Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,621)

Search Parameters:
Keywords = functional extracellular vesicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 860 KB  
Review
Traumatic Brain Injury: Advances in Diagnostic Techniques and Treatment Modalities
by Lori Zarmer, Maaz S. Khan, Glenn Islat, Hanan Alameddin, Maria Massey, Saki Kazui and Rabail Chaudhry
J. Clin. Med. 2025, 14(20), 7145; https://doi.org/10.3390/jcm14207145 (registering DOI) - 10 Oct 2025
Abstract
Background/Objectives: Traumatic brain injury (TBI) is a major global cause of death and disability, with long-term cognitive, behavioral, and functional consequences. Despite its high burden, management is complicated by heterogeneous presentations and limited evidence. This review summarizes recent advances in monitoring, therapeutic strategies, [...] Read more.
Background/Objectives: Traumatic brain injury (TBI) is a major global cause of death and disability, with long-term cognitive, behavioral, and functional consequences. Despite its high burden, management is complicated by heterogeneous presentations and limited evidence. This review summarizes recent advances in monitoring, therapeutic strategies, neuroprotection, and rehabilitation, while highlighting future directions toward individualized and globalized care. Methods: This paper is a narrative review of clinical trials, systematic reviews, and observational studies, focusing on invasive and non-invasive monitoring, pharmacologic and non-pharmacologic interventions, neuroprotective agents, stem cell therapy, and advanced rehabilitation modalities. Results/Findings: Our review focuses on emerging monitoring techniques, including brain tissue oxygenation, cerebral microdialysis, and multimodal strategies, that provide detailed insights but lack standardized application. Interventions such as anti-inflammatory agents, hypothermia, hyperosmolar therapies, and metabolic suppression show mixed efficacy, with few therapies supported by high-level evidence. Novel agents like erythropoietin and progesterone demonstrate neuroprotective potential in preclinical models but remain inconclusive in clinical trials. Stem cell therapies and extracellular vesicle approaches are promising in early studies. Rehabilitation is expanding with virtual reality, robotics, and neurostimulation to promote neuroplasticity. Personalized medicine approaches incorporating biomarkers and machine learning may refine prognostication and guide therapy. Global inequities persist, particularly in low-resource settings. Conclusions: TBI care is shifting toward individualized, multimodal, and technology-driven strategies. While emerging therapies show promise, high-quality randomized trials and global implementation strategies are needed to improve outcomes and reduce disparities. Full article
(This article belongs to the Special Issue Clinical Advances in Therapy of Trauma and Surgical Critical Care)
15 pages, 2172 KB  
Article
Comparative Proteomics of Seminal Exosomes Reveals Size-Exclusion Chromatography Outperforms Ultracentrifugation
by Ajaya K. Moharana, Manesh Kumar Panner Selvam, Soumya Ranjan Jena, Partha K. Chandra, David W. Busija, Luna Samanta and Suresh C. Sikka
Biomedicines 2025, 13(10), 2459; https://doi.org/10.3390/biomedicines13102459 - 9 Oct 2025
Abstract
Background: Extracellular vesicles, particularly exosomes, play a crucial role in cell–cell communication and as carriers of biomarkers. However, their use in clinical settings is limited due to a lack of standardized isolation and characterization. Ultracentrifugation (UC) is considered a gold standard for [...] Read more.
Background: Extracellular vesicles, particularly exosomes, play a crucial role in cell–cell communication and as carriers of biomarkers. However, their use in clinical settings is limited due to a lack of standardized isolation and characterization. Ultracentrifugation (UC) is considered a gold standard for exosome isolation but presents several limitations. Size-exclusion chromatography (SEC) has recently gained attention as a superior method, which offers better yield, purity, and protection of exosome physical properties. This study focused on optimizing the SEC method for isolation of exosomes from seminal plasma and comparing yield, quality, and proteome profiles with those obtained by UC. Methods: In this SEC method, seminal plasma (0.5 mL) was loaded onto a SEC column and collected in 13 fractions of 0.4 mL each. The physical and molecular characterization of exosomes was carried out using a ZetaView analyzer and Western blot, respectively. Further, SEC-isolated exosomes were used for proteomic profiling and functional bioinformatic analysis. Results: The second and third fractions had the highest concentration of exosomes with uniform size and strong expression of exosome markers. Also, comparative proteomic analysis identified 3315 proteins in SEC-isolated exosomes and 931 in UC-isolated exosomes, with 709 proteins in common. SEC-isolated exosomes showed greater overlap with Vesiclepedia’s and ExoCarta’s top 100 lists than UC-isolated exosomes (Vesiclepedia: 91 vs. 77 proteins, ExoCarta: 94 vs. 79). Proteins from SEC- and UC-isolated exosomes showed similar enrichment profiles across all three gene ontology categories. Conclusions: Overall, this optimized SEC protocol is a reliable alternative method to isolate seminal exosomes with high purity, supporting its potential applications in clinical and basic research. Full article
Show Figures

Figure 1

31 pages, 5259 KB  
Article
Innovative Therapy with Stem Cell-Derived Extracellular Vesicles on Cardiac Hypertrophy in an Animal Model of Atherosclerosis; Elucidation of the Molecular Mechanisms Involved in the Repair Process
by Alexandra Vîlcu, Ioana Karla Comarița, Alina Constantin, Nicoleta Alexandru, Miruna Nemecz, Florentina Safciuc, Florina Bojin, Virgil Păunescu and Adriana Georgescu
Biomolecules 2025, 15(10), 1424; https://doi.org/10.3390/biom15101424 - 7 Oct 2025
Viewed by 127
Abstract
(1) Background: The present study investigated the effects of extracellular vesicles (EVs), derived from adipose tissue stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMMSCs), on atherosclerosis-associated cardiac hypertrophy. (2) Methodology: The experiments were performed on hamsters divided into the following groups: [...] Read more.
(1) Background: The present study investigated the effects of extracellular vesicles (EVs), derived from adipose tissue stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMMSCs), on atherosclerosis-associated cardiac hypertrophy. (2) Methodology: The experiments were performed on hamsters divided into the following groups: control (C) fed with a standard diet; hypertensive–hyperlipidemic (HH) generated by combining a diet enriched with 3% cholesterol, 15% butter, and by gavage with 8% NaCl on a daily basis; HH groups injected with EVs (ADSCs) or EVs (BMMSCs), either transfected with Smad2/3 siRNAs or not (HH-EVs (ADSCs), HH-EVs (BMMSCs), HH-EVs (ADSCs) + Smad2/3siRNA, HH-EVs (BMMSCs) + Smad2/3siRNA); and HH group injected with Smad2/3 siRNAs (HH-Smad2/3siRNA). (3) Results: In comparison with the HH group, the findings demonstrated that treatment using EVs (ADSCs or BMMSCs), either with or without Smad2/3 siRNAs, resulted in several significant improvements in the following aspects: the plasma levels of cholesterol, LDL, triglycerides, TGF-β1, and Ang II were decreased; the left ventricular structure and function were recovered; inflammatory markers, ROS, COL1A, α-SMA, Cx43, MIF, ANF, and M1/M2 macrophages, were reduced; the level of key protein NF-κB p50 was diminished. (4) Conclusions: These findings underscore the therapeutic potential of mesenchymal stem cell-derived EVs in atherosclerosis-associated cardiac hypertrophy. Full article
Show Figures

Figure 1

21 pages, 4743 KB  
Article
Transcriptomic Investigation of FoxM1-Mediated Neuroprotection by hAEC-Derived Exosomes in an In Vitro Ischemic Stroke Model
by Dong Wang, Jiaxin Liu, Liang Wu, Xiubao Yang, Zhihao Fang, Zhong Sun and Dong Chen
Biology 2025, 14(10), 1368; https://doi.org/10.3390/biology14101368 - 7 Oct 2025
Viewed by 186
Abstract
Human amniotic epithelial cell-derived exosomes (hAECs-Exos) are nanoscale extracellular vesicles with neuroprotective, regenerative, and anti-inflammatory properties, presenting a promising cell-free therapeutic approach for ischemic stroke. This study investigated the protective effects of hAECs-Exos against ischemic injury and explored the underlying molecular mechanisms. An [...] Read more.
Human amniotic epithelial cell-derived exosomes (hAECs-Exos) are nanoscale extracellular vesicles with neuroprotective, regenerative, and anti-inflammatory properties, presenting a promising cell-free therapeutic approach for ischemic stroke. This study investigated the protective effects of hAECs-Exos against ischemic injury and explored the underlying molecular mechanisms. An optimized oxygen-glucose deprivation/reoxygenation (OGD/R) model was established in murine hippocampal HT22 neurons and BV2 microglial cells to simulate ischemic conditions. hAECs-Exos were successfully isolated and characterized via transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Confocal microscopy confirmed efficient exosome uptake by both cell types. Functional analyses revealed that hAECs-Exos significantly improved cell viability, suppressed pro-inflammatory cytokine release, alleviated oxidative stress, and modulated apoptosis-related proteins. RNA sequencing identified Forkhead box protein M1 (FoxM1) as a significantly upregulated transcription factor following hAECs-Exos treatment. Further experiments demonstrated that knockdown of FoxM1 in hAECs abolished the beneficial effects of exosomes on the viability of HT22 and BV2 cells and on the suppression of inflammation, oxidative stress, and apoptosis. These findings indicate that hAECs-Exos confer neuroprotection through FoxM1-dependent mechanisms. Together, our results highlight the therapeutic potential of hAECs-Exos as a safe, effective, and clinically translatable strategy for ischemic stroke treatment, warranting future validation in vivo and rescue experiments to fully elucidate FoxM1’s causal role. Full article
(This article belongs to the Special Issue Young Researchers in Neuroscience)
Show Figures

Figure 1

44 pages, 1304 KB  
Review
Circular RNAs in Cardiovascular Physiopathology: From Molecular Mechanisms to Therapeutic Opportunities
by Giorgia Capirossi, Sofia Brasini, Elena Tremoli, Andrea Binatti and Roberta Roncarati
Int. J. Mol. Sci. 2025, 26(19), 9725; https://doi.org/10.3390/ijms26199725 - 6 Oct 2025
Viewed by 345
Abstract
Circular RNAs are a class of stable non-coding RNAs generated through a back-splicing mechanism. They are now recognized as central players in cell function and are no longer considered byproducts of transcription. CircRNAs regulate gene expression at the transcriptional, post-transcriptional, and translational levels [...] Read more.
Circular RNAs are a class of stable non-coding RNAs generated through a back-splicing mechanism. They are now recognized as central players in cell function and are no longer considered byproducts of transcription. CircRNAs regulate gene expression at the transcriptional, post-transcriptional, and translational levels by interacting with various molecules. They act as sponges for miRNAs and proteins, molecular scaffolds, and can also be translated into peptides. Although advances in next-generation sequencing and PCR methods have improved their identification and quantification, technical and bioinformatic challenges remain. Increasing evidence shows their involvement in cardiovascular diseases such as heart failure, hypertrophy, fibrosis, and atherosclerosis, with protective or deleterious effects depending on the context. Given their presence in biological fluids and extracellular vesicles, they can be considered promising biomarkers, but their therapeutic applications are still under investigation. Future studies including a better understanding of their mechanisms of action, the development of standardized validation methods, and potential clinical applications (prevention, early diagnosis, personalized therapies) in diseases are still needed. This review provides an updated overview of the knowledge regarding circRNAs and their translational role in health and disease with a particular focus on cardiovascular diseases. Full article
(This article belongs to the Special Issue RNA-Based Regulation in Human Health and Disease)
Show Figures

Figure 1

28 pages, 51337 KB  
Article
Extracellular Vesicles Derived from Human Umbilical Cord-Mesenchymal Stem Cells Ameliorate Intervertebral Disc Degeneration
by Sobia Ekram, Faiza Ramzan, Asmat Salim, Marie Christine Durrieu and Irfan Khan
Biomedicines 2025, 13(10), 2420; https://doi.org/10.3390/biomedicines13102420 - 3 Oct 2025
Viewed by 400
Abstract
Background: Intervertebral disc degeneration (IVDD) is closely linked to low back pain (LBP), a leading cause of disability worldwide. IVDD is characterized by the loss of proteoglycans (PGs), extracellular matrix (ECM) degradation, and reduced hydration of the nucleus pulposus (NP). Extracellular vesicles (EVs) [...] Read more.
Background: Intervertebral disc degeneration (IVDD) is closely linked to low back pain (LBP), a leading cause of disability worldwide. IVDD is characterized by the loss of proteoglycans (PGs), extracellular matrix (ECM) degradation, and reduced hydration of the nucleus pulposus (NP). Extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) exhibit tissue repair and immunomodulatory effects and are emerging as promising cell-free therapeutics. Methods: We established a rat IVDD model via fluoroscopy-guided needle puncture of three consecutive coccygeal discs and confirmed degeneration through Alcian Blue and hematoxylin & eosin (H&E) staining. The gene expression of inflammatory and pain markers (ADRβ2, COMP, CXCL1, COX2, PPTA, MMP13, YKL40) was measured by qPCR. Subsequently, we implanted hUC-MSCs or EVs to evaluate their reparative potential. Results: Upregulation of inflammatory and pain genes in IVDD was associated with an immunomodulatory response. Tracking DiI-labelled hUC-MSCs and EVs revealed enhanced survival of hUC-MSCs, retention of EVs, and dispersion within rat tail discs; EVs showed greater retention than hUC-MSCs. Implanted EVs were internalized by NP cells and remained within degenerative IVDs. EVs passively diffused, accumulated at the injury site, interacted with host cells, and enhanced function, as shown by increased expression of human chondrocyte-related markers (SOX9, TGFβ1, TGFβ2, COL2) compared to hUC-MSC treatment. Histological analysis of two weeks post-transplantation showed NP cellular patterns resembling chondromas in treated discs. EVs integrated into and distributed within degenerated NP regions, with greater glycosaminoglycan (GAG) content. Conclusions: Overall, hUC-MSC EVs demonstrated superior regenerative capacity, supporting a safe, cell-free strategy for disc repair. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

31 pages, 1280 KB  
Review
Extracellular Vesicle (EV) Proteomics in Corneal Regenerative Medicine
by Zohreh Arabpour, Hanieh Niktinat, Firouze Hatami, Amal Yaghmour, Zarife Jale Yucel, Seyyedehfatemeh Ghalibafan, Hamed Massoumi, Zahra Bibak Bejandi, Majid Salehi, Elmira Jalilian, Mahmood Ghassemi, Victor H. Guaiquil, Mark Rosenblatt and Ali R. Djalilian
Proteomes 2025, 13(4), 49; https://doi.org/10.3390/proteomes13040049 - 3 Oct 2025
Viewed by 165
Abstract
Corneal regeneration has gained growing interest in recent years, largely due to the limitations of conventional treatments and the persistent shortage of donor tissue. Among the emerging strategies, extracellular vehicles (EVs), especially those derived from mesenchymal stromal cells (MSCs), have shown great promise [...] Read more.
Corneal regeneration has gained growing interest in recent years, largely due to the limitations of conventional treatments and the persistent shortage of donor tissue. Among the emerging strategies, extracellular vehicles (EVs), especially those derived from mesenchymal stromal cells (MSCs), have shown great promise as a cell-free therapeutic approach. These nanoscale vesicles contribute to corneal healing by modulating inflammation, supporting epithelial and stromal regeneration, and promoting nerve repair. Their therapeutic potential is largely attributed to the diverse and bioactive proteomic cargo they carry, including growth factors, cytokines, and proteins involved in extracellular matrix remodeling. This review presents a comprehensive examination of the proteomic landscape of EVs in the context of corneal regenerative medicine. We explore the biological functions of EVs in corneal epithelial repair, stromal remodeling, and neurodegeneration. In addition, we discuss advanced proteomic profiling techniques such as mass spectrometry (MS) and liquid chromatography–mass spectrometry (LC-MS/MS), which have been used to identify and characterize the protein contents of EVs. This review also compares the proteomic profiles of EVs derived from various MSC sources, including adipose tissue, bone marrow, and umbilical cord, and considers how environmental cues, such as hypoxia and inflammation, influence their protein composition. By consolidating current findings, this article aims to provide valuable insights for advancing the next generation of cell-free therapies for corneal repair and regeneration. Full article
(This article belongs to the Topic Multi-Omics in Precision Medicine)
Show Figures

Figure 1

15 pages, 1196 KB  
Review
Redox Balance, Mitohormesis, and Organ Stress in Type 2 Diabetes Mellitus: Mechanistic Insights and the Therapeutic Role of SGLT2 Inhibitors
by Toshiki Otoda, Ken-ichi Aihara and Tadateru Takayama
Diabetology 2025, 6(10), 111; https://doi.org/10.3390/diabetology6100111 - 3 Oct 2025
Viewed by 223
Abstract
Oxidative stress and chronic low-grade inflammation are recognized key drivers of diabetic complications. Lysosomal dysfunction, cellular senescence, and inter-organ stress signaling further aggravate the Redox–Inflammation–Organ Stress Axis in type 2 diabetes mellitus (T2DM). Recent studies suggest that reactive oxygen species (ROS) are not [...] Read more.
Oxidative stress and chronic low-grade inflammation are recognized key drivers of diabetic complications. Lysosomal dysfunction, cellular senescence, and inter-organ stress signaling further aggravate the Redox–Inflammation–Organ Stress Axis in type 2 diabetes mellitus (T2DM). Recent studies suggest that reactive oxygen species (ROS) are not always harmful. Through mitohormesis, mild and transient increases in ROS levels can trigger antioxidant defenses, strengthen mitochondrial function, and limit chronic inflammation. Evidence from caloric restriction, exercise, and ketone body studies supports this adaptive redox balance, underscoring the importance of maintaining a “hormetic window” rather than indiscriminate antioxidant supplementation. In our prospective study, sodium-glucose cotransporter 2 inhibitor treatment significantly reduced albuminuria and serum levels of inflammatory markers, e.g., tumor necrosis factor receptors 1 and 2, while paradoxically increasing urinary 8-hydroxy-2′-deoxyguanosine levels and biological antioxidant potential (BAP), suggestive of adaptive ROS responses consistent with mitohormesis. Concomitant glucagon-like peptide-1 receptor agonist use emerged as an independent explanatory factor for increased urinary levels of oxidative stress markers, suggesting that multiple metabolic therapies converge on shared hormetic pathways. Emerging evidence that stressed adipocytes can communicate mild ROS signals via extracellular vesicles expands this paradigm to inter-organ mitohormesis. Collectively, these insights caution against indiscriminate antioxidant use and underscore the therapeutic potential of controlled redox modulation to disrupt the vicious cycle of senescence, inflammation, and organ stress. Incorporating redox biomarkers like urinary 8-hydroxy-2′-deoxyguanosine, reactive oxygen metabolite derivatives, and BAP into clinical monitoring, alongside pharmacological and lifestyle interventions, may facilitate the realization of precision metabolic medicine for multi-organ protection in T2DM. Full article
Show Figures

Graphical abstract

38 pages, 2832 KB  
Review
From Bench to Brain: Translating EV and Nanocarrier Research into Parkinson’s Disease Therapies
by Barathan Muttiah and Nur Atiqah Haizum Abdullah
Biology 2025, 14(10), 1349; https://doi.org/10.3390/biology14101349 - 2 Oct 2025
Viewed by 197
Abstract
Parkinson’s disease (PD) is a disabling neurodegenerative disorder that is defined by progressive loss of dopaminergic neurons in the substantia nigra, deposition of α-synuclein aggregates, and chronic neuroinflammation. While symptomatic therapies have evolved, disease-modifying therapies remain elusive. Extracellular vesicles (EVs), particularly those derived [...] Read more.
Parkinson’s disease (PD) is a disabling neurodegenerative disorder that is defined by progressive loss of dopaminergic neurons in the substantia nigra, deposition of α-synuclein aggregates, and chronic neuroinflammation. While symptomatic therapies have evolved, disease-modifying therapies remain elusive. Extracellular vesicles (EVs), particularly those derived from mesenchymal stem cells (MSC-EVs), have emerged as promising therapeutic agents because they possess a natural ability to cross the blood–brain barrier and deliver bioactive cargo. Herein, we review the dual-edged function of EVs in PD pathogenesis: facilitating the transfer of toxic α-synuclein while also conferring neuroprotective signals through MSC-EVs. We outline the mechanisms of MSC-EV-mediated neuroprotection that include the regulation of oxidative stress, neuroinflammation, and autophagy. We also emphasize new nanocarrier systems designed to bypass delivery challenges in PD therapy. While preclinical studies are extremely encouraging, significant issues regarding scalability, standardization, and clinical translation must be resolved before realizing the ultimate therapeutic potential of EV-based and nanocarrier-based approaches to PD. Full article
Show Figures

Figure 1

21 pages, 1963 KB  
Review
Lipids, Tetraspanins, and Exosomes: Cell Factors in Orthoflavivirus Replication and Propagation
by Magda L. Benitez-Vega, Carlos D. Cordero-Rivera, Jose De Jesus Bravo-Silva, Ricardo Jimenez-Camacho, Carlos Noe Farfan-Morales, Jonathan Hernández-Castillo, Marcos Pérez-García and Rosa M. del Ángel
Viruses 2025, 17(10), 1321; https://doi.org/10.3390/v17101321 - 29 Sep 2025
Viewed by 241
Abstract
The cellular membrane is a dynamic structure composed of lipids and proteins organized into specialized domains that facilitate interactions between extracellular molecules and the intracellular environment. Tetraspanins are a family of transmembrane proteins involved in diverse cellular processes, including membrane stabilization and fusion, [...] Read more.
The cellular membrane is a dynamic structure composed of lipids and proteins organized into specialized domains that facilitate interactions between extracellular molecules and the intracellular environment. Tetraspanins are a family of transmembrane proteins involved in diverse cellular processes, including membrane stabilization and fusion, endocytosis, extracellular vesicle formation, and the organization of proteins and lipids at specific membrane sites known as Tetraspanin-Enriched Microdomains (TEMs). These lipid–protein interactions play a critical role in the replicative cycle of Orthoflavivirus, including dengue, Zika, and West Nile, by facilitating viral entry, replication, assembly, and egress. In addition, tetraspanins also regulate the biogenesis and function of extracellular vesicles, contributing to viral dissemination, persistent infection, and immune evasion. This review summarizes the current knowledge on the structural and functional aspects of tetraspanins, their interplay with lipids, and their emerging roles in the Orthoflavivirus replicative cycle. We also discuss how these insights may inform the development of antiviral strategies targeting membrane organization and virus–host interactions. Full article
(This article belongs to the Special Issue Dengue, Zika and Yellow Fever Virus Replication)
Show Figures

Figure 1

18 pages, 2404 KB  
Communication
Osteoporosis-Improving Effects of Extracellular Vesicles from Human Amniotic Membrane Stem Cells in Ovariectomized Rats
by Ka Young Kim, Khan-Erdene Tsolmon, Zolzaya Bavuu, Chan Ho Noh, Hyun-Soo Kim, Heon-Sang Jeong, Dongsun Park, Soon-Cheol Hong and Yun-Bae Kim
Int. J. Mol. Sci. 2025, 26(19), 9503; https://doi.org/10.3390/ijms26199503 - 28 Sep 2025
Viewed by 208
Abstract
Osteoporosis is a common skeletal disease characterized by decreased bone density, leading to bone fragility and fractures, especially in menopausal women. The purpose of this study is to confirm the anti-osteoporosis activity of stem cell extracellular vesicles (EVs) as a material of regenerative [...] Read more.
Osteoporosis is a common skeletal disease characterized by decreased bone density, leading to bone fragility and fractures, especially in menopausal women. The purpose of this study is to confirm the anti-osteoporosis activity of stem cell extracellular vesicles (EVs) as a material of regenerative medicine. Mesenchymal stem cells have a potential to differentiate into osteocytes, so directly reconstruct bone tissue or facilitate bone regeneration via paracrine effects. Paracrine effects are mediated by functional molecules delivered in EVs released from stem cells. EVs containing high concentrations of growth factors (GFs) and neurotrophic factors (NFs) were attained via hypoxia culture of human amniotic membrane stem cells (AMSCs). From the EVs with a mean diameter of 77 nm, 751 proteins and 15 species of lipids were identified. Sprague-Dawley rats were ovariectomized, and eight weeks later, intravenously injected with EVs at doses of 1 × 108, 3 × 108 or 1 × 109 particles/100 μL/body, weekly for eight weeks. One week after the final administration, the serum and bone parameters related to bone density were analyzed. Serum 17β-estradiol, alkaline phosphatase, and calcium levels that decreased in ovariectomized rats were restored by EVs in a dose-dependent manner. Bone parameters such as bone mineral density, bone mineral content, bone volume/tissue volume ratio, trabecular number, trabecular space, and bending strength were also improved by treatment with EVs. Such effects were confirmed by morphological findings of micro-computed tomography. Taken together, it is suggested that AMSC-EVs containing high concentrations of GFs and NFs preserve bone soundness by promoting bone regeneration and inhibiting bone resorption. Full article
(This article belongs to the Special Issue Stem Cells in Health and Disease: 3rd Edition)
Show Figures

Figure 1

11 pages, 4985 KB  
Article
Morphological Characterization of Plasma-Derived Nanoparticles Isolated by High-Speed Ultracentrifugation: A Scanning Electron Microscopy Study
by Lubov A. Kungurova, Alexander A. Artamonov, Evgeniy A. Grigoryev, Aleksei Yu. Aronov, Olga S. Vezo, Ruslan I. Glushakov and Kirill A. Kondratov
Int. J. Mol. Sci. 2025, 26(19), 9422; https://doi.org/10.3390/ijms26199422 - 26 Sep 2025
Viewed by 249
Abstract
Extracellular vesicles are critical mediators of intercellular signaling. Recent studies have revealed that, in addition to vesicular structures, smaller non-vesicular nanoparticles—termed exomeres and supermeres—also participate in intercellular communication. Detailed characterization of these nanoscale entities within biological systems is essential for elucidating their structural [...] Read more.
Extracellular vesicles are critical mediators of intercellular signaling. Recent studies have revealed that, in addition to vesicular structures, smaller non-vesicular nanoparticles—termed exomeres and supermeres—also participate in intercellular communication. Detailed characterization of these nanoscale entities within biological systems is essential for elucidating their structural and functional roles. Due to their sub-50 nm dimensions, high-resolution imaging modalities such as atomic force microscopy and electron microscopy are currently the primary techniques available for their visualization. In the present study, we employed low-voltage scanning electron microscopy to investigate the size of exomeres and supermeres isolated from human blood plasma via high-speed ultracentrifugation. Platelet-poor plasma was obtained from the blood of six healthy donors (two women and four men, aged 21–46 years). By ultracentrifugation (170,000× g for 4 h), the plasma was purified of extracellular vesicles. Two fractions were sequentially isolated: one containing exomeres (170,000× g for 20 h) and one containing supermeres (370,000× g for 20 h). The particles were examined using a Zeiss Auriga microscope with no sputter coating at an accelerating voltage of 0.4–0.5 kV. The images obtained from the fractions showed particles 10–50 nm in diameter, both individual particles and aggregated structures. The fractions were also slightly contaminated with larger particles, supposedly extracellular vesicles. Examining the fractions using a dynamic light scattering device additionally revealed the presence of particles 10–18 nm in size. It should be noted that the fractions obtained did indeed contain particles measuring 10–50 nm, which corresponds to the size of exomeres and supermeres. Low-voltage scanning electron microscopy allows for examination of the structure of exomeres and supermeres in blood plasma fractions. However, it should be noted that without the use of immunological identification, this method does not allow exomeres and supermeres to be distinguished from accompanying particles. It should also be noted that because the size of exomeres and supermeres is close to the detection threshold of low-voltage scanning electron microscopy, in such studies it is generally only possible to detect the size of these particles. Full article
Show Figures

Figure 1

22 pages, 14478 KB  
Article
Hepatocellular EVs Regulate Lipid Metabolism via SIRT1/SREBP−1c/PGC−1α Signaling in Primary Calf Hepatocytes
by Daoliang Zhang, Jishun Tang, Leihong Liu, Chang Zhao, Shibin Feng, Xichun Wang, Hongyan Ding and Yu Li
Int. J. Mol. Sci. 2025, 26(19), 9392; https://doi.org/10.3390/ijms26199392 - 25 Sep 2025
Viewed by 302
Abstract
SIRT1-SREBP−1c/PGC−1α signaling is involved in the production of non-esterified fatty acids (NEFAs) and liver lipid metabolism disorders in ketotic calf. The molecules contained in extracellular vesicles (EVs) regulate intercellular communication, and research on calf hepatocytes−derived EVs has become a hot spot. We hypothesized [...] Read more.
SIRT1-SREBP−1c/PGC−1α signaling is involved in the production of non-esterified fatty acids (NEFAs) and liver lipid metabolism disorders in ketotic calf. The molecules contained in extracellular vesicles (EVs) regulate intercellular communication, and research on calf hepatocytes−derived EVs has become a hot spot. We hypothesized that EVs in cell culture supernatants could affect lipid metabolism in hepatocyte models via SIRT1/SREBP−1c/PGC−1α signaling. Non-ketosis (NK, 0 mM NEFA) and clinical ketosis calf models (CK, 2.4 mM NEFAs) were established in vitro cultured calf hepatocytes and EVs were extracted from their supernatants as NK−derived EVs and CK−derived EVs, respectively. In vitro hepatocyte models, comprising a normal culture group (normal) and the group treated with NEFAs at 2.4 mM (2.4 NEFA), were treated with NK and CK−derived EVs. In addition, we transfected an SIRT1−overexpressing adenovirus into calf hepatocytes and determined the expression of key genes, enzymes, and proteins involved in the SIRT1/SREBP−1c/PGC−1α pathway. The results showed that the NK−derived EVs inhibited the expression of the SREBP−1c gene and protein and increased the expression of the SIRT1 and PGC−1α genes and proteins (p < 0.05). In contrast, CK−derived EVs induced lipid metabolism disorders in the normal hepatocyte group and aggravated NEFA-induced lipid metabolism imbalances in hepatocytes (p < 0.05). Moreover, overexpression of SIRT1 confirmed that EVs exert vital functions in hepatocyte lipid metabolism via SIRT1/SREBP−1c/PGC−1α signaling to regulate hepatocyte lipid metabolism. In summary, NK−derived EVs alleviated liver lipid metabolism disorders caused by NEFAs via modulation of SIRT1/SREBP−1c/PGC−1α signaling, while CK−derived EVs had the opposite effect. NK−derived EVs upregulated lipid oxidation-related genes and downregulated lipid synthesis-related genes, suggesting that NK−derived EVs could be used as biological extracts to alleviate lipid metabolism disorders in ketotic calf. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1609 KB  
Article
MicroRNAs in BM-MSC-Derived Extracellular Vesicles Promote Angiogenesis: An in Vitro Model Study
by Tomomi Kusakabe, Yoshiki Wada, Tomohiro Umezu, Masahiko Kuroda, Hitoshi Okochi, Toshiya Nishibe, Ayako Inoue, Takahiro Ochiya and Shoji Fukuda
Biomedicines 2025, 13(10), 2353; https://doi.org/10.3390/biomedicines13102353 - 25 Sep 2025
Viewed by 256
Abstract
Background/Objectives: Critical limb ischemia (CLI) is a severe manifestation of peripheral arterial disease with limited treatment options. Mesenchymal stromal cell (MSC) therapy has shown promise, but variability in efficacy suggests that paracrine mechanisms, particularly extracellular vesicle (EV)-associated microRNAs (miRNAs), may play a central [...] Read more.
Background/Objectives: Critical limb ischemia (CLI) is a severe manifestation of peripheral arterial disease with limited treatment options. Mesenchymal stromal cell (MSC) therapy has shown promise, but variability in efficacy suggests that paracrine mechanisms, particularly extracellular vesicle (EV)-associated microRNAs (miRNAs), may play a central role. Methods: We analyzed angiogenesis-related miRNAs in bone marrow-derived MSCs (BM-MSCs) and their EVs. Five angiomiRs (miR-9, miR-105, miR-126, miR-135b, miR-210) were examined; only miR-126, miR-135b, and miR-210 were consistently detected in EVs. Expression variability was assessed across donor age and individuals. Functional evaluation was performed using co-culture of BM-MSCs with human umbilical vein endothelial cells (HUVECs) and by transfecting synthetic miRNAs into HUVECs. Tube formation assays quantified angiogenesis, and angiogenesis-related protein expression (VEGF, FGF, Endoglin, uPA) was analyzed. Biological replicates (multiple donors) and technical replicates (duplicate assays) were clearly defined to ensure reproducibility. Results: Co-culture of BM-MSCs and HUVECs significantly enhanced angiogenesis in a dose-dependent manner. EVs selectively packaged angiogenic miRNAs, with expression levels varying according to donor age and inter-individual variability. Transfection of miR-126, miR-135b, and miR-210 individually enhanced tube formation, while the miR-126 + miR-135b combination and triple transfection elicited the strongest effects. Protein analysis confirmed upregulation of VEGF, FGF, and Endoglin. Notably, miR-210 did not further enhance angiogenesis beyond miR-126 + miR-135b but may exert context-dependent effects. Conclusions: This study demonstrates that BM-MSC-derived EV miRNAs promote angiogenesis via combinatorial mechanisms, providing mechanistic support for ongoing CLI therapy. Our findings highlight the translational potential of EV-based nucleic acid therapeutics for ischemic disease. Full article
Show Figures

Figure 1

25 pages, 1446 KB  
Review
Lactiplantibacillus plantarum as a Psychobiotic Strategy Targeting Parkinson’s Disease: A Review and Mechanistic Insights
by Wu-Lin Chen, Fu-Sheng Deng and Ying-Chieh Tsai
Nutrients 2025, 17(19), 3047; https://doi.org/10.3390/nu17193047 - 24 Sep 2025
Viewed by 1345
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the pathological aggregation of α-synuclein (α-syn), the loss of dopaminergic neurons, and the appearance of both motor and non-motor symptoms. Emerging evidence suggests a bidirectional influence of the microbiota–gut–brain axis in PD pathogenesis, [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the pathological aggregation of α-synuclein (α-syn), the loss of dopaminergic neurons, and the appearance of both motor and non-motor symptoms. Emerging evidence suggests a bidirectional influence of the microbiota–gut–brain axis in PD pathogenesis, where gut dysbiosis contributes to increased intestinal barrier permeability, immune activation, chronic inflammation, oxidative stress, α-syn misfolding, and neurotransmitter imbalance. These findings are increasing interest in probiotics as microbiota-targeted interventions that restore intestinal and systemic homeostasis. Lactiplantibacillus plantarum, a probiotic species with remarkable environmental adaptability and genomic plasticity, has emerged as a promising candidate for PD management. Preclinical studies demonstrate that specific Lpb. plantarum strains, such as PS128 or CCFM405, can beneficially modulate gut microbial communities, reinforce barrier integrity, regulate bile acid metabolism, attenuate neuroinflammatory responses, and improve motor deficits in PD-like mice. In addition, Lpb. plantarum DP189 or SG5 interventions can significantly reduce α-syn aggregation in the brain via suppression of oxidative stress, modulation of neuroinflammatory responses, and activation of neurotrophic factors. Recent evidence even suggests that Lpb. plantarum-derived extracellular vesicles may possess anti-PD activity by influencing host gene expression, neuronal function, and immune modulation. Although robust clinical data are still limited, preliminary clinical trials indicate that supplementation with PS128 or certain Lpb. plantarum-contained consortiums can alleviate constipation, improve gastrointestinal function, reduce systemic inflammation, and even ameliorate motor symptoms when used alongside standard dopaminergic therapies. In this review, we provide an integrated overview of preclinical, clinical, and mechanistic insights, and evaluate the translational potential of Lpb. plantarum as a safe and diet-based strategy to target the microbiota-gut–brain axis in PD. Full article
(This article belongs to the Special Issue Probiotics and Prebiotics: Past, Present and Future)
Show Figures

Figure 1

Back to TopTop