifungal Insights of Insect-Derived Peptides in the Management of Candida sp. Infections
by Catarina Sousa, Alaka Sahoo, Shasank Sekhar Swain, Payal Gupta, Francisco Silva, Andreia S. Azevedo and Célia Fortuna Rodrigues
Int. J. Mol. Sci. 2025, 26(15), 7449; https://doi.org/10.3390/ijms26157449 - 1 Aug 2025
Viewed by 242
Abstract
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the [...] Read more.
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the target-specific binding efficacy of insect-derived antifungal peptides (n = 37) as possible alternatives to traditional antifungal treatments. Using computational methods, namely the HPEPDOCK and HDOCK platforms, molecular docking was performed to evaluate the interactions between selected key fungal targets, lanosterol 14-demethylase, or LDM (PDB ID: 5V5Z), secreted aspartic proteinase-5, or Sap-5 (PDB ID: 2QZX), N-myristoyl transferase, or NMT (PDB ID: 1NMT), and dihydrofolate reductase, or DHFR, of C. albicans. The three-dimensional peptide structure was modelled through the PEP-FOLD 3.5 tool. Further, we predicted the physicochemical properties of these peptides through the ProtParam and PEPTIDE 2.0 tools to assess their drug-likeness and potential for therapeutic applications. In silico results show that Blap-6 from Blaps rhynchopeter and Gomesin from Acanthoscurria gomesiana have the most antifungal potential against all four targeted proteins in Candida sp. Additionally, a molecular dynamics simulation study of LDM-Blap-6 was carried out at 100 nanoseconds. The overall predictions showed that both have strong binding abilities and are good candidates for drug development. In in vitro studies, Gomesin achieved complete biofilm eradication in three out of four Candida species, while Blap-6 showed moderate but consistent reduction across all species. C. tropicalis demonstrated relative resistance to complete eradication by both peptides. The present study provides evidence to support the antifungal activity of certain insect peptides, with potential to be used as alternative drugs or as a template for a new synthetic or modified peptide in pursuit of effective therapies against Candida spp. Full article
Show Figures

Figure 1

19 pages, 2667 KiB  
Article
VdSOX1 Negatively Regulates Verticillium dahliae Virulence via Enhancing Effector Expression and Suppressing Host Immune Responses
by Di Xu, Xiaoqiang Zhao, Can Xu, Chongbo Zhang and Jiafeng Huang
J. Fungi 2025, 11(8), 576; https://doi.org/10.3390/jof11080576 - 1 Aug 2025
Viewed by 253
Abstract
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal [...] Read more.
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of VdSOX1 leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes. Moreover, the VdSOX1 knockout strains suppress the expression of key defense-related transcription factors in cotton, such as WRKY, MYB, AP2/ERF, and GRAS families, thereby impairing host immune responses. Transcriptomic analyses confirm that VdSOX1 orchestrates a broad metabolic reprogramming that links nutrient acquisition to immune evasion. Our findings identify VdSOX1 as a central regulator that promotes V. dahliae virulence by upregulating effector gene expression and suppressing host immune responses, offering novel insights into the molecular basis of host–pathogen interactions and highlighting potential targets for disease management. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

32 pages, 4311 KiB  
Article
Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis
by Jewel Nicole Anna Todd, Karla Gisel Carreón-Anguiano, Gabriel Iturriaga, Roberto Vázquez-Euán, Ignacio Islas-Flores, Miguel Tzec-Simá, Miguel Ángel Canseco-Pérez, César De Los Santos-Briones and Blondy Canto-Canché
Microbiol. Res. 2025, 16(8), 175; https://doi.org/10.3390/microbiolres16080175 - 1 Aug 2025
Viewed by 182
Abstract
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen [...] Read more.
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen pleinteractions, but there is increasing evidence showing their involvement in other types of interaction, including microbe–microbe interactions. Through the use of LC-MS/MS sequencing, effector candidates were identified in the in vitro interaction between a banana pathogen, Pseudocercospora fijiensis and a biological control agent, Trichoderma harzianum. The diverse interaction secretome revealed various glycoside hydrolase families, proteases and oxidoreductases. T. harzianum secreted more proteins in the microbial interaction compared to P. fijiensis, but its presence induced the secretion of more P. fijiensis proteins that were exclusive to the interaction secretome. The interaction secretome, containing 256 proteins, was screened for effector candidates using the algorithms EffHunter and WideEffHunter. Candidates with common fungal effector motifs and domains such as LysM, Cerato-platanin, NPP1 and CFEM, among others, were identified. Homologs of true effectors and virulence factors were found in the interaction secretome of T. harzianum and P. fijiensis. Further characterization revealed a potential novel effector of T. harzianum. Full article
Show Figures

Figure 1

30 pages, 703 KiB  
Review
Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Functional Adaptation and Biotechnological Perspectives
by Alex Graça Contato and Carlos Adam Conte-Junior
Eng 2025, 6(8), 177; https://doi.org/10.3390/eng6080177 - 1 Aug 2025
Viewed by 329
Abstract
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation [...] Read more.
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation of molecular oxygen (O2) or hydrogen peroxide (H2O2). Their catalytic versatility is intricately modulated by structural features, including the histidine brace active site, surface-binding loops, and, in some cases, appended carbohydrate-binding modules (CBMs). The oxidation pattern, whether at the C1, C4, or both positions, is dictated by subtle variations in loop architecture, amino acid microenvironments, and substrate interactions. LPMOs are embedded in a highly synergistic fungal enzymatic system, working alongside cellulases, hemicellulases, lignin-modifying enzymes, and oxidoreductases to enable efficient lignocellulose decomposition. Industrial applications of fungal LPMOs are rapidly expanding, with key roles in second-generation biofuels, biorefineries, textile processing, food and feed industries, and the development of sustainable biomaterials. Recent advances in genome mining, protein engineering, and heterologous expression are accelerating the discovery of novel LPMOs with improved functionalities. Understanding the balance between O2- and H2O2-driven mechanisms remains critical for optimizing their catalytic efficiency while mitigating oxidative inactivation. As the demand for sustainable biotechnological solutions grows, this narrative review highlights how fungal LPMOs function as indispensable biocatalysts for the future of the Circular Bioeconomy and green industrial processes. Full article
Show Figures

Figure 1

16 pages, 3705 KiB  
Article
Hydrophobic Interactions of Modified Coconut Oil and Pluronic 127 Enable Stable Formation of Bioactive Hydrogel for Onychomycosis
by Daniel P. Fitzpatrick, Grace Lawler, Carmel Kealey, Damien Brady and Jim Roche
Gels 2025, 11(8), 592; https://doi.org/10.3390/gels11080592 - 31 Jul 2025
Viewed by 157
Abstract
Fungal infections pose a significant yet under-recognised global health burden, affecting over one billion individuals annually and contributing to approximately 2.5 million direct deaths. The World Health Organisation (WHO) has recently reemphasised this issue through the publication of its Fungal Priority Pathogens List [...] Read more.
Fungal infections pose a significant yet under-recognised global health burden, affecting over one billion individuals annually and contributing to approximately 2.5 million direct deaths. The World Health Organisation (WHO) has recently reemphasised this issue through the publication of its Fungal Priority Pathogens List (FPPL) and its 2025 report evaluating current antifungal diagnostics and therapeutics. Among the most prevalent fungal pathogens is Trichophyton rubrum, an anthropophilic dermatophyte responsible for up to 70% of superficial fungal infections, including onychomycosis. The emergence of antifungal resistance further complicates management, necessitating the development of novel, effective, and sustainable treatment alternatives. Natural compounds are increasingly being explored for their antifungal potential due to their broad-spectrum activity and lower toxicity. Coconut oil has gained particular attention for its therapeutic properties attributed to medium-chain fatty acids (MCFAs), especially lauric acid. The aim of this study was to understand how innate and modified coconut oils can alter the rheological properties of Pluronic hydrogels while retaining antifungal activity for downstream application in treating fungal infections. Results identified hydrophobic interactions by FTIR and DSC between the hydrocarbon chains of the coconut triglycerides and the hydrophobic core of the Pluronic micelles, leading to gel stabilisation as identified by rheological analysis. Full article
(This article belongs to the Special Issue Smart Hydrogels in Engineering and Biomedical Applications)
Show Figures

Figure 1

16 pages, 3171 KiB  
Article
A Simple and Rapid Synthesis of Spherical Silver Phosphate (Ag3PO4) and Its Antimicrobial Activity in Plant Tissue Culture
by Nongnuch Laohavisuti, Banjong Boonchom, Pesak Rungrojchaipon, Wimonmat Boonmee, Somkiat Seesanong and Sirichet Punthipayanon
Int. J. Mol. Sci. 2025, 26(15), 7371; https://doi.org/10.3390/ijms26157371 - 30 Jul 2025
Viewed by 284
Abstract
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were [...] Read more.
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were applied separately as the precursor, obtaining ((NH4)2HPO4) and K2HPO4 derived SP powders, named SP-A or SP-P, respectively. Fourier transform infrared (FTIR) spectra pointed out the vibrational characteristics of P–O and O–P–O interactions, confirming the presence of the PO43– functional group for SP. X-ray diffraction (XRD) patterns revealed that the SP crystallized in a cubic crystal structure. Whereas the field emission scanning electron microscope (FESEM) exposed spherical SP particles. The potentially antibacterial activity of SP-A and SP-P against bacterial Bacillus stratosphericus, yeast Meyerozyma guilliermondii, and fungal Phanerodontia chrysosporium was subsequently investigated. All studied microorganisms were recovered and isolated from the aquatic plant during the tissue culture process. The preliminary result of the antimicrobial test revealed that SP-A has higher antimicrobial activity than SP-P. The superior antimicrobial efficiency of SP-A compared to SP-P may be attributed to its purity and crystallite size, which provide a higher surface area and more active sites. In addition, the presence of potassium-related impurities in SP-P could have negatively affected its antimicrobial performance. These findings suggest that SP holds potential as an antimicrobial agent for maintaining sterility in tissue cultures, particularly in aquatic plant systems. The growth of both B. stratosphericus and M. guilliermondii was suppressed effectively at 30 ppm SP-A, whereas 10 ppm of SP-A can suppress P. chrysosporium development. This present work also highlights the potential of SP at very low concentrations (10–30 ppm) for utilization as an effective antimicrobial agent in tissue culture, compared to a commercial antimicrobial agent, viz., acetic acid, at the same concentration. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

16 pages, 1540 KiB  
Article
The Role of Drug Resistance in Candida Inflammation and Fitness
by Gabriella Piatti, Alberto Vitale, Anna Maria Schito, Susanna Penco and Daniele Saverino
Microorganisms 2025, 13(8), 1777; https://doi.org/10.3390/microorganisms13081777 - 30 Jul 2025
Viewed by 235
Abstract
Drug resistance in Candida may result in either a fitness cost or a fitness advantage. Candida auris, whose intrinsic drug resistance remains unclear, has emerged as a significant human pathogen. We aimed to investigate whether Candida fitness, including early interaction with the host [...] Read more.
Drug resistance in Candida may result in either a fitness cost or a fitness advantage. Candida auris, whose intrinsic drug resistance remains unclear, has emerged as a significant human pathogen. We aimed to investigate whether Candida fitness, including early interaction with the host innate immune system, depends on the antifungal susceptibility phenotype and putative-associated resistance mutations. We compared interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor α production by human colorectal adenocarcinoma cells stimulated by fluconazole-susceptible and fluconazole-resistant strains of Candida albicans, C. parapsilosis, C. tropicalis, and C. glabrata, as well as fluconazole-resistant C. auris strains. Sensitive Candida strains induced lower cytokine levels compared with C. auris and resistant strains, except for TNF a. Resistant strains induced cytokine levels like C. auris, except for higher IL-1β and lower TNF-α. Susceptible strains exhibited cytokine profiles distinct from those of resistant strains. C. auris induced cytokine levels comparable to resistant strains but displayed profiles resembling those of susceptible strains. This study highlights the relationship among antifungal susceptibility, fungal fitness and host early immunity. C. auris behavior appears to be between fluconazole-sensitive and fluconazole-resistant strains. Understanding these dynamics may enhance the knowledge of the survival and reproduction of resistant Candida and the epidemiology of fungal infections. Full article
Show Figures

Figure 1

13 pages, 982 KiB  
Article
Salivary pH Modulation and Antimicrobial Properties of Oregano-Oil Jelly in Relation to Menstrual and Menopausal Status
by Georgiana Ioana Potra Cicalău, Gabriela Ciavoi, Ioana Scrobota, Ionut Daniel Venter, Madalin Florin Ganea, Marc Cristian Ghitea, Evelin Claudia Ghitea, Maria Flavia Gîtea, Timea Claudia Ghitea, Csaba Nagy, Diana Constanta Pelea, Luciana Dobjanschi, Octavia Gligor, Corina Moisa and Mariana Ganea
Nutrients 2025, 17(15), 2480; https://doi.org/10.3390/nu17152480 - 29 Jul 2025
Viewed by 235
Abstract
Background: Salivary pH plays a critical role in oral health by influencing enamel demineralization, buffering capacity, and the ecology of oral microbiota. Essential oils such as Origanum vulgare (oregano) possess well-documented antimicrobial properties that may reduce acidogenic bacterial activity. However, the effects of [...] Read more.
Background: Salivary pH plays a critical role in oral health by influencing enamel demineralization, buffering capacity, and the ecology of oral microbiota. Essential oils such as Origanum vulgare (oregano) possess well-documented antimicrobial properties that may reduce acidogenic bacterial activity. However, the effects of edible delivery systems like jellies on salivary pH modulation and their potential interactions with hormonal states remain poorly understood. Methods: This study evaluated the in vitro antimicrobial activity of an oregano-oil-based jelly formulation against standard bacterial (Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli) and fungal (Candida albicans) strains using the Kirby–Bauer disc diffusion method. Additionally, a human trial (n = 91) measured salivary pH before and after administration of the oregano-oil jelly. Participants were characterized by age, smoking status, menopausal status, and presence of menstruation. Multiple linear regression was used to identify predictors of final salivary pH. Results: The oregano-oil jelly demonstrated strong in vitro antimicrobial activity, with inhibition zones up to 8 mm for E. coli and C. albicans. In vivo, mean unstimulated salivary pH increased from 6.94 to 7.07 overall, indicating a mild alkalinizing effect. However, menstruating participants showed a significant decrease in final pH (from 7.03 to 6.78). Multiple regression identified menstruation as a significant negative predictor (β = −0.377, p < 0.001) and initial pH as a positive predictor (β = +0.275, p = 0.002). Menopausal status was not a significant predictor, likely due to the small sample size. Conclusions: Oregano-oil jellies may represent a promising natural approach to support oral health by increasing salivary pH and providing strong antimicrobial activity. However, physiological states such as menstruation can significantly modulate this response, underscoring the importance of personalized or phase-aware oral care strategies. Further studies with larger, diverse cohorts and controlled hormonal assessments are needed to validate these findings and optimize product formulations. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

Back to TopTop