Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,212)

Search Parameters:
Keywords = functional crosslinking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1899 KiB  
Review
Extracellular Matrix (ECM) Aging in the Retina: The Role of Matrix Metalloproteinases (MMPs) in Bruch’s Membrane Pathology and Age-Related Macular Degeneration (AMD)
by Ali A. Hussain and Yunhee Lee
Biomolecules 2025, 15(8), 1059; https://doi.org/10.3390/biom15081059 - 22 Jul 2025
Abstract
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted [...] Read more.
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted as pro-forms and require activation to degrade ECM components. Their activity is modulated by tissue inhibitors of metalloproteinases (TIMPs). Aging disrupts this balance, leading to the accumulation of oxidized, cross-linked, and denatured matrix proteins, thereby impairing ECM function. Bruch’s membrane, a penta-laminated ECM structure in the eye, plays a critical role in supporting photoreceptor and retinal pigment epithelium (RPE) health. Its age-related thickening and decreased permeability are associated with impaired nutrient delivery and waste removal, contributing to the pathogenesis of age-related macular degeneration (AMD). In AMD, MMP dysfunction is characterized by the reduced activation and sequestration of MMPs, which further limits matrix turnover. This narrative review explores the structural and functional changes in Bruch’s membrane with aging, the role of MMPs in ECM degradation, and the relevance of these processes to AMD pathophysiology, highlighting emerging regulatory mechanisms and potential therapeutic targets. Full article
(This article belongs to the Special Issue Role of Matrix Metalloproteinase in Health and Disease)
Show Figures

Figure 1

17 pages, 6759 KiB  
Review
Novel Structural Janus Hydrogels for Battery Applications: Structure Design, Properties, and Prospects
by Ping Li and Qiushi Wang
Colloids Interfaces 2025, 9(4), 48; https://doi.org/10.3390/colloids9040048 - 19 Jul 2025
Viewed by 140
Abstract
Janus hydrogels, defined by their asymmetric architectures and bifunctional interfaces, have emerged as a transformative class of solid-state electrolytes in electrochemical energy storage. By integrating spatially distinct chemomechanical and ionic functionalities within a single matrix, they overcome the intrinsic limitations of conventional isotropic [...] Read more.
Janus hydrogels, defined by their asymmetric architectures and bifunctional interfaces, have emerged as a transformative class of solid-state electrolytes in electrochemical energy storage. By integrating spatially distinct chemomechanical and ionic functionalities within a single matrix, they overcome the intrinsic limitations of conventional isotropic hydrogels, offering enhanced interfacial stability, directional ion transport, and dendrite suppression in lithium- and zinc-based batteries. This mini-review systematically highlights recent breakthroughs in Janus hydrogel design, including interfacial polymerization and layer-by-layer assembly, which collectively enable precise modulation of crosslinking gradients and ion transport pathways. This review uniquely frames Janus hydrogels from a battery-centric and interface-engineering perspective. It elucidates key structure–function correlations, identifies current limitations in scalable fabrication and electrochemical longevity, and outlines future directions toward intelligent, multifunctional platforms for next-generation flexible and biointegrated energy systems. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Graphical abstract

11 pages, 2537 KiB  
Article
Hydrosilylation vs. Piers–Rubinsztajn: Synthetic Routes to Chemically Cross-Linked Hybrid Phosphazene-Siloxane 3D-Structures
by Andrey S. Esin, Anna I. Chernysheva, Ekaterina A. Yurasova, Ekaterina A. Karpova, Vyacheslav V. Shutov, Igor S. Sirotin, Mikhail A. Soldatov, Mikhail V. Gorlov and Oleg A. Raitman
Polymers 2025, 17(14), 1967; https://doi.org/10.3390/polym17141967 - 17 Jul 2025
Viewed by 235
Abstract
Exploration of new ways for the direct preparation of cross-linked structures is a significant problem in terms of materials for biomedical applications, lithium batteries electrolytes, toughening of thermosets (epoxy, benzoxazine, etc.) with interpenetrating polymer network, etc. The possibility to utilize hydrosilylation and Piers–Rubinsztajn [...] Read more.
Exploration of new ways for the direct preparation of cross-linked structures is a significant problem in terms of materials for biomedical applications, lithium batteries electrolytes, toughening of thermosets (epoxy, benzoxazine, etc.) with interpenetrating polymer network, etc. The possibility to utilize hydrosilylation and Piers–Rubinsztajn reactions to obtain cross-linked model phosphazene compounds containing eugenoxy and guaiacoxy groups has been studied. It was shown that Piers–Rubinsztajn reaction cannot be used to prepare phosphazene-based tailored polymer matrix due to the catalyst deactivation by nitrogen atoms of main chain units. Utilizing the hydrosilylation reaction, a series of cross-linked materials were obtained, and their properties were studied by NMR spectroscopy, FTIR, DSC, and TGA. Rheological characterizations of the prepared tailored matrices were conducted. This work showed a perspective of using eugenoxy functional groups for the preparation of three-dimensional hybrid phosphazene/siloxane-based materials for various applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 5516 KiB  
Article
Preparation of Barium Europium Phosphate and Its Performance in Acrylic Resin Anti-Corrosion Coating
by Xuying Deng, Jihu Wang, Shaoguo Wen, Jiale Zhao, Xue Zhang, Yicheng Zhao and Zhiying Deng
Polymers 2025, 17(14), 1966; https://doi.org/10.3390/polym17141966 - 17 Jul 2025
Viewed by 144
Abstract
Acrylic resin is a polymer with strong crosslinking density and strength, and it is commonly used as a matrix in water-based coatings. Barium europium phosphate (Ba3Eu(PO4)3) is a novel functional filler that is expected to provide anti-corrosive [...] Read more.
Acrylic resin is a polymer with strong crosslinking density and strength, and it is commonly used as a matrix in water-based coatings. Barium europium phosphate (Ba3Eu(PO4)3) is a novel functional filler that is expected to provide anti-corrosive effects to coatings. In this study, Ba3Eu(PO4)3 was prepared by the high-temperature solid-phase method and applied to acrylic anti-corrosion coatings. The influence of the molar ratio of reactants on Ba3Eu(PO4)3 purity was studied. The anti-corrosion performance of the coating was investigated. It was found that, when BaCO3:Eu2O3:(NH4)H2PO4 = 3:0.5:3 and the reaction was carried out at 950 °C for 1000 min, high-purity Ba3Eu(PO4)3 can be obtained, according to XRD and EDS tests. SEM shows that Ba3Eu(PO4)3 has good crystal morphology and a porous morphology. TEM revealed that its structure was intact. When Ba3Eu(PO4)3 was added to a relative resin content of 5 wt%, the anti-corrosion performance of the coating was the best after 168 h, with the lowest Tafel current density of 9.616 μA/cm2 and the largest capacitance arc curvature radius. The salt spray resistance test showed that the corrosion resistance of the 5 wt% Ba3Eu(PO4)3 coating was also the best, which is consistent with the results of the electrochemical test. Ba3Eu(PO4)3 as a pigment and filler can effectively improve the anti-corrosion performance of water-based industrial coatings. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 2695 KiB  
Article
Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations
by Pei-Wen Long, Shi-Yong Liu, Yi-Xin Lin, Lin-Feng Mo, Yu Wu, Long-Qing Li, Le-Yi Pan, Ming-Yu Jin and Jing-Kun Yan
Foods 2025, 14(14), 2484; https://doi.org/10.3390/foods14142484 - 16 Jul 2025
Viewed by 159
Abstract
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), [...] Read more.
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), gel strength (7.01–240.51% enhancement), textural properties, viscoelasticity, and thermal stability. The incorporation of CUR facilitated the unfolding and cross-linking of SPI molecules, leading to enhanced network formation. Notably, SPI composite gels containing CUR with an ordered triple-helix bundled structure exhibited superior gelling performance compared to other helical conformations, characterized by a more compact and uniform microstructure. This improvement was attributed to stronger hydrogen bonding interactions between the triple-helix CUR and SPI molecules. Furthermore, the entanglement of triple-helix CUR with SPI promoted the formation of a denser and more homogeneous interpenetrating polymer network. These findings indicate that triple-helix CUR is highly effective in optimizing the gelling characteristics of heat-induced SPI gels. This study provides new insights into the structure–function relationship of CUR in SPI-based gel systems, offering potential strategies for designing high-performance protein–polysaccharide composite gels. The findings establish a theoretical foundation for applications in the food industry. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Figure 1

34 pages, 3610 KiB  
Review
Metal–Organic Frameworks as Fillers in Porous Organic Polymer-Based Hybrid Materials: Innovations in Composition, Processing, and Applications
by Victor Durán-Egido, Daniel García-Giménez, Juan Carlos Martínez-López, Laura Pérez-Vidal and Javier Carretero-González
Polymers 2025, 17(14), 1941; https://doi.org/10.3390/polym17141941 - 15 Jul 2025
Viewed by 485
Abstract
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety [...] Read more.
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety of defined crystalline structures and enhanced separation characteristics. The combination (or hybridization) with PIMs gives rise to mixed-matrix membranes (MMMs) with improved permeability, selectivity, and long-term stability. However, interfacial compatibility remains a key limitation, often addressed through polymer functionalization or controlled dispersion of the MOF phase. MOF/COF hybrids are more used as biochemical sensors with elevated sensitivity, catalytic applications, and wastewater remediation. They are also very well known in the gas sorption and separation field, due to their tunable porosity and high electrical conductivity, which also makes them feasible for energy storage applications. Last but not less important, hybrids with other POPs, such as hyper-crosslinked polymers (HCPs), covalent triazine frameworks (CTFs), or conjugated microporous polymers (CMPs), offer enhanced functionality. MOF/HCP hybrids combine ease of synthesis and chemical robustness with tunable porosity. MOF/CTF hybrids provide superior thermal and chemical stability under harsh conditions, while MOF/CMP hybrids introduce π-conjugation for enhanced conductivity and photocatalytic activity. These and other findings confirm the potential of MOF-POP hybrids as next-generation materials for gas separation and carbon capture applications. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials, 4th Edition)
Show Figures

Figure 1

14 pages, 1518 KiB  
Article
Synthesis of Multifunctional Hyperbranched Polymers via Atom Transfer Radical Self-Condensing Vinyl Polymerization for Applications in Polyurethane-Based Anion Exchange Membranes
by Nhat Hong Nguyen, Chih-Feng Huang and Tongsai Jamnongkan
Polymers 2025, 17(14), 1930; https://doi.org/10.3390/polym17141930 - 13 Jul 2025
Viewed by 329
Abstract
Anion exchange membranes (AEMs) are vital for electrochemical energy devices such as alkaline fuel cells and water electrolyzers, enabling the use of non-precious metal catalysts despite challenges from alkaline degradation. Hyperbranched polymers (hbPs) with their globular structure, high functional group density, and simple [...] Read more.
Anion exchange membranes (AEMs) are vital for electrochemical energy devices such as alkaline fuel cells and water electrolyzers, enabling the use of non-precious metal catalysts despite challenges from alkaline degradation. Hyperbranched polymers (hbPs) with their globular structure, high functional group density, and simple synthesis, offer a promising platform for enhancing transport and stability. In this study, multifunctional hbPs were synthesized from 4-vinylbenzyl chloride (VBC) and 2-hydroxyethyl methacrylate (HEMA) via atom transfer radical self-condensing vinyl polymerization (ATR-SCVP) and crosslinked into polyurethane-based AEMs. Characterization confirmed successful copolymerization and crosslinking, with excellent alkaline stability. Membranes crosslinked with higher molecular weight (MW) and VBC-richer hbPs (e.g., OH-hbP1-PU) exhibited high water uptake (75%) but low ion-exchange capacity (1.54 mmol/g) and conductivity (186 µS/cm), attributed to steric hindrance and insufficient ionic network connectivity. In contrast, OH-hbP2-PU exhibited optimal properties, with the highest OH conductivity (338 µS/cm) and IEC (2.64 mmol/g), highlighting a balanced structure for efficient ion transport. This work offers a tunable strategy for high-performance AEM development through tailored hbP architecture. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Graphical abstract

20 pages, 2935 KiB  
Article
Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems
by Kattya Rodríguez, Diego Catalán, Tatiana Beldarraín-Iznaga, Juan Esteban Reyes-Parra, Keyla Tortoló Cabañas, Marbelis Valdés Veliz and Ricardo Villalobos-Carvajal
Foods 2025, 14(14), 2455; https://doi.org/10.3390/foods14142455 - 12 Jul 2025
Viewed by 288
Abstract
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W [...] Read more.
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W2) stabilized with pectin-protein complexes on the viability of Limosilactobacillus reuteri (Lr) under thermal treatment (95 °C, 30 min), storage (4 °C, 28 d), and simulated gastrointestinal conditions. Emulsions were prepared with whey protein isolate (WPI) or sodium caseinate (Cas) as outer aqueous phase emulsifiers, followed by pectin coating and ionic gelation with calcium. All emulsions were stable and exhibited high encapsulation efficiency (>92%) with initial viable counts of 9 log CFU/mL. Double emulsions coated with ionically gelled pectin showed the highest protection against heat stress and gastrointestinal conditions due to the formation of a denser layer with lower permeability, regardless of the type of protein used as an emulsifier. At the end of storage, Lr viability exceeded 7 log CFU/mL in cross-linked pectin-coated microcapsules. These microcapsules maintained >6 log CFU/mL after thermal treatment, while viability remained >6.5 log CFU/mL during digestion and >5.0 log CFU/mL after consecutive heat treatment and simulated digestion. According to these results, the combination of double emulsion, multilayer formation and ionic crosslinking emerges as a promising microencapsulation technique. This approach offers enhanced protection for probiotics against extreme thermal and digestive conditions compared to previous studies that only use double emulsions. These findings support the potential application of this encapsulation method for the formulation of functional bakeable products. Full article
Show Figures

Graphical abstract

26 pages, 3391 KiB  
Article
Poly(hydromethylsiloxane) Networks Functionalized by N-allylaniline
by Anita Wysopal, Maria Owińska, Ewa Stodolak-Zych, Mariusz Gackowski and Magdalena Hasik
Int. J. Mol. Sci. 2025, 26(14), 6700; https://doi.org/10.3390/ijms26146700 - 12 Jul 2025
Viewed by 137
Abstract
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and [...] Read more.
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and post-functionalized by N-allylaniline (Naa). Non-porous networks were obtained by cross-linking PHMS in the bulk and porous—in W/O high-internal-phase emulsion (HIPE). Linear divinyldisiloxane (M2Vi) or cyclic tetravinyltetrasiloxane (D4Vi) were used as cross-linkers. Studies confirmed the expected non-porous and open macroporous microstructure of the initial networks. They also showed that functionalization by Naa was more efficient for the non-porous networks that swelled to lower extents in toluene and contained higher amounts of Si-H groups than the porous ones. In the reactions with benzyl chloride or 1-bromoctane, some amino groups present in these materials were transformed to ammonium groups. It was found that activity against Gram-positive S. aureus and Gram-negative E. coli bacteria depended on the functionalization degree, cross-linking level and the microstructure of the modified materials. Full article
Show Figures

Figure 1

16 pages, 3149 KiB  
Article
Electrochemical Sensing of Dopamine Neurotransmitter by Deep Eutectic Solvent–Carbon Black–Crosslinked Chitosan Films: Charge Transfer Kinetic Studies and Biological Sample Analysis
by Alencastro Gabriel Ribeiro Lopes, Rafael Matias Silva, Orlando Fatibello-Filho and Tiago Almeida Silva
Chemosensors 2025, 13(7), 254; https://doi.org/10.3390/chemosensors13070254 - 12 Jul 2025
Viewed by 286
Abstract
Dopamine (DA) is a neurotransmitter responsible for important functions in mammals’ bodies, including mood, movement and motivation. High or low dopamine levels are associated mainly with mental illnesses such as schizophrenia and depression. Therefore, contributing to the development of electrochemical devices to precisely [...] Read more.
Dopamine (DA) is a neurotransmitter responsible for important functions in mammals’ bodies, including mood, movement and motivation. High or low dopamine levels are associated mainly with mental illnesses such as schizophrenia and depression. Therefore, contributing to the development of electrochemical devices to precisely determine the DA levels in urine samples, a simple and low-cost sensor is proposed in this work. The proposed sensor design is based on crosslinked chitosan films combining carbon black (CB) and deep eutectic solvents (DESs), incorporated onto the surface of a glassy carbon electrode (GCE). Fourier Transform Infrared Spectroscopy (FT-IR) was applied to characterize the produced DESs and their precursors, while the films were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor modified with CB and DES–ethaline (DES (ETHA)-CB/GCE) showed a significantly enhanced analytical signal for DA using differential pulse voltammetry under the optimized working conditions. Moreover, a better heterogeneous electron transfer rate constant (k0) was obtained, about 45 times higher than that of the bare GCE. The proposed sensor achieved a linear response range of 0.498 to 26.8 µmol L−1 and limits of detection and quantification of 80.7 and 269 nmol L−1, respectively. Moreover, the sensor was successfully applied in the quantification of DA in the synthetic urine samples, with recovery results close to 100%. Furthermore, the sensor presented good precision, as shown from the repeatability tests. The presented method to electrochemically detect DA has proven to be efficient and simple compared to the conventional methods commonly reported. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

21 pages, 3238 KiB  
Article
Fingerprinting Agro-Industrial Waste: Using Polysaccharides from Cell Walls to Biomaterials
by Débora Pagliuso, Adriana Grandis, Amanda de Castro Juraski, Adriano Rodrigues Azzoni, Maria de Lourdes Teixeira de Morais Polizeli, Helio Henrique Villanueva, Guenther Carlos Krieger Filho and Marcos Silveira Buckeridge
Sustainability 2025, 17(14), 6362; https://doi.org/10.3390/su17146362 - 11 Jul 2025
Viewed by 224
Abstract
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as [...] Read more.
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as a primary carbon source for bioenergy and biorefinery processes. This structure contains a cellulose core, where lignin and hemicelluloses are crosslinked and embedded in a pectin matrix, forming diverse polysaccharide architectures across different species and tissues. Nineteen agro-industrial waste products were analyzed for their potential use in a circular economy. The analysis included cell wall composition, saccharification, and calorific potential. Thermal capacity and degradation were similar among the evaluated wastes. The feedstocks of corn cob, corn straw, soybean husk, and industry paper residue exhibited a higher saccharification capacity despite having lower lignin and uronic acid contents, with cell walls comprising 30% glucose and 60% xylose. Therefore, corn, soybeans, industrial paper residue, and sugarcane are more promising for bioethanol production. Additionally, duckweed, barley, sorghum, wheat, rice, bean, and coffee residues could serve as feedstocks for other by-products in green chemistry, generating valuable products. Our findings show that agro-industrial residues display a variety of polymers that are functional for various applications in different industry sectors. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

20 pages, 3537 KiB  
Article
A New Sulfur-Containing Copolymer Created Through the Thermally Induced Radical Copolymerization of Elemental Sulfur with N2,N2-Diallylmelamine Comonomer for Potential CO2 Capture
by Dharrinesh Narendiran, Nurul Hazirah Sumadi, Ali Shaan Manzoor Ghumman, Noor Ashikin Mohamad, Mohamed Mahmoud Nasef, Amin Abbasi and Rashid Shamsuddin
J. Compos. Sci. 2025, 9(7), 362; https://doi.org/10.3390/jcs9070362 - 11 Jul 2025
Viewed by 329
Abstract
Sulfur-containing polymers are unique sustainable materials with promise for the development of various adsorbents for environmental remediation. However, they have not been explored for CO2 capture despite reports on its ability to decontaminate various aqueous pollutants. This study reports on the single-step [...] Read more.
Sulfur-containing polymers are unique sustainable materials with promise for the development of various adsorbents for environmental remediation. However, they have not been explored for CO2 capture despite reports on its ability to decontaminate various aqueous pollutants. This study reports on the single-step synthesis of a diamine-functionalized sulfur-containing copolymer by the thermally induced radical copolymerization of N2,N2-Diallylmelamine (NDAM), a difunctional monomer, with sulfur and explores its use for CO2 capture. The influence of reaction parameters such as the weight ratios of sulfur to NDAM, reaction temperature, time, and the addition of a porogen on the properties of aminated copolymer was investigated. The resulting copolymers were characterized using FTIR, TGA, DSC, SEM, XRD, and BET surface area analyses. The incorporation of NDAM directly imparted amine functionality while stabilizing the polysulfide chains by crosslinking, leading to a thermoset copolymer with an amorphous structure. The addition of a NaCl particle porogen to the S/NDAM mixture generated a mesoporous structure, enabling the resulting copolymer to be tested for CO2 adsorption under varying pressures, leading to an adsorption capacity as high as 517 mg/g at 25 bar. This work not only promotes sustainable hybrid materials that advance green chemistry while aiding CO2 mitigation efforts but also adds value to the abundant amount of sulfur by-products from petroleum refineries. Full article
Show Figures

Figure 1

13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 222
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

14 pages, 5582 KiB  
Article
Silencing Miniature Gene Disrupts Elytral and Hindwing Structures in Leptinotarsa decemlineata
by Man-Hong Cheng, Kai-Yun Fu, Wei Zhou, Ji-Feng Shi and Wen-Chao Guo
Insects 2025, 16(7), 700; https://doi.org/10.3390/insects16070700 - 8 Jul 2025
Viewed by 398
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata, CPB) is a major pest in potato crops, notorious for its rapid dispersal and insecticide resistance, which are enabled by its robust elytra and flight-capable hindwings. The Miniature (Mi) gene, encoding a protein [...] Read more.
The Colorado potato beetle (Leptinotarsa decemlineata, CPB) is a major pest in potato crops, notorious for its rapid dispersal and insecticide resistance, which are enabled by its robust elytra and flight-capable hindwings. The Miniature (Mi) gene, encoding a protein with a zona pellucida (ZP) domain, is involved in wing development and cuticle integrity, yet its functional role in beetles remains underexplored. In this study, we cloned and characterized the LdMi gene in the CPB and investigated its function using RNA interference (RNAi), morphological analyses, and spectroscopy. LdMi encodes a 146.35 kDa transmembrane protein with a conserved ZP domain, clusters with coleopteran homologs, and exhibits relative conservation across insect species. Expression profiling showed high LdMi transcript levels in the hindwings, the elytra, and the pupal stages. RNAi knockdown in fourth-instar larvae resulted in severe eclosion defects, including malformed wings and reduced adult weight. Scanning electron microscopy (SEM) revealed disrupted elytral patterns and deformed hindwing veins in knockdown individuals. Spectroscopic analyses using Fourier-transform infrared (FTIR) and Raman spectroscopy indicated a reduction in protein–chitin crosslinking and diminished hydrogen bonding, suggesting compromised cuticular integrity. These results highlight the essential role of LdMi in cuticle formation and the surface morphology of the elytra and hindwings, offering new insights into ZP domain proteins in insects. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

23 pages, 1771 KiB  
Review
Reactive Nitrogen Species and Fibrinogen: Exploring the Effects of Nitration on Blood Clots
by Francesca Nencini, Serena Borghi, Elvira Giurranna, Ilenia Barbaro, Niccolò Taddei, Claudia Fiorillo and Matteo Becatti
Antioxidants 2025, 14(7), 825; https://doi.org/10.3390/antiox14070825 - 4 Jul 2025
Viewed by 285
Abstract
Reactive nitrogen species (RNS), particularly peroxynitrite (ONOO), play a central role in post-translational modifications (PTMs) of proteins, including fibrinogen, a key component of the coagulation cascade. This review explores the structural and functional consequences of fibrinogen nitration, with a focus on [...] Read more.
Reactive nitrogen species (RNS), particularly peroxynitrite (ONOO), play a central role in post-translational modifications (PTMs) of proteins, including fibrinogen, a key component of the coagulation cascade. This review explores the structural and functional consequences of fibrinogen nitration, with a focus on its impact on clot formation, morphology, mechanical stability, and fibrinolysis. Nitration, primarily targeting tyrosine residues within functional domains of the Aα, Bβ, and γ chains, induces conformational changes, dityrosine crosslinking, and aggregation into high molecular weight species. These modifications result in altered fibrin polymerization, the formation of porous and disorganized clot networks, reduced mechanical resilience, and variable susceptibility to fibrinolysis. Moreover, nitrated fibrinogen may affect interactions with platelets and endothelial cells, although current evidence remains limited. Emerging clinical studies support its role as both a prothrombotic mediator and a potential biomarker of oxidative stress in cardiovascular and inflammatory diseases. Finally, we explore both pharmacological interventions, such as NOX inhibitors, and natural antioxidant strategies at counteracting fibrinogen nitration. Overall, fibrinogen nitration emerges as a critical molecular event linking oxidative stress to thrombotic risk. Full article
Show Figures

Figure 1

Back to TopTop