Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = functionalized 2,2′:6′,2″-terpyridine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 5248 KB  
Review
Effect of Remote Amine Groups on Ground- and Excited-State Properties of Terpyridyl d-Metal Complexes
by Anna Kryczka, Joanna Palion-Gazda, Katarzyna Choroba and Barbara Machura
Molecules 2025, 30(11), 2386; https://doi.org/10.3390/molecules30112386 - 29 May 2025
Viewed by 1457
Abstract
Over the last nine decades, 2,2′:6′,2″-terpyridine (terpy) derivatives and their transition d-metal complexes have been extensively explored due to their unique and widely tuned optical, electrochemical, and biological properties. Terpyridyl transition metal complexes occupy a prominent position among functional molecular materials for applications [...] Read more.
Over the last nine decades, 2,2′:6′,2″-terpyridine (terpy) derivatives and their transition d-metal complexes have been extensively explored due to their unique and widely tuned optical, electrochemical, and biological properties. Terpyridyl transition metal complexes occupy a prominent position among functional molecular materials for applications in optoelectronics, life science, catalysis, and photocatalysis, as well as they have played a key role in determining structure–property relationships. This review summarizes the developments of amine-functionalized R-C6H4-terpy systems and their d-metal complexes, largely concentrating on their photophysical and electrochemical properties. Functionalization of the terpy core with the electron-rich group, attached to the central pyridine ring of the terpy backbone via the phenylene linker, gives rise to organic push–pull systems showing the photoinduced charge flow process from the peripheral donor substituent to the terpy acceptor. The introduction of amine-functionalized R-C6H4-terpy systems into the coordination sphere of a d-metal ion offers an additional way for controlling the photophysics of these systems, in agreement with the formation of the excited state of intraligand charge transfer (ILCT) nature. Within this review, a detailed discussion has been presented for R-C6H4-terpys modified with acyclic and cyclic amine groups and their Cr(III), Mn(I), Re(I), Fe(II), Ru(II), Os(II), Pt(II), and Zn(II) coordination compounds. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

10 pages, 3132 KB  
Communication
Interfacial Synthesis of an Electro-Functional 2D Bis(terpyridine)copper(II) Polymer Nanosheet
by Kenji Takada, Joe Komeda, Hiroaki Maeda, Naoya Fukui, Hiroyasu Masunaga, Sono Sasaki and Hiroshi Nishihara
Molecules 2025, 30(9), 2044; https://doi.org/10.3390/molecules30092044 - 4 May 2025
Cited by 1 | Viewed by 1462
Abstract
Coordination polymers are attractive materials for various fields of practical application. The high degree of freedom of choice of metal ions and organic ligands plays a critical role in functional diversification. In the present study, we report the liquid–liquid interfacial synthesis of a [...] Read more.
Coordination polymers are attractive materials for various fields of practical application. The high degree of freedom of choice of metal ions and organic ligands plays a critical role in functional diversification. In the present study, we report the liquid–liquid interfacial synthesis of a 2D bis(terpyridine)copper(II) polymer thin film, Cu-tpy. The synthesized Cu-tpy was characterized by various microscopic observations such as TEM, SEM, and AFM, and spectroscopic measurements such as XPS, Raman spectroscopy, SEM/EDS, and UV–Vis spectroscopy. Synchrotron-radiated X-ray scattering confirmed that Cu-tpy was oriented crystalline films. Moreover, Cu-tpy showed electrochemical micro-supercapacitor behavior in the solid-state owing to its ionic nature. This study expands the potential of bis(terpyridine)metal(II) polymers as electro-functional materials. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

18 pages, 2189 KB  
Review
Noble Metal Complexes in Cancer Therapy: Unlocking Redox Potential for Next-Gen Treatments
by Alina Stefanache, Alina Monica Miftode, Marcu Constantin, Roxana Elena Bogdan Goroftei, Iulia Olaru, Cristian Gutu, Alexandra Vornicu and Ionut Iulian Lungu
Inorganics 2025, 13(2), 64; https://doi.org/10.3390/inorganics13020064 - 19 Feb 2025
Cited by 2 | Viewed by 2712
Abstract
(1) Context: Cancer is still a major problem worldwide, and traditional therapies like radiation and chemotherapy often fail to alleviate symptoms because of side effects, systemic toxicity, and mechanisms of resistance. Beneficial anticancer effects that spare healthy tissues are made possible by [...] Read more.
(1) Context: Cancer is still a major problem worldwide, and traditional therapies like radiation and chemotherapy often fail to alleviate symptoms because of side effects, systemic toxicity, and mechanisms of resistance. Beneficial anticancer effects that spare healthy tissues are made possible by the distinctive redox characteristics of noble metal complexes, especially those containing palladium, gold, silver, and platinum. (2) Methods: The redox processes, molecular targets, and therapeutic uses of noble metal complexes in cancer have been the subject of much study over the last 20 years; novel approaches to ligand design, functionalization of nanoparticles, and tumor-specific drug delivery systems are highlighted. (3) Results: Recent developments include Pt(IV) prodrugs and terpyridine-modified Pt complexes for enhanced selectivity and decreased toxicity; platinum complexes, like cisplatin, trigger reactive oxygen species (ROS) production and DNA damage. Functionalized gold nanoparticles (AuNPs) improve targeted delivery and theranostic capabilities, while gold complexes, particularly Au(I) and Au(III), inhibit redox-sensitive processes such as thioredoxin reductase (TrxR). (4) Conclusions: Ag(I)-based compounds and nanoparticles (AgNPs) induce DNA damage and mitochondrial dysfunction by taking advantage of oxidative stress. As redox-based anticancer medicines, noble metal complexes have the ability to transform by taking advantage of certain biochemical features to treat cancer more effectively and selectively. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Graphical abstract

14 pages, 3489 KB  
Article
Luminescent Iridium–Terpyridine Complexes with Various Bis-Cyclometalated Ligands
by Ko Ikeda, Natsumi Yano, Makoto Handa and Yusuke Kataoka
Molecules 2025, 30(1), 193; https://doi.org/10.3390/molecules30010193 - 6 Jan 2025
Cited by 1 | Viewed by 2047
Abstract
A series of luminescent bis-cyclometalated iridium complexes with 2,2′:6′,2″-terpyridine (tpy), [Ir(C^N)2(tpy)]PF6 (C^N = 2-phenylpyridinate (ppy) for 1; benzo[h]quinolinate (bzq) for 2; 1-phenylisoquinolinate (piq) for 3; and 2-phenylbenzothiazolate (pbt) for 4), have been synthesized [...] Read more.
A series of luminescent bis-cyclometalated iridium complexes with 2,2′:6′,2″-terpyridine (tpy), [Ir(C^N)2(tpy)]PF6 (C^N = 2-phenylpyridinate (ppy) for 1; benzo[h]quinolinate (bzq) for 2; 1-phenylisoquinolinate (piq) for 3; and 2-phenylbenzothiazolate (pbt) for 4), have been synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that the tpy ligands of 14 are coordinated to the iridium center in a bidentate fashion, and the uncoordinated pendant pyridine rings in the tpy ligands of 14 form intramolecular π-π stacking interactions with a phenyl moiety of C^N ligands. In addition, the pendant pyridine ring in the tpy ligand of 1 forms an intramolecular hydrogen bonding interaction, unlike in 24. Of interest, the photophysical properties of 14 are strongly influenced by the C^N ligands; 1 shows a luminescence band at 572 nm, with a short lifetime (τ) value of 80 nsec and a lower absolute luminescence quantum yield (Φ) of 3.72%, whereas 3 exhibits an intense luminescence band at 588 nm with a long τ value of 1965 nsec and a moderate Φ value of 9.57%. The density functional theory calculations revealed that the luminescence originates from the triplet metal–ligand to ligand charge transfer (3MLL′CT) excited state. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

23 pages, 8908 KB  
Article
Synthesis, Electrochemistry and Density Functional Theory of Osmium(II) Containing Different 2,2′:6′,2″-Terpyridines
by Nandisiwe G. S. Mateyise, Marrigje M. Conradie and Jeanet Conradie
Molecules 2024, 29(21), 5078; https://doi.org/10.3390/molecules29215078 - 27 Oct 2024
Cited by 6 | Viewed by 2871
Abstract
In coordination chemistry, 2,2′:6′,2″-terpyridine is a versatile and extensively studied tridentate ligand. Terpyridine forms stable complexes with a variety of metal ions through coordination sites provided by the three nitrogen atoms in its pyridine rings. This paper presents an electrochemical study on various [...] Read more.
In coordination chemistry, 2,2′:6′,2″-terpyridine is a versatile and extensively studied tridentate ligand. Terpyridine forms stable complexes with a variety of metal ions through coordination sites provided by the three nitrogen atoms in its pyridine rings. This paper presents an electrochemical study on various bis(terpyridine)osmium(II) complexes, addressing the absence of a systematic investigation into their redox behavior. Additionally, a computational chemistry analysis was conducted on these complexes, as well as on eight previously studied osmium(II)-bipyridine and -phenanthroline complexes, to expand both the experimental and theoretical understanding. The experimental redox potentials, Hammett constants, and DFT-calculated energies show linear correlations due to the electron-donating or electron-withdrawing nature of the substituents, as described by the Hammett constants. These substituent effects cause shifts to lower or higher redox potentials, respectively. Full article
Show Figures

Graphical abstract

24 pages, 10051 KB  
Review
Functional Materials from Biomass-Derived Terpyridines: State of the Art and Few Possible Perspectives
by Jérôme Husson
Int. J. Mol. Sci. 2024, 25(16), 9126; https://doi.org/10.3390/ijms25169126 - 22 Aug 2024
Cited by 1 | Viewed by 1901
Abstract
This review focuses on functional materials that contain terpyridine (terpy) units, which can be synthesized from biomass-derived platform chemicals. The latter are obtained by the chemical conversion of raw biopolymers such as cellulose (e.g., 2-furaldehyde) or lignin (e.g., syringaldehyde). These biomass-derived platform chemicals [...] Read more.
This review focuses on functional materials that contain terpyridine (terpy) units, which can be synthesized from biomass-derived platform chemicals. The latter are obtained by the chemical conversion of raw biopolymers such as cellulose (e.g., 2-furaldehyde) or lignin (e.g., syringaldehyde). These biomass-derived platform chemicals serve as starting reagents for the preparation of many different terpyridine derivatives using various synthetic strategies (e.g., Kröhnke reaction, cross-coupling reactions). Chemical transformations of these terpyridines provide a broad range of different ligands with various functionalities to be used for the modification or construction of various materials. Either inorganic materials (such as oxides) or organic ones (such as polymers) can be combined with terpyridines to provide functional materials. Different strategies are presented for grafting terpy to materials, such as covalent grafting through a carboxylic acid or silanization. Furthermore, terpy can be used directly for the elaboration of functional materials via complexation with metals. The so-obtained functional materials find various applications, such as photovoltaic devices, heterogeneous catalysts, metal–organic frameworks (MOF), and metallopolymers. Finally, some possible developments are presented. Full article
(This article belongs to the Special Issue Biomass-Derived Materials: Synthesis and Applications)
Show Figures

Graphical abstract

12 pages, 2507 KB  
Article
Investigating the Anticancer Properties of Novel Functionalized Platinum(II)–Terpyridine Complexes
by Roberta Panebianco, Maurizio Viale, Valentina Giglio and Graziella Vecchio
Inorganics 2024, 12(6), 167; https://doi.org/10.3390/inorganics12060167 - 15 Jun 2024
Cited by 3 | Viewed by 3225
Abstract
Novel platinum(II) complexes of 4′-substituted terpyridine ligands were synthesized and characterized. Each complex had a different biomolecule (amine, glucose, biotin and hyaluronic acid) as a targeting motif, potentially improving therapeutic outcomes. We demonstrated that complexes can self-assemble in water into about 150 nm [...] Read more.
Novel platinum(II) complexes of 4′-substituted terpyridine ligands were synthesized and characterized. Each complex had a different biomolecule (amine, glucose, biotin and hyaluronic acid) as a targeting motif, potentially improving therapeutic outcomes. We demonstrated that complexes can self-assemble in water into about 150 nm nanoparticles. Moreover, the complexes were assayed in vitro toward a panel of human cancer cell lines (ovarian adenocarcinoma A2780, lung cancer A549, breast adenocarcinoma MDA-MB-231, neuroblastoma SHSY5Y) to explore the impact of the pendant moiety on the terpyridine toxicity. The platinum complex of terpyridine amine derivative, [Pt(TpyNH2)Cl]Cl, showed the best antiproliferative effect, which was higher than cisplatin and [Pt(Tpy)Cl]Cl. Selective in vitro antiproliferative activity was achieved in A549 cancer cells with the Pt–HAtpy complex. These findings underline the potential of these novel platinum(II) complexes in cancer therapy and highlight the importance of tailored molecular design for achieving enhanced therapeutic effects. Full article
(This article belongs to the Special Issue Evaluation of the Potential Biological Activity of Metallo-Drugs)
Show Figures

Graphical abstract

13 pages, 5694 KB  
Article
Synthesis, X-ray Studies and Photophysical Properties of Iridium(III) Complexes Incorporating Functionalized 2,2′:6′,2″ Terpyridines and 2,6-Bis(thiazol-2-yl)pyridines
by Bartosz Zowiślok, Anna Świtlicka, Anna Maroń and Mariola Siwy
Molecules 2024, 29(11), 2496; https://doi.org/10.3390/molecules29112496 - 24 May 2024
Viewed by 2422
Abstract
A series of iridium(III) triimine complexes incorporating 2,2′:6′,2″-terpyridine (terpy) and 2,6-bis(thiazol-2-yl)pyridine (dtpy) derivatives were successfully designed and synthesized to investigate the impact of the peripheral rings (pyridine, thiazole) and substituents (thiophene, bithiophene, EDOT) attached to the triimine skeleton on [...] Read more.
A series of iridium(III) triimine complexes incorporating 2,2′:6′,2″-terpyridine (terpy) and 2,6-bis(thiazol-2-yl)pyridine (dtpy) derivatives were successfully designed and synthesized to investigate the impact of the peripheral rings (pyridine, thiazole) and substituents (thiophene, bithiophene, EDOT) attached to the triimine skeleton on their photophysical properties. The Ir(III) complexes were fully characterized using IR, 1H, elemental analysis and single crystal X-ray analysis. Their thermal properties were evaluated using TGA measurements. Photoluminescence spectra of [IrCl3L1–6] were investigated in solution at 298 and 77 K. The experimental studies were accompanied by DFT/TDDFT calculations. The photophysical properties of the synthesized triimine ligands and Ir(III) complexes were studied in detail by electronic absorption and emission. In solution, they exhibited photoluminescence quantum yields ranging from 1.27% to 5.30% depending on the chemical structure. The experimental research included DFT/TDDFT calculations. The photophysical properties of the synthesized triimine ligands and Ir(III) complexes were conducted using electronic absorption and emission techniques. In solution, they displayed photoluminescence quantum yields ranging from 1.27% to 5.30% depending on the chemical structure. Full article
(This article belongs to the Special Issue Electrochemistry of Organic and Organometallic Compounds)
Show Figures

Graphical abstract

12 pages, 2864 KB  
Article
Voltammetric Sensing of Chloride Based on a Redox-Active Complex: A Terpyridine-Co(II)-Dipyrromethene Functionalized Anion Receptor Deposited on a Gold Electrode
by Kamila Malecka-Baturo, Mathias Daniels, Wim Dehaen, Hanna Radecka, Jerzy Radecki and Iwona Grabowska
Molecules 2024, 29(9), 2102; https://doi.org/10.3390/molecules29092102 - 2 May 2024
Cited by 1 | Viewed by 1952
Abstract
A redox-active complex containing Co(II) connected to a terpyridine (TPY) and dipyrromethene functionalized anion receptor (DPM-AR) was created on a gold electrode surface. This host-guest supramolecular system based on a redox-active layer was used for voltammetric detection of chloride anions in aqueous solutions. [...] Read more.
A redox-active complex containing Co(II) connected to a terpyridine (TPY) and dipyrromethene functionalized anion receptor (DPM-AR) was created on a gold electrode surface. This host-guest supramolecular system based on a redox-active layer was used for voltammetric detection of chloride anions in aqueous solutions. The sensing mechanism was based on the changes in the redox activity of the complex observed upon binding of the anion to the receptor. The electron transfer coefficient (α) and electron transfer rate constant (k0) for the modified gold electrodes were calculated based on Cyclic Voltammetry (CV) experiments results. On the other hand, the sensing abilities were examined using Square Wave Voltammetry (SWV). More importantly, the anion receptor was selective to chloride, resulting in the highest change in Co(II) current intensity and allowing to distinguish chloride, sulfate and bromide. The proposed system displayed the highest sensitivity to Cl with a limit of detection of 0.50 fM. The order of selectivity was: Cl > SO42− > Br, which was confirmed by the binding constants (K) and reaction coupling efficiencies (RCE). Full article
(This article belongs to the Special Issue Advanced Electrochemical Methods in Molecular Detection)
Show Figures

Figure 1

13 pages, 3957 KB  
Article
Role of the Environment Polarity on the Photophysical Properties of Mesogenic Hetero-Polymetallic Complexes
by Adelina A. Andelescu, Angela Candreva, Evelyn Popa, Alexandru Visan, Carmen Cretu, Massimo La Deda and Elisabeta I. Szerb
Molecules 2024, 29(4), 750; https://doi.org/10.3390/molecules29040750 - 6 Feb 2024
Viewed by 1600
Abstract
New hetero-polynuclear coordination complexes based on a pentacoordinated Zn(II) metal center with tridentate terpyridine-based ligands and monoanionic gallates functionalized with long alkyl chains containing ferrocene units were designed, synthesized and characterized using spectroscopic and analytical methods. The complexes are mesomorphic, exhibiting columnar hexagonal [...] Read more.
New hetero-polynuclear coordination complexes based on a pentacoordinated Zn(II) metal center with tridentate terpyridine-based ligands and monoanionic gallates functionalized with long alkyl chains containing ferrocene units were designed, synthesized and characterized using spectroscopic and analytical methods. The complexes are mesomorphic, exhibiting columnar hexagonal mesophases. The photophysical properties in a solution and in an ordered condensed state were accurately investigated and the influence of the polarity of the solvent was evidenced. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry)
Show Figures

Figure 1

15 pages, 3358 KB  
Article
A Kinetic Investigation of the Supramolecular Chiral Self-Assembling Process of Cationic Organometallic (2,2′:6′,2″-terpyridine)methylplatinum(II) Complexes with Poly(L-glutamic Acid)
by Maria Angela Castriciano, Roberto Zagami, Antonino Mazzaglia, Andrea Romeo and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2024, 25(2), 1176; https://doi.org/10.3390/ijms25021176 - 18 Jan 2024
Cited by 1 | Viewed by 1389
Abstract
The cationic platinum(II) organometallic complex [Pt(terpy)Me]+ (terpy = 2,2′:6′,2″-terpyridine) at mild acidic pH interacts with poly(L-glutamic acid) (L-PGA) in its α-helix conformation, affording chiral supramolecular adducts. Their kinetics of formation have been investigated in detail as a function of the concentrations of [...] Read more.
The cationic platinum(II) organometallic complex [Pt(terpy)Me]+ (terpy = 2,2′:6′,2″-terpyridine) at mild acidic pH interacts with poly(L-glutamic acid) (L-PGA) in its α-helix conformation, affording chiral supramolecular adducts. Their kinetics of formation have been investigated in detail as a function of the concentrations of both reagents and changing pH, ionic strength, the length of the polymeric scaffold and temperature. After a very fast early stage, the kinetic traces have been analyzed as three consecutive steps, suggesting a mechanism based on the electrostatic fast formation of a not-organized aggregate that subsequently evolves through different rearrangements to form the eventual supramolecular adduct. A model for this species has been proposed based on (i) the attractive electrostatic interaction of the cationic platinum(II) complexes and the polyelectrolyte and (ii) the π-stacking interactions acting among the [Pt(terpy)Me]+ units. Full article
(This article belongs to the Special Issue Feature Papers in 'Physical Chemistry and Chemical Physics' 2024)
Show Figures

Figure 1

4 pages, 788 KB  
Short Note
4′-(N-(2-Cyanoethyl)pyrrol-2-yl)-2,2′:6′,2″-terpyridine
by Jérôme Husson
Molbank 2023, 2023(3), M1689; https://doi.org/10.3390/M1689 - 5 Jul 2023
Cited by 1 | Viewed by 1620
Abstract
The preparation and characterization of a new multi-functionalized terpyridine molecule featuring a pyrrole heterocycle and a cyano group is described. This new compound was obtained via a KF/alumina-catalyzed Michael addition of 4′-(pyrrol-2-yl)-2,2′:6′,2″-terpyridine into acrylonitrile. The mild reaction conditions leave the nitrile group unaltered. [...] Read more.
The preparation and characterization of a new multi-functionalized terpyridine molecule featuring a pyrrole heterocycle and a cyano group is described. This new compound was obtained via a KF/alumina-catalyzed Michael addition of 4′-(pyrrol-2-yl)-2,2′:6′,2″-terpyridine into acrylonitrile. The mild reaction conditions leave the nitrile group unaltered. The title compound was fully characterized via NMR spectroscopy (1H and 13C) as well as via high resolution mass spectrometry and infrared spectroscopy. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

17 pages, 2024 KB  
Article
Field-Induced Single-Ion Magnet Behavior in Nickel(II) Complexes with Functionalized 2,2′:6′-2″-Terpyridine Derivatives: Preparation and Magneto-Structural Study
by Francisco Ramón Fortea-Pérez, Julia Vallejo, Teresa F. Mastropietro, Giovanni De Munno, Renato Rabelo, Joan Cano and Miguel Julve
Molecules 2023, 28(11), 4423; https://doi.org/10.3390/molecules28114423 - 29 May 2023
Cited by 6 | Viewed by 8936
Abstract
Two mononuclear nickel(II) complexes of the formula [Ni(terpyCOOH)2](ClO4)2∙4H2O (1) and [Ni(terpyepy)2](ClO4)2 MeOH (2) [terpyCOOH = 4′-carboxyl-2,2′:6′,2″-terpyridine and terpyepy = 4′-[(2-pyridin-4-yl)ethynyl]-2,2′:6′,2″-terpyridine] have been prepared and their structures [...] Read more.
Two mononuclear nickel(II) complexes of the formula [Ni(terpyCOOH)2](ClO4)2∙4H2O (1) and [Ni(terpyepy)2](ClO4)2 MeOH (2) [terpyCOOH = 4′-carboxyl-2,2′:6′,2″-terpyridine and terpyepy = 4′-[(2-pyridin-4-yl)ethynyl]-2,2′:6′,2″-terpyridine] have been prepared and their structures determined by single-crystal X-ray diffraction. Complexes 1 and 2 are mononuclear compounds, where the nickel(II) ions are six-coordinate by the six nitrogen atoms from two tridentate terpy moieties. The mean values of the equatorial Ni-N bond distances [2.11(1) and 2.12(1) Å for Ni(1) at 1 and 2, respectively, are somewhat longer than the axial ones [2.008(6) and 2.003(6) Å (1)/2.000(1) and 1.999(1) Å (2)]. The values of the shortest intermolecular nickel–nickel separation are 9.422(1) (1) and 8.901(1) Å (2). Variable-temperature (1.9–200 K) direct current (dc) magnetic susceptibility measurements on polycrystalline samples of 1 and 2 reveal a Curie law behavior in the high-temperature range, which corresponds to magnetically isolated spin triplets, the downturn of the χMT product at lower temperatures being due to zero-field splitting effects (D). Values of D equal to −6.0 (1) and −4.7 cm−1 (2) were obtained through the joint analysis of the magnetic susceptibility data and the field dependence of the magnetization. These results from magnetometry were supported by theoretical calculations. Alternating current (ac) magnetic susceptibility measurements of 1 and 2 in the temperature range 2.0–5.5 K show the occurrence of incipient out-phase signals under applied dc fields, a phenomenon that is characteristic of field-induced Single-Molecule Magnet (SMM) behavior, which herein concerns the 2 mononuclear nickel(II) complexes. This slow relaxation of the magnetization in 1 and 2 has its origin in the axial compression of the octahedral surrounding at their nickel(II) ions that leads to negative values of D. A combination of an Orbach and a direct mechanism accounts for the field-dependent relation phenomena in 1 and 2. Full article
(This article belongs to the Special Issue Nitrogen Ligands)
Show Figures

Figure 1

16 pages, 4620 KB  
Article
Expanded Ligands Based upon Iron(II) Coordination Compounds of Asymmetrical Bis(terpyridine) Domains
by Dalila Rocco, Alessandro Prescimone, Catherine E. Housecroft and Edwin C. Constable
Molecules 2023, 28(1), 82; https://doi.org/10.3390/molecules28010082 - 22 Dec 2022
Cited by 1 | Viewed by 3368
Abstract
The synthesis and characterization of two tritopic ligands containing a 2,2′:6′,2″-terpyridine (tpy) metal binding domain and either a 3,2′:6′,3″- or a 4,2′:6′,4″-tpy domain are detailed. The synthetic routes to these ligands involved the [Pd(dppf)Cl2]-catalyzed coupling of a boronic ester-functionalized 2,2′:6′,2″-tpy with [...] Read more.
The synthesis and characterization of two tritopic ligands containing a 2,2′:6′,2″-terpyridine (tpy) metal binding domain and either a 3,2′:6′,3″- or a 4,2′:6′,4″-tpy domain are detailed. The synthetic routes to these ligands involved the [Pd(dppf)Cl2]-catalyzed coupling of a boronic ester-functionalized 2,2′:6′,2″-tpy with bromo-derivatives of 3,2′:6′,3″-tpy or 4,2′:6′,4″-tpy. The 2,2′:6′,2″-tpy domains of the tritopic ligands preferentially bind Fe2+ in reactions with iron(II) salts leading to the formation of two homoleptic iron(II) complexes containing two peripheral 3,2′:6′,3″-tpy or 4,2′:6′,4″-tpy metal-binding sites, respectively. These iron(II) complexes are potentially tetratopic ligands and represent expanded versions of tetra(pyridin-4-yl)pyrazine. Full article
Show Figures

Graphical abstract

10 pages, 2476 KB  
Article
Spectroelectrochemical and Theoretical Study of [Si(ttpy)2](PF6)4: A Potential Polychromatic Electrochromic Dye
by Derek M. Peloquin, Askhat N. Bimukhanov, Anuar A. Aldongarov, Jon W. Merkert, Bernadette T. Donovan-Merkert and Thomas A. Schmedake
Molecules 2022, 27(23), 8521; https://doi.org/10.3390/molecules27238521 - 3 Dec 2022
Cited by 1 | Viewed by 1900
Abstract
Complexes consisting of earth-abundant main group metals such as silicon with polypyridine ligands are of interest for a variety of optical and electronic applications including as electrochromic colorants. Previous spectroelectrochemical studies with tris(2,2′-bipyridyl)silicon(IV) hexafluorophosphate, [Si(bpy)3](PF6)4, demonstrated an ability [...] Read more.
Complexes consisting of earth-abundant main group metals such as silicon with polypyridine ligands are of interest for a variety of optical and electronic applications including as electrochromic colorants. Previous spectroelectrochemical studies with tris(2,2′-bipyridyl)silicon(IV) hexafluorophosphate, [Si(bpy)3](PF6)4, demonstrated an ability to control the color saturation of the potential electrochromic dye, with the intensity of the dye’s green color increasing as the charge state sequentially reduces from 4+ to 1+. In this study, the synthesis of bis(4′-(4-tolyl)-2,2′:6′,2″-terpyridine)silicon(IV) hexafluorophosphate, [Si(ttpy)2](PF6)4, is reported along with electrochemical and spectroelectrochemical analyses. Computational modeling (density functional theory) is used to further elucidate the electrochromic properties of previously reported Si(bpy)3n+ species and the new Si(ttpy)2n+ species. While the homoleptic tris(bidentate)silicon(IV) complexes are attractive as electrochromic dyes for tunable color saturation, the bis(tridentate)silicon(IV) complexes are attractive as polychromatic electrochromic dyes. Full article
Show Figures

Graphical abstract

Back to TopTop