Effect of Remote Amine Groups on Ground- and Excited-State Properties of Terpyridyl d-Metal Complexes
Abstract
:1. Introduction
2. 2,2′:6′,2″-Terpyridines Modified with Acyclic and Cyclic Amines
3. Zn(II) Complexes
4. Fe(II), Ru(II), and Os(II) Complexes
5. Cr(III) Complexes
6. Ir(III) Complexes
7. Mn(I) and Re(I) Carbonyl Complexes
8. Square Planar Pt(II) Complexes
9. Summary
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Morgan, G.T.; Burstall, F.H. 3. Dehydrogenation of Pyridine by Anhydrous Ferric Chloride. J. Chem. Soc. Resumed 1932, 20–30. [Google Scholar] [CrossRef]
- Constable, E.C. 2,2′:6′,2″-Terpyridines: From Chemical Obscurity to Common Supramolecular Motifs. Chem. Soc. Rev. 2007, 36, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Constable, E.C. Expanded Ligands—An Assembly Principle for Supramolecular Chemistry. Coord. Chem. Rev. 2008, 252, 842–855. [Google Scholar] [CrossRef]
- Pal, A.K.; Hanan, G.S. Design, Synthesis and Excited-State Properties of Mononuclear Ru(II) Complexes of Tridentate Heterocyclic Ligands. Chem. Soc. Rev. 2014, 43, 6184–6197. [Google Scholar] [CrossRef]
- Gu, J.; Yan, Y.; Helbig, B.J.; Huang, Z.; Lian, T.; Schmehl, R.H. The Influence of Ligand Localized Excited States on the Photophysics of Second Row and Third Row Transition Metal Terpyridyl Complexes: Recent Examples and a Case Study. Coord. Chem. Rev. 2015, 282–283, 100–109. [Google Scholar] [CrossRef]
- Arrigo, A.; Santoro, A.; Puntoriero, F.; Lainé, P.P.; Campagna, S. Photoinduced Electron Transfer in Donor–Bridge–Acceptor Assemblies: The Case of Os(II)-Bis(Terpyridine)-(Bi)Pyridinium Dyads. Coord. Chem. Rev. 2015, 304–305, 109–116. [Google Scholar] [CrossRef]
- Chi, Y.; Chang, T.-K.; Ganesan, P.; Rajakannu, P. Emissive Bis-Tridentate Ir(III) Metal Complexes: Tactics, Photophysics and Applications. Coord. Chem. Rev. 2017, 346, 91–100. [Google Scholar] [CrossRef]
- Attwood, M.; Turner, S.S. Back to Back 2,6-Bis(Pyrazol-1-Yl)Pyridine and 2,2′:6′,2″-Terpyridine Ligands: Untapped Potential for Spin Crossover Research and Beyond. Coord. Chem. Rev. 2017, 353, 247–277. [Google Scholar] [CrossRef]
- Chakraborty, S.; Newkome, G.R. Terpyridine-Based Metallosupramolecular Constructs: Tailored Monomers to Precise 2D-Motifs and 3D-Metallocages. Chem. Soc. Rev. 2018, 47, 3991–4016. [Google Scholar] [CrossRef]
- Wei, C.; He, Y.; Shi, X.; Song, Z. Terpyridine-Metal Complexes: Applications in Catalysis and Supramolecular Chemistry. Coord. Chem. Rev. 2019, 385, 1–19. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Constable, E.C. The Terpyridine Isomer Game: From Chelate to Coordination Network Building Block. Chem. Commun. 2020, 56, 10786–10794. [Google Scholar] [CrossRef] [PubMed]
- Elahi, S.M.; Raizada, M.; Sahu, P.K.; Konar, S. Terpyridine-Based 3D Metal–Organic-Frameworks: A Structure–Property Correlation. Chem.—A Eur. J. 2021, 27, 5858–5870. [Google Scholar] [CrossRef] [PubMed]
- Prusty, S.; Chan, Y.-T. Terpyridine-Based Self-Assembled Heteroleptic Coordination Complexes. Chem. Lett. 2021, 50, 1202–1212. [Google Scholar] [CrossRef]
- Shi, J.; Wang, M. Self-Assembly Methods for Recently Reported Discrete Supramolecular Structures Based on Terpyridine. Chem.—Asian J. 2021, 16, 4037–4048. [Google Scholar] [CrossRef]
- Yu, X.; Guo, C.; Lu, S.; Chen, Z.; Wang, H.; Li, X. Terpyridine-Based 3D Discrete Metallosupramolecular Architectures. Macromol. Rapid Commun. 2022, 43, 2200004. [Google Scholar] [CrossRef]
- Panicker, R.R.; Sivaramakrishna, A. Remarkably Flexible 2,2′:6′,2″-Terpyridines and Their Group 8–10 Transition Metal Complexes–Chemistry and Applications. Coord. Chem. Rev. 2022, 459, 214426. [Google Scholar] [CrossRef]
- Guo, C.; Su, F.; Su, P.; Yu, X.; Li, X. Luminescent Terpyridine-Based Metallo-Supramolecular Systems: From Design to Applications. Sci. China Chem. 2023, 66, 1940–1962. [Google Scholar] [CrossRef]
- Abhijnakrishna, R.; Magesh, K.; Ayushi, A.; Velmathi, S. Advances in the Biological Studies of Metal-Terpyridine Complexes: An Overview From 2012 to 2022. Coord. Chem. Rev. 2023, 496, 215380. [Google Scholar] [CrossRef]
- Winter, A.; Newkome, G.R.; Schubert, U.S. The Chemistry of the S- and p-Block Elements with 2,2′:6′,2″-Terpyridine Ligands. Inorg. Chem. Front. 2024, 11, 342–399. [Google Scholar] [CrossRef]
- Momeni, B.Z.; Davarzani, N.; Janczak, J.; Ma, N.; Abd-El-Aziz, A.S. Progress in Design and Applications of Supramolecular Assembly of 2,2′:6′,2″-Terpyridine-Based First Row d-Block Elements. Coord. Chem. Rev. 2024, 506, 215619. [Google Scholar] [CrossRef]
- Ritu; Narang, U.; Kumar, V. Heavy Metal Detection with Organic Moiety-Based Sensors: Recent Advances and Future Directions. ChemBioChem 2024, 25, e202400191. [Google Scholar] [CrossRef]
- Kainat, S.F.; Hawsawi, M.B.; Mughal, E.U.; Naeem, N.; Almohyawi, A.M.; Altass, H.M.; Hussein, E.M.; Sadiq, A.; Moussa, Z.; Abd-El-Aziz, A.S.; et al. Recent Developments in the Synthesis and Applications of Terpyridine-Based Metal Complexes: A Systematic Review. RSC Adv. 2024, 14, 21464–21537. [Google Scholar] [CrossRef] [PubMed]
- Adeloye, A.O.; Ajibade, P.A. Towards the Development of Functionalized PolypyridineLigands for Ru(II) Complexes as Photosensitizers inDye-Sensitized Solar Cells (DSSCs). Molecules 2014, 19, 12421–12460. [Google Scholar] [CrossRef] [PubMed]
- Saccone, D.; Magistris, C.; Barbero, N.; Quagliotto, P.; Barolo, C.; Viscardi, G. Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications. Materials 2016, 9, 137. [Google Scholar] [CrossRef]
- Budnikova, Y.H.; Vicic, D.A.; Klein, A. Exploring Mechanisms in Ni Terpyridine Catalyzed C–C Cross-Coupling Reactions—A Review. Inorganics 2018, 6, 18. [Google Scholar] [CrossRef]
- Di Bella, S.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D. Zinc(II) as a Versatile Template for Efficient Dipolar and Octupolar Second-Order Nonlinear Optical Molecular Materials. Inorganics 2018, 6, 133. [Google Scholar] [CrossRef]
- Winter, A.; Schubert, U.S. Metal-Terpyridine Complexes in Catalytic Application—A Spotlight on the Last Decade. ChemCatChem 2020, 12, 2890–2941. [Google Scholar] [CrossRef]
- Liu, P.; Shi, G.; Chen, X. Terpyridine-Containing π-Conjugated Polymers for Light-Emitting and Photovoltaic Materials. Front. Chem. 2020, 8, 592055. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, P.; Fu, J.; Wei, C.; Cai, G. A Mini-Review: Pyridyl-Based Coordination Polymers for Energy Efficient Electrochromic Application. Front. Energy Res. 2021, 9, 620203. [Google Scholar] [CrossRef]
- Gourdon, L.; Cariou, K.; Gasser, G. Phototherapeutic Anticancer Strategies with First-Row Transition Metal Complexes: A Critical Review. Chem. Soc. Rev. 2022, 51, 1167–1195. [Google Scholar] [CrossRef]
- Adhikari, S.; Nath, P.; Das, A.; Datta, A.; Baildya, N.; Duttaroy, A.K.; Pathak, S. A Review on Metal Complexes and Its Anti-Cancer Activities: Recent Updates from in Vivo Studies. Biomed. Pharmacother. 2024, 171, 116211. [Google Scholar] [CrossRef] [PubMed]
- Gil-Moles, M.; Concepción Gimeno, M. The Therapeutic Potential in Cancer of Terpyridine-Based Metal Complexes Featuring Group 11 Elements. ChemMedChem 2024, 19, e202300645. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-Y.; Chen, Y.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Platinum Complexes with Aggregation-Induced Emission. Chem. Soc. Rev. 2024, 53, 5366–5393. [Google Scholar] [CrossRef] [PubMed]
- Husson, J. Functional Materials from Biomass-Derived Terpyridines: State of the Art and Few Possible Perspectives. Int. J. Mol. Sci. 2024, 25, 9126. [Google Scholar] [CrossRef]
- Lacroix, P.G.; Tassé, M.; de Caro, D.; Malfant, I. The Use of Fluorene in the Photorelease of Nitric Oxide from Ru(Terpyridine)(NO) Complexes by One- or Two-Photon Absorption. Coord. Chem. Rev. 2025, 528, 216417. [Google Scholar] [CrossRef]
- Kröhnke, F. The Specific Synthesis of Pyridines and Oligopyridines. Synthesis 1976, 1976, 1–24. [Google Scholar] [CrossRef]
- Potts, K.T.; Usifer, D.A.; Guadalupe, A.; Abruna, H.D. 4-Vinyl-, 6-Vinyl-, and 4′-Vinyl-2,2′:6′,2”-Terpyridinyl Ligands: Their Synthesis and the Electrochemistry of Their Transition-Metal Coordination Complexes. J. Am. Chem. Soc. 1987, 109, 3961–3967. [Google Scholar] [CrossRef]
- Palion-Gazda, J.; Choroba, K.; Maroń, A.M.; Malicka, E.; Machura, B. Structural and Photophysical Trends in Rhenium(I) Carbonyl Complexes with 2,2′:6′,2″-Terpyridines. Molecules 2024, 29, 1631. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Ebrahim, F.M.; Stylianou, K.C. Photoluminescent, Upconversion Luminescent and Nonlinear Optical Metal-Organic Frameworks: From Fundamental Photophysics to Potential Applications. Coord. Chem. Rev. 2018, 377, 259–306. [Google Scholar] [CrossRef]
- Ito, A.; Iwamura, M.; Sakuda, E. Excited-State Dynamics of Luminescent Transition Metal Complexes with Metallophilic and Donor–Acceptor Interactions. Coord. Chem. Rev. 2022, 467, 214610. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, Y.; Xiao, X.; Chen, X.; Hu, M.; Geng, X.; Wang, Z.; Zhao, J. Recent Development of the Transition Metal Complexes Showing Strong Absorption of Visible Light and Long-Lived Triplet Excited State: From Molecular Structure Design to Photophysical Properties and Applications. Coord. Chem. Rev. 2020, 417, 213371. [Google Scholar] [CrossRef]
- Grabowski, Z.R.; Rotkiewicz, K.; Rettig, W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem. Rev. 2003, 103, 3899–4032. [Google Scholar] [CrossRef] [PubMed]
- Misra, R.; Bhattacharyya, S. Intramolecular Charge Transfer: Theory and Applications; Wiley-VCH: Weinheim, Germany, 2018; ISBN 978-3-527-34156-6. [Google Scholar]
- Pal, A.; Karmakar, M.; Bhatta, S.R.; Thakur, A. A Detailed Insight into Anion Sensing Based on Intramolecular Charge Transfer (ICT) Mechanism: A Comprehensive Review of the Years 2016 to 2021. Coord. Chem. Rev. 2021, 448, 214167. [Google Scholar] [CrossRef]
- Coe, B.J. Developing Iron and Ruthenium Complexes for Potential Nonlinear Optical Applications. Coord. Chem. Rev. 2013, 257, 1438–1458. [Google Scholar] [CrossRef]
- Zhang, Y.; Champagne, B. Understanding the Second-Order Nonlinear Optical Properties of One-Dimensional Ruthenium(II) Ammine Complexes. J. Phys. Chem. C 2013, 117, 1833–1848. [Google Scholar] [CrossRef]
- Migalska-Zalas, A. Theoretical Study of the Effect of π-Conjugated Transmitter of D–π–A Ruthenium Systems on the Quadratic NLO Properties. Opt. Quantum Electron. 2016, 48, 183. [Google Scholar] [CrossRef]
- Beaujean, P.; Champagne, B. Unraveling the Symmetry Effects on the Second-Order Nonlinear Optical Responses of Molecular Switches: The Case of Ruthenium Complexes. Inorg. Chem. 2022, 61, 1928–1940. [Google Scholar] [CrossRef]
- Barzoukas, M.; Runser, C.; Fort, A.; Blanchard-Desce, M. A Two-State Description of (Hyper) Polarizabilities of Push-Pull Molecules Based on a Two-Form Model. Chem. Phys. Lett. 1996, 257, 531–537. [Google Scholar] [CrossRef]
- Presselt, M.; Dietzek, B.; Schmitt, M.; Rau, S.; Winter, A.; Jäger, M.; Schubert, U.S.; Popp, J. A Concept to Tailor Electron Delocalization: Applying QTAIM Analysis to Phenyl–Terpyridine Compounds. J. Phys. Chem. A 2010, 114, 13163–13174. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Mutai, T.; Cheon, J.-D.; Arita, S.; Araki, K. Phenyl-Substituted 2,2′:6′,2″-Terpyridine as a New Series of Fluorescent Compounds—Their Photophysical Properties and Fluorescence Tuning. J. Chem. Soc. Perkin Trans. 2 2001, 7, 1045–1050. [Google Scholar] [CrossRef]
- Goodall, W.; Williams, J.A.G. A New, Highly Fluorescent Terpyridine Which Responds to Zinc Ions with a Large Red-Shift in Emission. Chem. Commun. 2001, 2514–2515. [Google Scholar] [CrossRef]
- Goodall, W.; Wild, K.; Arm, K.J.; Williams, J.A.G. The Synthesis of 4′-Aryl Substituted Terpyridines by Suzuki Cross-Coupling Reactions: Substituent Effects on Ligand Fluorescence. J. Chem. Soc. Perkin Trans. 2 2002, 1669–1681. [Google Scholar] [CrossRef]
- Righetto, S.; Rondena, S.; Locatelli, D.; Roberto, D.; Tessore, F.; Ugo, R.; Quici, S.; Roma, S.; Korystov, D.; Srdanov, V.I. An Investigation on the Two-Photon Absorption Activity of Various Terpyridines and Related Homoleptic and Heteroleptic Cationic Zn(II) Complexes. J. Mater. Chem. 2006, 16, 1439–1444. [Google Scholar] [CrossRef]
- Song, P.; Sun, S.-G.; Liu, J.-Y.; Xu, Y.-Q.; Han, K.-L.; Peng, X.-J. Theoretical and Experimental Study on the Intramolecular Charge Transfer Excited State of the New Highly Fluorescent Terpyridine Compound. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 74, 753–757. [Google Scholar] [CrossRef]
- Robson, K.C.D.; Koivisto, B.D.; Gordon, T.J.; Baumgartner, T.; Berlinguette, C.P. Triphenylamine-Modified Ruthenium(II) Terpyridine Complexes: Enhancement of Light Absorption by Conjugated Bridging Motifs. Inorg. Chem. 2010, 49, 5335–5337. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Ding, H.; Hu, G.; Du, Y.; Wang, C.; Wu, J.; Li, S.; Zhou, H.; Yang, J.; et al. Synthesis, Crystal Structures and Two-Photon Absorption Properties of a Series of Terpyridine-Based Chromophores. Dyes Pigments 2012, 95, 149–160. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Ding, H.; Zhang, J.; Tan, J.; Wang, C.; Wu, J.; Li, S.; Zhou, H.; Yang, J.; et al. Two Novel Terpyridine-Based Chromophores with Donor-Acceptor Structural Model Containing Modified Triphenylamine Moiety: Synthesis, Crystal Structures and Two-Photon Absorption Properties. Sci. China Chem. 2013, 56, 1315–1324. [Google Scholar] [CrossRef]
- Shi, P.; Jiang, Q.; Zhao, X.; Zhang, Q.; Tian, Y. Study of the One-Photon and Two-Photon Properties of Two Water-Soluble Terpyridines and Their Zinc Complexes. Dalton Trans. 2015, 44, 8041–8048. [Google Scholar] [CrossRef]
- Bi, X.; Pang, Y. Optical Response of Terpyridine Ligands to Zinc Binding: A Close Look at the Substitution Effect by Spectroscopic Studies at Low Temperature. J. Phys. Chem. B 2016, 120, 3311–3317. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Tian, X.; Li, F.; Xu, W.; Zhang, Y.; Wang, C.; Zhang, J.; Zhou, H.; Wu, J.; et al. Synthesis, Crystal Structures of a Series of Novel 2, 2′:6′, 2″-Terpyridine Derivatives: The Influences of Substituents on Their Photophysical Properties and Intracellular Acid Organelle Targeting. Dyes Pigments 2016, 128, 149–157. [Google Scholar] [CrossRef]
- Kong, M.; Zhu, Y.; Du, W.; Zhang, Q.; Tian, X.; Li, S.; Zhou, H.; Wu, J.; Tian, Y. A Series of Terpyridine Derivatives for Aggregation-Induced Emission, Two-Photon Absorption and Mitochondrial Targeting. Dyes Pigments 2018, 158, 225–232. [Google Scholar] [CrossRef]
- Tsukamoto, T.; Aoki, R.; Sakamoto, R.; Toyoda, R.; Shimada, M.; Hattori, Y.; Asaoka, M.; Kitagawa, Y.; Nishibori, E.; Nakano, M.; et al. A Simple Zinc(II) Complex That Features Multi-Functional Luminochromism Induced by Reversible Ligand Dissociation. Chem. Commun. 2017, 53, 3657–3660. [Google Scholar] [CrossRef] [PubMed]
- Klemens, T.; Świtlicka, A.; Szlapa-Kula, A.; Krompiec, S.; Lodowski, P.; Chrobok, A.; Godlewska, M.; Kotowicz, S.; Siwy, M.; Bednarczyk, K.; et al. Experimental and Computational Exploration of Photophysical and Electroluminescent Properties of Modified 2,2′:6′,2″-Terpyridine, 2,6-Di(Thiazol-2-Yl)Pyridine and 2,6-Di(Pyrazin-2-Yl)Pyridine Ligands and Their Re(I) Complexes. Appl. Organomet. Chem. 2018, 32, e4611. [Google Scholar] [CrossRef]
- Palion-Gazda, J.; Machura, B.; Klemens, T.; Szlapa-Kula, A.; Krompiec, S.; Siwy, M.; Janeczek, H.; Schab-Balcerzak, E.; Grzelak, J.; Maćkowski, S. Structure-Dependent and Environment-Responsive Optical Properties of the Trisheterocyclic Systems with Electron Donating Amino Groups. Dyes Pigments 2019, 166, 283–300. [Google Scholar] [CrossRef]
- Maroń, A.M.; Cannelli, O.; Socie, E.C.; Lodowski, P.; Machura, B. Push-Pull Effect of Terpyridine Substituted by Triphenylamine Motive—Impact of Viscosity, Polarity and Protonation on Molecular Optical Properties. Molecules 2022, 27, 7071. [Google Scholar] [CrossRef]
- Gu, H.; Sun, X.; Zhao, Q.; Wang, H.; Cheng, X.; Yang, C.; Qiu, D. Near-IR Electrochromic Film with High Optical Contrast and Stability Prepared by Oxidative Electropolymerization of Triphenylamine Modified Terpyridine Platinum(II) Chloride. Molecules 2023, 28, 8027. [Google Scholar] [CrossRef]
- Maroń, A.M.; Cannelli, O.; Socie, E.C.; Lodowski, P.; Oppermann, M.; Machura, B.; Chergui, M. Early Bird or Night Owl? Controlling the Ultrafast Photodynamics of Triphenylamine Substituted 2,2′:6′,2″-Terpyridine. Phys. Chem. Chem. Phys. 2024, 26, 6265–6276. [Google Scholar] [CrossRef]
- Duan, L.; Zheng, Q.; Tu, T. Instantaneous High-Resolution Visual Imaging of Latent Fingerprints in Water Using Color-Tunable AIE Pincer Complexes. Adv. Mater. 2022, 34, 2202540. [Google Scholar] [CrossRef]
- Bhowmik, S.; Ghosh, B.N.; Marjomäki, V.; Rissanen, K. Nanomolar Pyrophosphate Detection in Water and in a Self-Assembled Hydrogel of a Simple Terpyridine-Zn2+ Complex. J. Am. Chem. Soc. 2014, 136, 5543–5546. [Google Scholar] [CrossRef]
- Hsu, T.-W.; Hsu, H.-C.; Chan, H.-Y.; Fang, J.-M. A Terpyridine Zinc Complex for Selective Detection of Lipid Pyrophosphates: A Model System for Monitoring Bacterial O- and N-Transglycosylations. J. Org. Chem. 2020, 85, 12747–12753. [Google Scholar] [CrossRef] [PubMed]
- Mughal, E.U.; Javaid, A.; Imran, M.; Abourehab, M.A.S.; Elkaeed, E.B.; Naeem, N.; Alzahrani, A.Y.A.; Sadiq, A.; Kainat, S.F. Complexes of Terpyridine Scaffold as Efficient Photocatalysts for the Degradation of Methylene Blue Pollutant in Wastewater Effluents. Inorganica Chim. Acta 2023, 546, 121329. [Google Scholar] [CrossRef]
- Li, Y.Q.; Bricks, J.L.; Resch-Genger, U.; Spieles, M.; Rettig, W. Bifunctional Charge Transfer Operated Fluorescent Probes with Acceptor and Donor Receptors. 2. Bifunctional Cation Coordination Behavior of Biphenyl-Type Sensor Molecules Incorporating 2,2‘:6‘,2‘ ‘-Terpyridine Acceptors. J. Phys. Chem. A 2006, 110, 10972–10984. [Google Scholar] [CrossRef] [PubMed]
- Deda, M.L.; Maio, G.D.; Candreva, A.; Heinrich, B.; Andelescu, A.-A.; Popa, E.; Voirin, E.; Badea, V.; Amati, M.; Costişor, O.; et al. Very Intense Polarized Emission in Self-Assembled Room Temperature Metallomesogens Based on Zn(II) Coordination Complexes: An Experimental and Computational Study. J. Mater. Chem. C 2021, 10, 115–125. [Google Scholar] [CrossRef]
- Tsukamoto, T.; Aoki, R.; Sakamoto, R.; Toyoda, R.; Shimada, M.; Hattori, Y.; Kitagawa, Y.; Nishibori, E.; Nakano, M.; Nishihara, H. Mechano-, Thermo-, Solvato-, and Vapochromism in Bis(Acetato-κ1O)[4′-(4-(Diphenylamino)Phenyl)](2,2′:6′,2″-Terpyridine-κ3N,N′,N″)Zinc(II) and Its Polymer. Chem. Commun. 2017, 53, 9805–9808. [Google Scholar] [CrossRef]
- Wang, H.; Cai, F.; Feng, D.; Zhou, L.; Li, D.; Wei, Y.; Feng, Z.; Zhang, J.; He, J.; Wu, Y. Synthesis, Crystal Structure, Photophysical Property and Bioimaging Application of a Series of Zn(II) Terpyridine Complexes. J. Mol. Struct. 2019, 1194, 157–162. [Google Scholar] [CrossRef]
- Tang, Y.; Kong, M.; Tian, X.; Wang, J.; Xie, Q.; Wang, A.; Zhang, Q.; Zhou, H.; Wu, J.; Tian, Y. A Series of Terpyridine-Based Zinc(II) Complexes Assembled for Third-Order Nonlinear Optical Responses in the near-Infrared Region and Recognizing Lipid Membranes. J. Mater. Chem. B 2017, 5, 6348–6355. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, M.; Du, W.; Hu, L.; Li, F.; Tian, X.; Wang, A.; Zhang, Q.; Zhang, Z.; Wu, J.; et al. A Series of Zn(II) Terpyridine-Based Nitrate Complexes as Two-Photon Fluorescent Probe for Identifying Apoptotic and Living Cells via Subcellular Immigration. Inorg. Chem. 2018, 57, 7676–7683. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S.; Yang, H.; Zeng, Y.; She, P.; Zhu, N.; Ho, C.-L.; Zhao, Q.; Huang, W.; Wong, W.-Y. Luminescence Color Tuning by Regulating Electrostatic Interaction in Light-Emitting Devices and Two-Photon Excited Information Decryption. Inorg. Chem. 2017, 56, 2409–2416. [Google Scholar] [CrossRef]
- Tsukamoto, T.; Takada, K.; Sakamoto, R.; Matsuoka, R.; Toyoda, R.; Maeda, H.; Yagi, T.; Nishikawa, M.; Shinjo, N.; Amano, S.; et al. Coordination Nanosheets Based on Terpyridine–Zinc(II) Complexes: As Photoactive Host Materials. J. Am. Chem. Soc. 2017, 139, 5359–5366. [Google Scholar] [CrossRef]
- Bozic-Weber, B.; Constable, E.C.; Hostettler, N.; Housecroft, C.E.; Schmitt, R.; Schönhofer, E. The D10 Route to Dye-Sensitized Solar Cells: Step-Wise Assembly of Zinc(II) Photosensitizers on TiO2 Surfaces. Chem. Commun. 2012, 48, 5727–5729. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, B.; Wu, J.; Zhang, S.; Jin, B.; Tian, Y. Sensitive ctDNA Detection by a Novel Zinc(II) Complex with Two-Photon Absorption Based on Electrochemiluminescence. New J. Chem. 2015, 39, 1404–1409. [Google Scholar] [CrossRef]
- Wang, C.; Chi, W.; Qiao, Q.; Tan, D.; Xu, Z.; Liu, X. Twisted Intramolecular Charge Transfer (TICT) and Twists beyond TICT: From Mechanisms to Rational Designs of Bright and Sensitive Fluorophores. Chem. Soc. Rev. 2021, 50, 12656–12678. [Google Scholar] [CrossRef] [PubMed]
- Storrier, G.D.; Colbran, S.B. Transition-Metal Complexes of 4′(4-Anilino)-2,2′: 6′,2″-Terpyridine (and Derivatives): Versatile Building Blocks for Construction of Metallooligomers and Macromolecules. J. Chem. Soc. Dalton Trans. 1996, 2185–2186. [Google Scholar] [CrossRef]
- Storrier, G.D.; Colbran, S.B.; Craig, D.C. Bis [4′-(4-Anilino)-2,2′:6′,2″-Terpyridine] Transition-Metal Complexes: Electrochemically Activemonomers with a Range of Magnetic and Optical Properties for Assembly Ofmetallo Oligomers and Macromolecules. J. Chem. Soc. Dalton Trans. 1997, 3011–3028. [Google Scholar] [CrossRef]
- Mondal, P.C.; Manna, A.K. Synthesis of Heteroleptic Terpyridyl Complexes of Fe(II) and Ru(II): Optical and Electrochemical Studies. New J. Chem. 2016, 40, 5775–5781. [Google Scholar] [CrossRef]
- Fan, C.; Ye, C.; Wang, X.; Chen, Z.; Zhou, Y.; Liang, Z.; Tao, X. Synthesis and Electrochromic Properties of New Terpyridine–Triphenylamine Hybrid Polymers. Macromolecules 2015, 48, 6465–6473. [Google Scholar] [CrossRef]
- Zhang, J.; Campolo, D.; Dumur, F.; Xiao, P.; Fouassier, J.P.; Gigmes, D.; Lalevée, J. Visible-Light-Sensitive Photoredox Catalysis by Iron Complexes: Applications in Cationic and Radical Polymerization Reactions. J. Polym. Sci. Part Polym. Chem. 2016, 54, 2247–2253. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Chen, L.; Chao, D. Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(Terpyridine)Iron(II) Complexes and an Organic Photosensitizer. Inorg. Chem. 2021, 60, 5590–5597. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, S.; Wang, T.; Li, S.; Wang, L.; Li, D.; Tian, Y.; Zhang, Q. Four-Photon Absorption Iron Complex for Magnetic Resonance/Photoacoustic Dual-Model Imaging and an Enhanced Ferroptosis Process. Anal. Chem. 2023, 95, 1635–1642. [Google Scholar] [CrossRef]
- Athanasopoulos, E.; Conradie, J. Substituent Effect on the Oxidation and Reduction of Electronically Altered Iron(II)-Terpyridine Derivatives–DFT Study. Inorganica Chim. Acta 2023, 555, 121599. [Google Scholar] [CrossRef]
- Conradie, J.; Olisah, C.; Akpomie, K.G.; Malloum, A.; Akpotu, S.O.; Adegoke, K.A.; Okeke, E.S.; Omotola, E.O.; Ohoro, C.R.; Amaku, J.F. Geometric Distortions and Jahn-Teller Effects in Bis(Terpyridine)Metal Complexes. J. Mol. Struct. 2025, 1321, 139840. [Google Scholar] [CrossRef]
- de Groot, L.H.M.; Ilic, A.; Schwarz, J.; Wärnmark, K. Iron Photoredox Catalysis–Past, Present, and Future. J. Am. Chem. Soc. 2023, 145, 9369–9388. [Google Scholar] [CrossRef] [PubMed]
- Gamache, M.T.; Gehring, B.; Hanan, G.S.; Kurth, D.G. Spectro-Electrochemical Study of Iron and Ruthenium Bis-Terpyridine Complexes with Methyl Viologen-like Subunits as Models for Supramolecular Polymers. Dalton Trans. 2024, 53, 13151–13159. [Google Scholar] [CrossRef]
- Dumur, F.; Mayer, C.R.; Hoang-Thi, K.; Ledoux-Rak, I.; Miomandre, F.; Clavier, G.; Dumas, E.; Méallet-Renault, R.; Frigoli, M.; Zyss, J.; et al. Electrochemical, Linear Optical, and Nonlinear Optical Properties and Interpretation by Density Functional Theory Calculations of (4-N,N-Dimethylaminostyryl)-Pyridinium Pendant Group Associated with Polypyridinic Ligands and Respective Multifunctional Metal Complexes (RuII or ZnII). Inorg. Chem. 2009, 48, 8120–8133. [Google Scholar] [CrossRef]
- Bonhôte, P.; Moser, J.E.; Vlachopoulos, N.; Walder, L.; Zakeeruddin, S.M.; Humphry-Baker, R.; Péchy, P.; Grätzel, M. Photoinduced Electron Transfer and Redox-Type Photochromism of a TiO2-Anchored Molecular Diad. Chem. Commun. 1996, 1163–1164. [Google Scholar] [CrossRef]
- Nie, H.-J.; Yao, C.-J.; Sun, M.-J.; Zhong, Y.-W.; Yao, J. Ruthenium-Bis-Terpyridine Complex with Two Redox-Asymmetric Amine Substituents: Potential-Controlled Reversal of the Direction of Charge-Transfer. Organometallics 2014, 33, 6223–6231. [Google Scholar] [CrossRef]
- Bonhôte, P.; Moser, J.-E.; Humphry-Baker, R.; Vlachopoulos, N.; Zakeeruddin, S.M.; Walder, L.; Grätzel, M. Long-Lived Photoinduced Charge Separation and Redox-Type Photochromism on Mesoporous Oxide Films Sensitized by Molecular Dyads. J. Am. Chem. Soc. 1999, 121, 1324–1336. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, Y.; Yan, M.; Galipeau, D.; Peng, X.; Yan, X. Excitation-Dependent Fluorescence of Triphenylamine-Substituted Tridentate Pyridyl Ruthenium Complexes. J. Phys. Chem. A 2010, 114, 9090–9097. [Google Scholar] [CrossRef]
- Collin, J.P.; Guillerez, S.; Sauvage, J.P.; Barigelletti, F.; De Cola, L.; Flamigni, L.; Balzani, V. Photoinduced Processes in Dyads and Triads Containing a Ruthenium(II)-Bis(Terpyridine) Photosensitizer Covalently Linked to Electron Donor and Acceptor Groups. Inorg. Chem. 1991, 30, 4230–4238. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Z.; Xiao, W.; Kong, L.; Xu, J.; Xia, Y.; Zhu, X.; Zhang, F.; Ou, Y.-P. Terpyridine Ruthenium–Triarylamine Asymmetrical Mixed-Valence Systems: Syntheses, (Spectro) Electrochemistry and Theoretical Calculations. J. Organomet. Chem. 2023, 993, 122708. [Google Scholar] [CrossRef]
- Tan, B.-C.; Wang, Q.; Jiang, L.-L.; Song, Y.; Wu, X.-T.; Sheng, T.-L. Influence of Changing the Remote Substituents on Charge Transfer Properties of Cyanide-Bridged Trinuclear Fe–Ru–Fe Complexes. Eur. J. Inorg. Chem. 2023, 26, e202300003. [Google Scholar] [CrossRef]
- Colombo, A.; Locatelli, D.; Roberto, D.; Tessore, F.; Ugo, R.; Cavazzini, M.; Quici, S.; Angelis, F.D.; Fantacci, S.; Ledoux-Rak, I.; et al. New [(D-Terpyridine)-Ru-(D or A-Terpyridine)][4-EtPhCO2]2 Complexes (D = Electron Donor Group; A = Electron Acceptor Group) as Active Second-Order Non Linear Optical Chromophores. Dalton Trans. 2012, 41, 6707–6714. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-X.; Yang, G.-C.; Sun, S.-L.; Ma, N.-N.; Qiu, Y.-Q. Effects of the Substituting Groups and Proton Abstraction on the Nonlinear Optical Properties of Heteroleptic Bis-Tridentate Ru(II) Complexes. J. Organomet. Chem. 2011, 696, 3384–3391. [Google Scholar] [CrossRef]
- Konstantaki, M.; Koudoumas, E.; Couris, S.; Lainé, P.; Amouyal, E.; Leach, S. Substantial Non-Linear Optical Response of New Polyads Based on Ru and Os Complexes of Modified Terpyridines. J. Phys. Chem. B 2001, 105, 10797–10804. [Google Scholar] [CrossRef]
- Rosero, A. Effect of Push-Pull Ruthenium Complex Adsorption Conformation on the Performance of Dye Sensitized Solar Cells. J. Braz. Chem. Soc. 2020, 31, 2250–2264. [Google Scholar] [CrossRef]
- Rosenthal, M.; Lindner, J.K.N.; Gerstmann, U.; Meier, A.; Schmidt, W.G.; Wilhelm, R. A Photoredox Catalysed Heck Reaction via Hole Transfer from a Ru(II)-Bis(Terpyridine) Complex to Graphene Oxide. RSC Adv. 2020, 10, 42930–42937. [Google Scholar] [CrossRef]
- Sasaki, I.; Amabilino, S.; Mallet-Ladeira, S.; Tassé, M.; Sournia-Saquet, A.; Lacroix, P.G.; Malfant, I. Further Studies on the Photoreactivities of Ruthenium–Nitrosyl Complexes with Terpyridyl Ligands. New J. Chem. 2019, 43, 11241–11250. [Google Scholar] [CrossRef]
- Sun, M.-J.; Shao, J.-Y.; Yao, C.-J.; Zhong, Y.-W.; Yao, J. Osmium Bisterpyridine Complexes with Redox-Active Amine Substituents: A Comparison Study with Ruthenium Analogues. Inorg. Chem. 2015, 54, 8136–8147. [Google Scholar] [CrossRef]
- Lainé, P.; Bedioui, F.; Ochsenbein, P.; Marvaud, V.; Bonin, M.; Amouyal, E. A New Class of Functionalized Terpyridyl Ligands as Building Blocks for Photosensitized Supramolecular Architectures. Synthesis, Structural, and Electronic Characterizations. J. Am. Chem. Soc. 2002, 124, 1364–1377. [Google Scholar] [CrossRef]
- Lainé, P.; Amouyal, E. Photophysical Properties of Osmium(II) Complexes with the Novel 4′-p-Phenylterpyridine-Triarylpyridinium Ligand. Chem. Commun. 1999, 935–936. [Google Scholar] [CrossRef]
- Kitzmann, W.R.; Heinze, K. Charge-Transfer and Spin-Flip States: Thriving as Complements. Angew. Chem. Int. Ed. 2023, 62, e202213207. [Google Scholar] [CrossRef] [PubMed]
- Treiling, S.; Wang, C.; Förster, C.; Reichenauer, F.; Kalmbach, J.; Boden, P.; Harris, J.P.; Carrella, L.M.; Rentschler, E.; Resch-Genger, U.; et al. Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex. Angew. Chem. Int. Ed. 2019, 58, 18075–18085. [Google Scholar] [CrossRef] [PubMed]
- Farran, R.; Le-Quang, L.; Mouesca, J.-M.; Maurel, V.; Jouvenot, D.; Loiseau, F.; Deronzier, A.; Chauvin, J. [Cr(Ttpy)2]3+ as a Multi-Electron Reservoir for Photoinduced Charge Accumulation. Dalton Trans. 2019, 48, 6800–6811. [Google Scholar] [CrossRef]
- Cabrera, P.J.; Yang, X.; Suttil, J.A.; Brooner, R.E.M.; Thompson, L.T.; Sanford, M.S. Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry. Inorg. Chem. 2015, 54, 10214–10223. [Google Scholar] [CrossRef]
- Kandasamy, B.; Ramar, G.; Zhou, L.; Han, S.-T.; Venkatesh, S.; Cheng, S.-C.; Xu, Z.; Ko, C.-C.; Roy, V.A.L. Polypyridyl Chromium(III) Complexes for Non-Volatile Memory Application: Impact of the Coordination Sphere on Memory Device Performance. J. Mater. Chem. C 2018, 6, 1445–1450. [Google Scholar] [CrossRef]
- Jiménez, J.-R.; Doistau, B.; Besnard, C.; Piguet, C. Versatile Heteroleptic Bis-Terdentate Cr(III) Chromophores Displaying Room Temperature Millisecond Excited State Lifetimes. Chem. Commun. 2018, 54, 13228–13231. [Google Scholar] [CrossRef]
- Doistau, B.; Collet, G.; Bolomey, E.A.; Sadat-Noorbakhsh, V.; Besnard, C.; Piguet, C. Heteroleptic Ter–Bidentate Cr(III) Complexes as Tunable Optical Sensitizers. Inorg. Chem. 2018, 57, 14362–14373. [Google Scholar] [CrossRef]
- Scarborough, C.C.; Lancaster, K.M.; DeBeer, S.; Weyhermüller, T.; Sproules, S.; Wieghardt, K. Experimental Fingerprints for Redox-Active Terpyridine in [Cr(Tpy)2](PF6)n (n = 3–0), and the Remarkable Electronic Structure of [Cr(Tpy)2]1−. Inorg. Chem. 2012, 51, 3718–3732. [Google Scholar] [CrossRef]
- Jiménez, J.-R.; Poncet, M.; Doistau, B.; Besnard, C.; Piguet, C. Luminescent Polypyridyl Heteroleptic CrIII Complexes with High Quantum Yields and Long Excited State Lifetimes. Dalton Trans. 2020, 49, 13528–13532. [Google Scholar] [CrossRef]
- Schönle, J.; Constable, E.C.; Housecroft, C.E.; Prescimone, A.; Zampese, J.A. Homoleptic and Heteroleptic Complexes of Chromium(III) Containing 4′-Diphenylamino-2,2′:6′,2″-Terpyridine Ligands. Polyhedron 2015, 89, 182–188. [Google Scholar] [CrossRef]
- Barbour, J.C.; Kim, A.J.I.; deVries, E.; Shaner, S.E.; Lovaasen, B.M. Chromium(III) Bis-Arylterpyridyl Complexes with Enhanced Visible Absorption via Incorporation of Intraligand Charge-Transfer Transitions. Inorg. Chem. 2017, 56, 8212–8222. [Google Scholar] [CrossRef] [PubMed]
- Palion-Gazda, J.; Kwiecień, A.; Choroba, K.; Penkala, M.; Kryczka, A.; Machura, B. The Role of Intraligand Charge Transfer Processes in Iridium(III) Complexes with Morpholine-Decorated 4′-Phenyl-2,2′:6′,2″-Terpyridine. Molecules 2024, 29, 3074. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.; Poole, R.A.; Murray, P.R.; Yellowlees, L.J.; Beeby, A.; Williams, J.A.G. Near Infra-Red Luminescence from Bis-Terpyridyl Iridium(III) Complexes Incorporating Electron-Rich Pendants. Polyhedron 2004, 23, 2769–2777. [Google Scholar] [CrossRef]
- Goldstein, D.C.; Cheng, Y.Y.; Schmidt, T.W.; Bhadbhade, M.; Thordarson, P. Photophysical Properties of a New Series of Water Soluble Iridium Bisterpyridine Complexes Functionalised at the 4′ Position. Dalton Trans. 2011, 40, 2053–2061. [Google Scholar] [CrossRef]
- Wei, L.; Kushwaha, R.; Dao, A.; Fan, Z.; Banerjee, S.; Huang, H. Axisymmetric Bis-Tridentate Ir(III) Photoredox Catalysts for Anticancer Phototherapy under Hypoxia. Chem. Commun. 2023, 59, 3083–3086. [Google Scholar] [CrossRef]
- Williams, J.A.G.; Wilkinson, A.J.; Whittle, V.L. Light-Emitting Iridium Complexes with Tridentate Ligands. Dalton Trans. 2008, 2081–2099. [Google Scholar] [CrossRef]
- Brun, A.M.; Harriman, A.; Tsuboi, Y.; Okada, T.; Mataga, N. Intramolecular Charge Transfer in Rigidly Linked Naphthalene–Trialkylamine Compounds. J. Chem. Soc. Faraday Trans. 1995, 91, 4047–4057. [Google Scholar] [CrossRef]
- Roberto, D.; Tessore, F.; Ugo, R.; Bruni, S.; Manfredi, A.; Quici, S. Terpyridine Zn(II), Ru(III) and Ir(III) Complexes as New Asymmetric Chromophores for Nonlinear Optics: First Evidence for a Shift from Positive to Negative Value of the Quadratic Hyperpolarizability of a Ligand Carrying an Electron Donor Substituent upon Coordination to Different Metal Centres. Chem. Commun. 2002, 846–847. [Google Scholar] [CrossRef]
- Liu, B.; Jabed, M.A.; Kilina, S.; Sun, W. Synthesis, Photophysics, and Reverse Saturable Absorption of Trans-Bis-Cyclometalated Iridium(III) Complexes (C^N^C)Ir(R-Tpy)+ (Tpy = 2,2′:6′,2″-Terpyridine) with Broadband Excited-State Absorption. Inorg. Chem. 2020, 59, 8532–8542. [Google Scholar] [CrossRef]
- Palion-Gazda, J.; Kwiecień, A.; Choroba, K.; Penkala, M.; Erfurt, K.; Machura, B. Effect of the Appended Morpholinyl Group on Photophysical Behavior of Mono- and Bis-Cyclometalated Terpyridine Iridium(III) Chromophores. Inorg. Chem. 2025, 64, 646–661. [Google Scholar] [CrossRef] [PubMed]
- Constable, E.C.; Housecroft, C.E.; Schneider, G.E.; Zampese, J.A.; Bolink, H.J.; Pertegás, A.; Roldan-Carmona, C. Red Emitting [Ir(C^N)2(N^N)]+ Complexes Employing Bidentate 2,2′:6′,2″-Terpyridine Ligands for Light-Emitting Electrochemical Cells. Dalton Trans. 2014, 43, 4653–4667. [Google Scholar] [CrossRef]
- Yu, Q.; Gu, S.; Yang, X.; Jiang, Q.; Shi, P. Four Cyclometalated Ir(III) Complexes and Insights into Their Luminescence, Cytotoxicity and DNA/BSA Binding Performance. RSC Adv. 2024, 14, 29934–29941. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Xie, J.; Sadhukhan, T.; Liang, C.; Huang, C.; Li, W.; Li, T.; Zhang, P.; Banerjee, S.; Raghavachari, K.; et al. Highly Efficient Ir(III)-Coumarin Photo-Redox Catalyst for Synergetic Multi-Mode Cancer Photo-Therapy. Chem.—Eur. J. 2022, 28, e202103346. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Xia, Y.; Barrett, J.; Mikhailovsky, A.; Wu, G.; Wang, D.; Shi, P.; Ford, P.C. Near-Infrared and Visible Photoactivation to Uncage Carbon Monoxide from an Aqueous-Soluble PhotoCORM. Inorg. Chem. 2019, 58, 11066–11075. [Google Scholar] [CrossRef]
- Mansour, A.M.; Radacki, K. Spectroscopic and Antimicrobial Activity of Photoactivatable Tricarbonyl Mn(I) Terpyridine Compounds. Inorganica Chim. Acta 2020, 511, 119806. [Google Scholar] [CrossRef]
- Kautz, A.C.; Kunz, P.C.; Janiak, C. CO-Releasing Molecule (CORM) Conjugate Systems. Dalton Trans. 2016, 45, 18045–18063. [Google Scholar] [CrossRef]
- Liu, J.; Tang, Q.; Wang, Y.; Zhang, H.-L.; Ren, B.; Yang, S.-P.; Liu, J.-G. Targeted Carbon Monoxide Delivery Combined with Chemodynamic, Chemotherapeutic and Photothermal Therapies for Enhanced Antitumor Efficacy. New J. Chem. 2022, 46, 8413–8421. [Google Scholar] [CrossRef]
- Fernández-Terán, R.; Sévery, L. Living Long and Prosperous: Productive Intraligand Charge-Transfer States from a Rhenium(I) Terpyridine Photosensitizer with Enhanced Light Absorption. Inorg. Chem. 2021, 60, 1334–1343. [Google Scholar] [CrossRef]
- Palion-Gazda, J.; Szłapa-Kula, A.; Penkala, M.; Erfurt, K.; Machura, B. Photoinduced Processes in Rhenium(I) Terpyridine Complexes Bearing Remote Amine Groups: New Insights from Transient Absorption Spectroscopy. Molecules 2022, 27, 7147. [Google Scholar] [CrossRef]
- Fernández-Terán, R.J.; Sucre-Rosales, E.; Echevarria, L.; Hernández, F.E. Dissecting Conjugation and Electronic Effects on the Linear and Non-Linear Optical Properties of Rhenium(I) Carbonyl Complexes. Phys. Chem. Chem. Phys. 2022, 24, 28069–28079. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, N.; Lin, Q.; Wang, H.; Liang, Z.; Lu, Y.; Zhang, P. Sono-ReCORMs for Synergetic Sonodynamic-Gas Therapy of Hypoxic Tumor. Chin. Chem. Lett. 2023, 34, 107653. [Google Scholar] [CrossRef]
- Klemens, T.; Świtlicka-Olszewska, A.; Machura, B.; Grucela, M.; Janeczek, H.; Schab-Balcerzak, E.; Szlapa, A.; Kula, S.; Krompiec, S.; Smolarek, K.; et al. Synthesis, Photophysical Properties and Application in Organic Light Emitting Devices of Rhenium(I) Carbonyls Incorporating Functionalized 2,2′:6′,2″-Terpyridines. RSC Adv. 2016, 6, 56335–56352. [Google Scholar] [CrossRef]
- Klemens, T.; Świtlicka, A.; Szlapa-Kula, A.; Łapok, Ł.; Obłoza, M.; Siwy, M.; Szalkowski, M.; Maćkowski, S.; Libera, M.; Schab-Balcerzak, E.; et al. Tuning Optical Properties of Re(I) Carbonyl Complexes by Modifying Push–Pull Ligands Structure. Organometallics 2019, 38, 4206–4223. [Google Scholar] [CrossRef]
- Mansour, A.M.; Radacki, K. Terpyridine Based ReX(CO)3 Compounds (X = Br−, N3− and Triazolate): Spectroscopic and DFT Studies. Polyhedron 2021, 194, 114954. [Google Scholar] [CrossRef]
- Maroń, A.M.; Szlapa-Kula, A.; Matussek, M.; Kruszynski, R.; Siwy, M.; Janeczek, H.; Grzelak, J.; Maćkowski, S.; Schab-Balcerzak, E.; Machura, B. Photoluminescence Enhancement of Re(I) Carbonyl Complexes Bearing D–A and D–π–A Ligands. Dalton Trans. 2020, 49, 4441–4453. [Google Scholar] [CrossRef]
- Fernández-Terán, R.J.; Sévery, L. Coordination Environment Prevents Access to Intraligand Charge-Transfer States through Remote Substitution in Rhenium(I) Terpyridinedicarbonyl Complexes. Inorg. Chem. 2021, 60, 1325–1333. [Google Scholar] [CrossRef]
- Crites, D.K.; Cunningham, C.T.; McMillin, D.R. Remarkable Substituent Effects on the Photophysics of Pt(4′-X-Trpy)Cl+ Systems (Trpy = 2,2′; 6′,2″-Terpyridine). Inorganica Chim. Acta 1998, 273, 346–353. [Google Scholar] [CrossRef]
- Arena, G.; Calogero, G.; Campagna, S.; Monsù Scolaro, L.; Ricevuto, V.; Romeo, R. Synthesis, Characterization, Absorption Spectra, and Luminescence Properties of Organometallic Platinum(II) Terpyridine Complexes. Inorg. Chem. 1998, 37, 2763–2769. [Google Scholar] [CrossRef]
- Michalec, J.F.; Bejune, S.A.; Cuttell, D.G.; Summerton, G.C.; Gertenbach, J.A.; Field, J.S.; Haines, R.J.; McMillin, D.R. Long-Lived Emissions from 4‘-Substituted Pt(Trpy)Cl+ Complexes Bearing Aryl Groups. Influence of Orbital Parentage. Inorg. Chem. 2001, 40, 2193–2200. [Google Scholar] [CrossRef]
- Hight, L.M.; McGuire, M.C.; Zhang, Y.; Bork, M.A.; Fanwick, P.E.; Wasserman, A.; McMillin, D.R. π Donation and Its Effects on the Excited-State Lifetimes of Luminescent Platinum(II) Terpyridine Complexes in Solution. Inorg. Chem. 2013, 52, 8476–8482. [Google Scholar] [CrossRef] [PubMed]
- Field, J.S.; Munro, O.Q.; Waldron, B.P. Sorption of Small Molecule Vapours by Single Crystals of [Pt{4′-(Ph)Trpy}(NCS)]SbF6 Where Trpy = 2,2′:6′,2″-Terpyridine: A Porous Material with a Structure Stabilised by Extended π–π Interactions. Dalton Trans. 2012, 41, 5486–5496. [Google Scholar] [CrossRef] [PubMed]
- Field, J.S.; Haines, R.J.; Ledwaba, L.P.; Robert McGuire, J.; Munro, O.Q.; Low, M.R.; McMillin, D.R. Synthesis, Electrochemistry and Luminescence of [Pt{4′-(R)Trpy}(CN)]+ (R = Ph, o-CH3C6H4, o-ClC6H4 or o-CF3C6H4; Trpy = 2,2′:6′,2″-Terpyridine): Crystal Structure of [Pt{4′-(Ph)Trpy}(CN)]BF4·CH3CN. Dalton Trans. 2007, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Jiang, Q.; Zhang, Q.; Tian, Y. Synthesis, Characterization, Emission and DNA Binding Properties of Four Alkynylplatinum(II) Terpyridine Complexes. J. Organomet. Chem. 2016, 804, 66–72. [Google Scholar] [CrossRef]
- Maroń, A.M.; Choroba, K.; Małecki, J.G.; Kula, S.; Malicka, E. Platinum(II) Coordination Compound with 4′-[4-(Dimethylamino)Phenyl]-2,2′:6′,2″-Terpyridine—The New Insight into the Luminescence Behavior and Substituent Effect. Polyhedron 2020, 182, 114502. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kryczka, A.; Palion-Gazda, J.; Choroba, K.; Machura, B. Effect of Remote Amine Groups on Ground- and Excited-State Properties of Terpyridyl d-Metal Complexes. Molecules 2025, 30, 2386. https://doi.org/10.3390/molecules30112386
Kryczka A, Palion-Gazda J, Choroba K, Machura B. Effect of Remote Amine Groups on Ground- and Excited-State Properties of Terpyridyl d-Metal Complexes. Molecules. 2025; 30(11):2386. https://doi.org/10.3390/molecules30112386
Chicago/Turabian StyleKryczka, Anna, Joanna Palion-Gazda, Katarzyna Choroba, and Barbara Machura. 2025. "Effect of Remote Amine Groups on Ground- and Excited-State Properties of Terpyridyl d-Metal Complexes" Molecules 30, no. 11: 2386. https://doi.org/10.3390/molecules30112386
APA StyleKryczka, A., Palion-Gazda, J., Choroba, K., & Machura, B. (2025). Effect of Remote Amine Groups on Ground- and Excited-State Properties of Terpyridyl d-Metal Complexes. Molecules, 30(11), 2386. https://doi.org/10.3390/molecules30112386