Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (196)

Search Parameters:
Keywords = fungal infestation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 635 KiB  
Review
Methods of Control of Parasitic Weeds of the Genus Cuscuta—Current Status and Future Perspectives
by Lyuben Zagorchev, Tzvetelina Zagorcheva, Denitsa Teofanova and Mariela Odjakova
Plants 2025, 14(15), 2321; https://doi.org/10.3390/plants14152321 - 27 Jul 2025
Viewed by 455
Abstract
Dodders (Cuscuta spp.; Convolvulaceae) are parasitic weeds that pose major challenges to agriculture due to their ability to infect a wide range of host plants, extract nutrients, and transmit pathogens. Their control is especially challenging because of the seed longevity, resistance to [...] Read more.
Dodders (Cuscuta spp.; Convolvulaceae) are parasitic weeds that pose major challenges to agriculture due to their ability to infect a wide range of host plants, extract nutrients, and transmit pathogens. Their control is especially challenging because of the seed longevity, resistance to herbicides, and the capacity for vegetative regeneration. Mechanical methods such as hand-pulling or mowing are labour-intensive and often ineffective for large infestations. Chemical control is limited, as systemic herbicides often affect the host species equally, or even worse than the parasite. Current research is exploring biological control methods, including allelopathic compounds, host-specific fungal pathogens, and epiparasitic insects, though these methods remain largely experimental. An integrated approach that combines prevention, targeted mechanical removal, and biological methods offers the most promising path for long-term management. Continued research is essential to develop effective, sustainable control strategies while exploring possible beneficial uses of these complex parasitic plants. The present review aims to thoroughly summarise the existing literature, emphasising the most recent advances and discussing future perspectives. Full article
Show Figures

Figure 1

21 pages, 3109 KiB  
Article
Effects of Forest Age and Invasive Shrubs on Mycophilous Coleoptera Communities in a Temperate Deciduous Woodland
by Jeffrey M. Brown and John O. Stireman
Insects 2025, 16(7), 735; https://doi.org/10.3390/insects16070735 - 18 Jul 2025
Viewed by 413
Abstract
Forests in the Eastern and Midwestern U.S. have been profoundly affected by human use over the last 150 years, with few old growth forests remaining. Such mature forests may harbor distinct communities and high biodiversity, particularly detritivores and their associated food webs. These [...] Read more.
Forests in the Eastern and Midwestern U.S. have been profoundly affected by human use over the last 150 years, with few old growth forests remaining. Such mature forests may harbor distinct communities and high biodiversity, particularly detritivores and their associated food webs. These communities, however, have been surveyed only rarely in comparisons of diversity and community composition between old and young forests. Here, we compare the mycophilous beetle communities of young and old deciduous forest stands in Southwestern Ohio (U.S.A.). We assess how the abundance and diversity of beetles associated with fungal sporocarps varies with forest age, downed woody debris, and invasive honeysuckle density. We surveyed fungus-associated beetles with baited traps at eight wooded parklands centered around Dayton, Ohio, conducting sampling three times over a growing season. In contrast to expectation, we found no clear effect of forest age on mycophilous beetle communities, but infestation by invasive honeysuckle (Lonicera maackii) negatively affected beetle abundance and diversity. Beetle abundance, richness, and community composition also strongly varied across seasonal sampling periods. Our surveys of mycophilous beetles in a Midwestern U.S. forest represent an initial step toward understanding how these communities are shaped by forest age and invasive species. Such information is crucial in managing forests to preserve biodiversity and ecosystem services. Full article
(This article belongs to the Special Issue The Richness of the Forest Microcosmos)
Show Figures

Figure 1

34 pages, 2621 KiB  
Article
Priestia megaterium KW16: A Novel Plant Growth-Promoting and Biocontrol Agent Against Rhizoctonia solani in Oilseed Rape (Brassica napus L.)—Functional and Genomic Insights
by Bożena Nowak, Daria Chlebek and Katarzyna Hupert-Kocurek
Agriculture 2025, 15(13), 1435; https://doi.org/10.3390/agriculture15131435 - 3 Jul 2025
Viewed by 327
Abstract
Plant diseases caused by Rhizoctonia solani present a significant challenge in agriculture. While chemical pesticides remain a common control strategy, their use leads to health and environmental problems. In contrast, endophytic bacteria with plant growth-promoting (PGP) activity offer a promising, sustainable alternative. In [...] Read more.
Plant diseases caused by Rhizoctonia solani present a significant challenge in agriculture. While chemical pesticides remain a common control strategy, their use leads to health and environmental problems. In contrast, endophytic bacteria with plant growth-promoting (PGP) activity offer a promising, sustainable alternative. In this context, a novel endophytic Priestia megaterium strain, KW16, originated from the bluegrass (Poa pratensis L.), demonstrated distinct biocontrol potential against R. solani. in vitro assays showed that KW16 inhibited R. solani growth by up to 58%, primarily by releasing volatile compounds. In planta experiments further highlighted KW16′s ability to colonize oilseed rape internal tissues, significantly enhancing its growth and development. In the presence of the pathogen, KW16 abolished the negative impact of R. solani and promoted plant growth, increasing shoot and root biomass by 216% and 1737%, respectively, when compared to the plants grown in fungal-infested soil. Biochemical and genome analyses confirmed the strain’s metabolic versatility, resistance to biotic and abiotic factors, and a whole spectrum of PGP and biocontrol traits such as biofilm formation, production of phytohormones, and synthesis of lytic enzymes, siderophores, and volatiles, alongside its ability to survive in the presence of autochthonous soil microflora. These findings position KW16 as a potent biological alternative to synthetic fungicides, with significant potential for sustainable crop protection. Full article
Show Figures

Figure 1

25 pages, 9272 KiB  
Article
Monitoring of Fungal Diversity and Microclimate in Nine Different Museum Depots
by Katharina Derksen, Peter Brimblecombe, Guadalupe Piñar, Monika Waldherr, Alexandra Bettina Graf, Pascal Querner and Katja Sterflinger
J. Fungi 2025, 11(7), 478; https://doi.org/10.3390/jof11070478 - 24 Jun 2025
Viewed by 509
Abstract
Within museum depots, the largest part of all heritage collections is stored. Often, the preservation of highly sensitive objects is an ongoing challenge, as the materials are constantly subjected to and influenced by ever-present environmental factors—above all the surrounding climate and other physicochemical [...] Read more.
Within museum depots, the largest part of all heritage collections is stored. Often, the preservation of highly sensitive objects is an ongoing challenge, as the materials are constantly subjected to and influenced by ever-present environmental factors—above all the surrounding climate and other physicochemical processes. Biological degradation is also a major risk for collections. Fungal infestation poses a particular threat, in many regions increasingly the result of climate change. Models for damage prediction and risk assessment are still underdeveloped and require a more substantial database. Approaching this need, nine museum depots and archives were selected in this study. Two years of monitoring the indoor microclimate with thermohygrometric sensors, investigating fungal abundance and diversity through culture-dependent and -independent (metagenomics) approaches, and the collection of relevant additional information resulted in a vast amount of diverse data. The main fungal genera identified through cultivation were Cladosporium, Penicillium, Aspergillus, Alternaria and Epicoccum. The cultivation-independent approach identified Aspergillus, Pyronema, Penicillium, Xenodidymella and Blumeria as the main taxa. Data analyses indicated that key drivers involved in similarities, patterns and differences between the locations were their geographic location, immediate outdoor surroundings and indoor (micro)climatic fluctuations. The study also sheds light on a possible shift in focus when developing strategies for preventing mold growth in collection depots beyond the prevailing path of tightest possible climate control. Full article
(This article belongs to the Special Issue Diversity of Microscopic Fungi)
Show Figures

Figure 1

20 pages, 6360 KiB  
Article
Regulatory Effects of Companion Plants (Maize (Zea mays) and Perilla frutescens) on American Ginseng Growth and Microbiome in Root Rot-Infested Field
by Dan Luo, Dengqun Liao, Tingting Han, Changhao Ji, Chao He and Xianen Li
Plants 2025, 14(12), 1871; https://doi.org/10.3390/plants14121871 - 18 Jun 2025
Viewed by 437
Abstract
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture [...] Read more.
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture (CK), companion planting significantly improved AG growth and survival rate at wither stage, with AG-maize showing the superior efficacy- increasing root length and fresh weight, and plant height by 39.04%, 46.10%, and 48.69%, respectively, while raising survival rate from 1.51% to 14.54%. Microbial analysis revealed that companion planting increased microbiome diversity and network complexity. At green fruit stage, AG-perilla increased rhizosphere fungal Chao1 index by 42.6%, while AG-maize and AG-perilla elevated endophytic fungal Shannon indices by 46.68% and 74.84%, respectively. At wither stage, AG-maize notably enriched beneficial microbes (e.g., soil Pseudomonas +108.49%, Bacillus +200.73%) while reducing pathogens (soil Fusarium −20.04%, root endophytic Alternaria −54.55%). Structural equation model indicated AG-maize improved AG survival via core species-driven antibiosis and nutrient regulation, with keystone species Lysobacter sp. RHLT3-4 and Verrucomicrobium sp. IMCC25902 significantly correlating with AG health. The AG-maize system fostered synergistic microbial networks, enriching beneficial taxa and suppressing pathogens. These findings provide a foundation for developing eco-friendly disease management and high-yield AG cultivation strategies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

16 pages, 1998 KiB  
Article
Antifungal Action of Edible Coating Comprising Artichoke-Mediated Nanosilver and Chitosan Nanoparticles for Biocontrol of Citrus Blue Mold
by Mousa Abdullah Alghuthaymi
Polymers 2025, 17(12), 1671; https://doi.org/10.3390/polym17121671 - 16 Jun 2025
Viewed by 457
Abstract
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their [...] Read more.
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their nanoconjugates with chitosan nanoparticles (Cht) to eradicate the blue mold fungus (Penicillium italicum) and preserve oranges during storage via nanocomposite-based edible coatings (ECs). The biosynthesis and conjugation of nanomaterials were verified using UV and infrared (FTIR) spectroscopy, electron microscopy (TEM and SEM) analysis, and DLS assessments. Art could effectually biosynthesize/cap AgNPs with a mean size of 10.35 nm, whereas the average size of Cht was 148.67 nm, and the particles of their nanocomposites had average diameters of 203.22 nm. All nanomaterials/composites exhibited potent antifungal action toward P. italicum isolates; the Cht/Art/AgNP nanocomposite was the most effectual, with an inhibition zone of 31.1 mm and a fungicidal concentration of 17.5 mg/mL, significantly exceeding the activity of other compounds and the fungicide Enilconazole (24.8 mm and 25.0 mg/mL, respectively). The microscopic imaging of P. italicum mycelia treated with Cht/Art/AgNP nanocomposites emphasized their action for the complete destruction of mycelia within 24 h. The orange (Citrus sinensis) fruit coatings, with nanomaterial-based ECs, were highly effectual for preventing blue mold development and preserved fruits for >14 days without any infestation signs; when the control infected fruits were fully covered with blue mold, the infestation remarks covered 12.4%, 5.2%, and 0% of the orange coated with Cht Art/AgNPs and Cht/Art/AgNPs. The constructed Cht/Art/AgNP nanocomposites have potential as effectual biomaterials for protecting citrus fruits from fungal deterioration and preserving their quality. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Graphical abstract

15 pages, 2024 KiB  
Article
Co-Inoculating Burkholderia vietnamiensis B418 and Trichoderma harzianum T11W Reduced Meloidogyne incognita Infestation of Tomato Plants
by Yanqing Jiang, Wenzhe Li, Jishun Li, Jindong Hu, Yanli Wei, Yilian Wang, Hetong Yang, Yi Zhou, Yuanzheng Wu and Shanshan Zhang
Microorganisms 2025, 13(6), 1337; https://doi.org/10.3390/microorganisms13061337 - 9 Jun 2025
Viewed by 409
Abstract
Root-knot nematodes (RKNs; Meloidogyne incognita) pose a significant threat to tomato crops, necessitating sustainable control methods. This study investigated the inoculation efficacy of co-cultured Burkholderia vietnamiensis B418 and Trichoderma harzianum T11W compared with single-strain treatments for RKNs suppression and their influence on the [...] Read more.
Root-knot nematodes (RKNs; Meloidogyne incognita) pose a significant threat to tomato crops, necessitating sustainable control methods. This study investigated the inoculation efficacy of co-cultured Burkholderia vietnamiensis B418 and Trichoderma harzianum T11W compared with single-strain treatments for RKNs suppression and their influence on the structure and function of the rhizosphere microbiome. Co-inoculation with B418 + T11W achieved a 71.42% reduction in the disease index, significantly outperforming single inoculations of B418 (54.46%) and T11W (58.93%). Co-inoculation also increased plant height by 38.51% and fresh weight by 76.02% compared to the RKNs infested plants control, promoting robust tomato growth. Metagenomic analysis reveals that co-inoculation enhanced bacterial diversity, with 378 unique bacterial species and a high Shannon index, while fungal diversity decreased with Trichoderma dominance (83.31% abundance). Actinomycetota (46.42%) and Ascomycota (97.92%) were enriched in the co-inoculated rhizosphere, showing negative correlations with RKNs severity. Functional analysis indicates enriched metabolic pathways, including streptomycin and unsaturated fatty acid biosynthesis, enhancing microbial antagonism. Single inoculations altered pathways like steroid degradation (B418) and terpenoid biosynthesis (T11W), but co-inoculation uniquely optimized the rhizosphere microenvironment. These findings highlight co-inoculation with B418 + T11W effectively suppressing RKNs and fostering plant health by reshaping microbial communities and functions, offering a promising approach for sustainable agriculture. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

16 pages, 3661 KiB  
Article
Effect of Rare, Locally Isolated Entomopathogenic Fungi on the Survival of Bactrocera oleae Pupae in Laboratory Soil Conditions
by Spiridon Mantzoukas, Alexandros Margaritis, Chrysanthi Zarmakoupi, Vasileios Papantzikos, Thomais Sourouni, Vasiliki Georgopoulou, Panagiotis A. Eliopoulos, Ioannis Lagogiannis and George Patakioutas
Microorganisms 2025, 13(4), 811; https://doi.org/10.3390/microorganisms13040811 - 2 Apr 2025
Viewed by 450
Abstract
Greece’s olive oil production is significantly affected by the olive fruit fly Bactrocera oleae (Diptera: Tephritidae), and its presence is perceived when it is too late to act for damage recovery. In this work, some unexplored entomopathogenic fungi (EPFs) were studied for their [...] Read more.
Greece’s olive oil production is significantly affected by the olive fruit fly Bactrocera oleae (Diptera: Tephritidae), and its presence is perceived when it is too late to act for damage recovery. In this work, some unexplored entomopathogenic fungi (EPFs) were studied for their efficacy on olive fruit fly pupae in soil samples. Olive grove soil samples were collected to evaluate the effect of EPFs in their natural environment. The parameters that were analyzed to evaluate the performance of EPFs on B. oleae included the adult survival time, pupa hatch time, and the presence of mycelium on B. oleae pupae and dead adults. The efficacy of some EPFs was highlighted by the mycelium present on dead B. oleae adults after treating pupae with fungal isolates on the soil substrate. The results showed that for the soil substrate, external fungal growth was observed in dead adults with A. contaminans, A. keveii, A. flavus P. lilacinum, and T. annesophieae (100%). Remarkably, the lowest male proportion for soil and non-soil substrates was for A. flavus (0.41–0.42) for the first time, for A. keveii (0.36), and for P. citreosulfuratum (0.41) on the soil-only substrate in contrast to the control treatment (0.5 for both substrates). Given the high infestation caused by the olive fruit flies in Greece, the results of the study emphasize to use of incorporating certain EPF-based biopesticides into integrated pest management (IPM) programs. Full article
(This article belongs to the Special Issue Microorganisms in Agriculture, 2nd Edition)
Show Figures

Figure 1

14 pages, 1583 KiB  
Article
A Novel Approach for Fungal Control with Ethyl Formate in Barley and Its Impact on Germination
by Eman Barkat, Xin Du, Jun-Ran Kim, Zhengyan Wang, Byung-Ho Lee, Abrar Uaraboa, Esra Uaraboa and Bong-Su Kim
Agriculture 2025, 15(7), 748; https://doi.org/10.3390/agriculture15070748 - 31 Mar 2025
Viewed by 582
Abstract
Fungi can degrade grain quality, produce harmful mycotoxins, and hinder germination in the post-harvest stage, resulting in significant economic losses. Ethyl formate (EF) is an efficient and eco-friendly fumigant for controlling pest insects in grains, horticulture, and quarantine treatments. However, there is a [...] Read more.
Fungi can degrade grain quality, produce harmful mycotoxins, and hinder germination in the post-harvest stage, resulting in significant economic losses. Ethyl formate (EF) is an efficient and eco-friendly fumigant for controlling pest insects in grains, horticulture, and quarantine treatments. However, there is a lack of research on the antifungal activity of EF and its degradation products on barley seeds. In this study, fifteen fungal species, predominantly Alternaria infectoria, were isolated and identified from seven Australian barley samples. Efficacy results indicated that EF significantly inhibited fungal growth at a commercial concentration of 2.4 mmol/L, except for Penicillium sp. 2, Fusarium chlamydosporum, and Rhizopus arrhizus. To control these EF-tolerant fungal species, the EF concentration was increased to 5 mmol/L, which achieved a 100% inhibition rate. The degradation product of EF, formic acid, effectively inhibited all EF-tolerant fungi, requiring only 0.08 mmol/L in the in vitro study. There were no significant differences in vigor and germination rates in barley treated with EF at concentrations of 2.5, 3.7, and 5 mmol/L. Additionally, EF treatments led to a significant increase in the barley root length from an average of 9.1 cm in the control group to 13.2, 13. 6, and 12.3 cm at 2.5, 3.7, and 5 mmol/L. The findings suggest that EF could be a suitable alternative fumigant to safeguard grain from fungal infestation, particularly in the context of advancing agricultural practices and improving seed germination quality. The degradation compound, formic acid, may contribute significantly to the overall antifungal function of ethyl formate fumigation, particularly in high-humidity environments. Full article
(This article belongs to the Special Issue Biosecurity Innovations for Pest Management in Agricultural Products)
Show Figures

Figure 1

22 pages, 4587 KiB  
Article
The Effects of Fungal Pathogen Infestation on Soil Microbial Communities for Morchella sextelata Cultivation on the Qinghai–Xizang Plateau
by Ming-Chen Guo, Bo-Chun Wu, Cai-Yun Luo, Wei Sa, Le Wang, Zhong-Hu Li and Qian-Han Shang
J. Fungi 2025, 11(4), 264; https://doi.org/10.3390/jof11040264 - 28 Mar 2025
Viewed by 444
Abstract
Fungi infestation as a disease has serious impacts on the cultivation of Morchella species. To investigate the effects of fungi infestation on the microbial diversity and community structure of soil when cultivating Morchella sextelata, we sampled soil samples of Morchella cultivars in [...] Read more.
Fungi infestation as a disease has serious impacts on the cultivation of Morchella species. To investigate the effects of fungi infestation on the microbial diversity and community structure of soil when cultivating Morchella sextelata, we sampled soil samples of Morchella cultivars in the Qinghai–Xizang Platea and used metagenome sequencing technology to identify the disease fungi and analyze the differences in microbial diversity and structure between disease-infested and healthy soils. The disease fungi identified were Tricharina gilva and Peziza lohjaoensis, and the microbial diversity of T. gilva-infected soil was higher than that of healthy soil, while the diversity of P. lohjaoensis-infected soil was lower. Interestingly, whether infected with T. gilva or P. lohjaoensis, the soil microbial community was changed, and the dominant phyla and genera were different in different soil samples. When infected with P. lohjaoensis, the dominant phyla with relatively high abundances included Proteobacteria, Bacteroidetes, and Ascomycota, with average relative abundances of 44%, 18%, and 15%, respectively, and the dominant genera with high relative abundances encompassed Pseudomonadaceae, Terfezia, and Pedobacter, with average relative abundances of 8%, 9%, and 5%, respectively. Following infection with T. gilva, the dominant phyla with higher relative abundances were Proteobacteria, Acidobacteria, and Bacteroidetes, with average relative abundances of 46%, 15%, and 12%, respectively, and the dominant genera with high relative abundances included Hydrogenophaga, Sphingomonas, and Polaromonas, with average relative abundances of 9%, 3%, and 2%, respectively. Additionally, we found that lipid-metabolism-related genes were less abundant in the soil infected with P. lohjaoensis than in the other soil samples, and glycoside hydrolase diversity was lower in the soil infected with T. gilva than in other healthy soils. The results showed that the effects of different disease fungi on soil microbial communities and functional genes were different, which provided a theoretical basis for the sustainable cultivation of Morchella. Full article
Show Figures

Figure 1

24 pages, 427 KiB  
Review
Ecology of Ahasverus advena in Stored Products and Other Habitats
by David W. Hagstrum and Bhadriraju Subramanyam
Insects 2025, 16(3), 313; https://doi.org/10.3390/insects16030313 - 18 Mar 2025
Viewed by 795
Abstract
The foreign grain beetle, Ahasverus advena (Waltl) (Coleoptera: Silvanidae), has been reported from 110 countries on more than 162 commodities, more than 35 types of facilities, and 14 other habitats such as compost heaps and haystacks or manure. Compost heaps, haystacks, and manure [...] Read more.
The foreign grain beetle, Ahasverus advena (Waltl) (Coleoptera: Silvanidae), has been reported from 110 countries on more than 162 commodities, more than 35 types of facilities, and 14 other habitats such as compost heaps and haystacks or manure. Compost heaps, haystacks, and manure heated by fermentation may allow overwintering in cold climates, making them important sources of infestation. From these sources the A. advena can fly and infest grain storage and processing facilities. A. advena has been found in empty grain storage bins, is often found in wheat immediately after harvest, and is most abundant early in wheat storage. Larvae and adults of A. advena are well adapted to feeding on several species of fungi and have higher chitinase levels and greater tolerance for fungal aflatoxins than other species. A. advena lay more eggs on the fungal species on which their offspring can develop most successfully. They are attracted to fungal odors and high moisture commodities and have the capability to disseminate grain fungi that cause hot spots within the grain mass. The presence of fungus beetles is indicative of poor storage conditions. A. advena is capable of feeding on some commodities and is a predator that may have a potential role in biological control. They are strong fliers but are distributed extensively with the movement of commodities in the marketing system. In countries with a zero tolerance for insects, their presence is sufficient for rejection of a load and associated economic losses. In other countries, contamination by A. advena is a problem, and in India, it is listed as a quarantine pest. Extension agents have had many requests for the identification of this species, and two other species of the same genus have been found in stored products. Some information is available for the effectiveness of nine pest management methods for A. advena. Full article
(This article belongs to the Section Insect Pest and Vector Management)
17 pages, 2447 KiB  
Article
Entomopathogenic Fungi Effectively Control Phorodon cannabis Aphid Population in Cannabis sativa Plants
by Daniel Lopez Restrepo and Igor Kovalchuk
Plants 2025, 14(6), 931; https://doi.org/10.3390/plants14060931 - 16 Mar 2025
Cited by 1 | Viewed by 741
Abstract
The rapid expansion of the cannabis industry in Canada post-legalization has heightened the prevalence of pests, particularly the cannabis aphid Phorodon cannabis (P. cannabis), which poses significant threats to crop health. This study investigates the immediate effects of P. cannabis on [...] Read more.
The rapid expansion of the cannabis industry in Canada post-legalization has heightened the prevalence of pests, particularly the cannabis aphid Phorodon cannabis (P. cannabis), which poses significant threats to crop health. This study investigates the immediate effects of P. cannabis on Cannabis sativa (C. sativa) plants and explores biological control strategies utilizing entomopathogenic fungi. Fungal isolates of Beauveria bassiana and Metarhizium anisopliae were isolated from infected aphids, cultured, and characterized. Infection tests on aphids revealed that both fungi achieved 100% aphid mortality at high conidial concentrations (1 × 107 conidia/mL) by the 10th DAT, with Beauveria bassiana demonstrating better efficacy. In greenhouse trials on three cannabis varieties, B. bassiana effectively controlled aphid populations, keeping levels low and stable in infested plants treated with B. bassiana at the concentration of 1 × 107 conidia mL−1 (I-B) and infested plants treated with insecticide (I-I). Both I-B and I-I treatments maintained aphid populations near zero for nine weeks. In contrast, control plants showed significant aphid growth, with the Perseid variety being the most susceptible, followed by Congo Durban, while GCC exhibited the lowest susceptibility. Cannabinoid and terpene analyses revealed that treatment with insecticide substantially decreased the amount of produced cannabinoids and terpenes. In contrast, Beauveria bassiana-treated plants exhibited higher concentrations of key metabolites, including delta-9-tetrahydrocannabinolic acid and cannabidiolic acid, and total terpenes, compared to chemically treated plants, and in two out of three cultivars, these concentrations were higher than in control, untreated plants. The findings highlight Beauveria bassiana as an eco-friendly alternative for pest management that not only controls aphids effectively but also supports the biochemical quality of cannabis plants. Full article
Show Figures

Figure 1

40 pages, 2108 KiB  
Article
Multi-Mycotoxin Contamination of Aquaculture Feed: A Global Survey
by Christiane Gruber-Dorninger, Anneliese Müller and Roy Rosen
Toxins 2025, 17(3), 116; https://doi.org/10.3390/toxins17030116 - 1 Mar 2025
Cited by 3 | Viewed by 1548
Abstract
Plant-based materials are increasingly being used as ingredients of aquaculture feed. These materials are prone to mycotoxin contamination, as mycotoxigenic fungi infest crop plants in the field and agricultural products during storage. As mycotoxins can cause toxic effects in aquatic animals, their occurrence [...] Read more.
Plant-based materials are increasingly being used as ingredients of aquaculture feed. These materials are prone to mycotoxin contamination, as mycotoxigenic fungi infest crop plants in the field and agricultural products during storage. As mycotoxins can cause toxic effects in aquatic animals, their occurrence in feedstuffs should be monitored. To this end, we performed an extensive global survey of mycotoxin contamination in aquaculture feed and plant-based feed raw materials. We collected samples of compound feed for fish (n = 226) and shrimps (n = 61), maize (n = 3448), maize DDGS (n = 149), wheat (n = 1578), soybean (n = 428), and rice (n = 65). We analyzed concentrations of 51 mycotoxins, emerging mycotoxins, masked mycotoxins, and mycotoxin metabolites. Mycotoxins were almost ubiquitously present in compound feed, as >90% of samples were contaminated with at least one mycotoxin. Feed raw materials exhibited distinct mycotoxin occurrence patterns consistent with known susceptibility to fungal pathogens and with their production process. Unsafe concentrations of aflatoxin B1 exceeding the EU maximum level were detected in 7.2% of fish feed samples. While most feedstuffs complied with EU guidance values for deoxynivalenol, zearalenone, and fumonisins, a comparison of detected concentrations with dietary concentrations reported to cause adverse effects in fish and shrimps in published studies indicated that significant fractions of samples contained potentially harmful levels of these mycotoxins. In addition to regulated mycotoxins, several emerging mycotoxins (e.g., enniatins, beauvericin, alternariol, moniliformin) were prevalent. Feed was frequently co-contaminated with multiple mycotoxins indicating a risk of combined effects. In conclusion, mycotoxin contamination was common in aquaculture feed and fractions of samples were contaminated with mycotoxin levels known to exert adverse effects in aquaculture species. Results of this survey highlight the necessity for targeted studies on the effects of frequently detected mycotoxin mixtures and emerging mycotoxins in fish and shrimp. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

16 pages, 3319 KiB  
Article
Effectiveness of Cinnamon Oil Embedded Chitosan–Gelatin Film in Inhibiting Rhizopus oryzae, R. microsporus, and Syncephalastrum racemosum and Controlling Rice Weevil Infestation on Paddy Rice
by Lien Thi Kim Phan, Vi Thi Mi Huynh, Nhat Minh Bui and Anh Thi Hong Le
Foods 2025, 14(5), 807; https://doi.org/10.3390/foods14050807 - 26 Feb 2025
Viewed by 900
Abstract
Rice (Oryza sativa L.) is a staple food globally, providing a critical food for the majority of the Asian population. However, it exposes risks during post-harvest storage, threatening substantial losses in rice quality and quantity. Hence, this study developed a cinnamon oil–chitosan:gelatin [...] Read more.
Rice (Oryza sativa L.) is a staple food globally, providing a critical food for the majority of the Asian population. However, it exposes risks during post-harvest storage, threatening substantial losses in rice quality and quantity. Hence, this study developed a cinnamon oil–chitosan:gelatin film (CO–C:G film) with the parameters as the chitosan:gelatin ratio (C:G = 1:1 and 1:2), cinnamon oil (CO) contents (0.75, 1.0, 1.25, 2.5, and 5.0%) and thickness film levels (0.165, 0.183, and 0.287 mm) to inhibit three fungal species, Rhizopus oryzae 01, R. microsporus 01, and Syncephalastrum racemosum 01, and control rice weevil infestation on paddy rice at a variety of water activities, such as 0.71 aw and 0.95 aw, at room temperature. The results revealed that at 0.95 aw, the fungal growth rate and rice weevil’s mortality were impacted significantly by all parameters of the CO–C:G film (p < 0.05). Especially, the CO–C:G film with 1.25% CO and C:G = 1:1 at a thickness film of 0.287 mm inhibited all observed fungi and rice weevils better than the CO–C:G film’s other parameters. The inhibition of the CO–C:G film for these fungi ranged from 66% to 72.6%. Likewise, 80–100% of rice weevils were mortal when paddy rice was treated with the CO–C:G film on the 12th or 15th day of treatment depending on the water activity of paddy rice grains. The findings of this study provide insights for researchers, agricultural experts, and the food industry, highlighting the need to establish effective and sustainable strategies for rice preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

20 pages, 7856 KiB  
Article
Inhibition Mechanism of Cinnamomum burmannii Leaf Essential Oil Against Aspergillus flavus and Aflatoxins
by Huanyan Liang, Feifei Lv, Mengting Xian, Chenghua Luo, Lei Zhang, Meihua Yang, Qian Li and Xiangsheng Zhao
Foods 2025, 14(4), 682; https://doi.org/10.3390/foods14040682 - 17 Feb 2025
Cited by 2 | Viewed by 1109
Abstract
This investigation evaluates the comparative efficacy of Cinnamomum burmannii leaf essential oil (YXYO) and its main active ingredients as a novel preservative to protect stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination caused by Aspergillus flavus. Morphological [...] Read more.
This investigation evaluates the comparative efficacy of Cinnamomum burmannii leaf essential oil (YXYO) and its main active ingredients as a novel preservative to protect stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination caused by Aspergillus flavus. Morphological observations utilizing SEM and TEM revealed significant alterations in treated samples, alongside a decrease in ergosterol content and a dose-dependent disruption of the antioxidant system and energy system. Transcriptomic analysis suggested that differentially expressed genes were predominantly associated with spore growth, the cell wall, the cell membrane, oxidative stress, energy metabolism, and aflatoxin biosynthesis. Solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS) identified ten active ingredients in YXYO, including borneol, α-terpineol, terpinen-4-ol, etc. Moreover, an effective inhibition of A. flavus infection in peanuts was observed with the application of 30 μL/disc of YXYO and a blend of its active compounds. Full article
Show Figures

Figure 1

Back to TopTop