Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (956)

Search Parameters:
Keywords = fully connected layers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 21564 KiB  
Article
Remote Visualization and Optimization of Fluid Dynamics Using Mixed Reality
by Sakshi Sandeep More, Brandon Antron, David Paeres and Guillermo Araya
Appl. Sci. 2025, 15(16), 9017; https://doi.org/10.3390/app15169017 - 15 Aug 2025
Abstract
This study presents an innovative pipeline for processing, compressing, and remotely visualizing large-scale numerical simulations of fluid dynamics in a virtual wind tunnel (VWT), leveraging virtual and augmented reality (VR/AR) for enhanced analysis and high-end visualization. The workflow addresses the challenges of handling [...] Read more.
This study presents an innovative pipeline for processing, compressing, and remotely visualizing large-scale numerical simulations of fluid dynamics in a virtual wind tunnel (VWT), leveraging virtual and augmented reality (VR/AR) for enhanced analysis and high-end visualization. The workflow addresses the challenges of handling massive databases generated using Direct Numerical Simulation (DNS) while maintaining visual fidelity and ensuring efficient rendering for user interaction. Fully immersive visualization of supersonic (Mach number 2.86) spatially developing turbulent boundary layers (SDTBLs) over strong concave and convex curvatures was achieved. The comprehensive DNS data provides insights on the transport phenomena inside turbulent boundary layers under strong deceleration or an Adverse Pressure Gradient (APG) caused by concave walls as well as strong acceleration or a Favorable Pressure Gradient (FPG) caused by convex walls under different wall thermal conditions (i.e., Cold, Adiabatic, and Hot walls). The process begins with a .vts file input from a DNS, which is visualized using ParaView software. These visualizations, representing different fluid behaviors based on a DNS with a high spatial/temporal resolution and employing millions of “numerical sensors”, are treated as individual time frames and exported in GL Transmission Format (GLTF), which is a widely used open-source file format designed for efficient transmission and loading of 3D scenes. To support the workflow, optimized Extract–Transform–Load (ETL) techniques were implemented for high-throughput data handling. Conversion of exported Graphics Library Transmission Format (GLTF) files into Graphics Library Transmission Format Binary files (typically referred to as GLB) reduced the storage by 25% and improved the load latency by 60%. This research uses Unity’s Profile Analyzer and Memory Profiler to identify performance limitations during contour rendering, focusing on the GPU and CPU efficiency. Further, immersive VR/AR analytics are achieved by connecting the processed outputs to Unity engine software and Microsoft HoloLens Gen 2 via Azure Remote Rendering cloud services, enabling real-time exploration of fluid behavior in mixed-reality environments. This pipeline constitutes a significant advancement in the scientific visualization of fluid dynamics, particularly when applied to datasets comprising hundreds of high-resolution frames. Moreover, the methodologies and insights gleaned from this approach are highly transferable, offering potential applications across various other scientific and engineering disciplines. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 2407 KiB  
Article
KAN-and-Attention Based Precoding for Massive MIMO ISAC Systems
by Hanyue Wang, Wence Zhang and Zhiguang Zhang
Electronics 2025, 14(16), 3232; https://doi.org/10.3390/electronics14163232 - 14 Aug 2025
Abstract
Precoding technology is one of the core technologies that significantly impacts the performance of massive Multiple-Input Multiple-Output (MIMO) Integrated Sensing and Communication (ISAC) systems. Traditional precoding methods, due to their inherent limitations, struggle to adapt to complex channel conditions. Although more advanced neural [...] Read more.
Precoding technology is one of the core technologies that significantly impacts the performance of massive Multiple-Input Multiple-Output (MIMO) Integrated Sensing and Communication (ISAC) systems. Traditional precoding methods, due to their inherent limitations, struggle to adapt to complex channel conditions. Although more advanced neural network-based precoding schemes can accommodate complex channel environments, they suffer from high computational complexity. To address these issues, this paper proposes a KAN-and-Attention based ISAC Precoding (KAIP) scheme for massive MIMO ISAC systems. KAIP extracts channel interference features through multi-layer attention mechanisms and leverages the nonlinear fitting capability of the Kolmogorov–Arnold Network (KAN) to generate precoding matrices, significantly enhancing system performance. Simulation results demonstrate that compared with conventional precoding schemes, the proposed KAIP scheme exhibits significant performance enhancements, including a 70% increase in sum rate (SR) and a 96% decrease in computing time (CT) compared with fully connected neural network (FCNN) based precoding, and a 4% improvement in received power (RP) over the precoding based on convolutional neural network (CNN). Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 443 KiB  
Article
Frame-Wise Steganalysis Based on Mask-Gating Attention and Deep Residual Bilinear Interaction Mechanisms for Low-Bit-Rate Speech Streams
by Congcong Sun, Azizol Abdullah, Normalia Samian and Nuur Alifah Roslan
J. Cybersecur. Priv. 2025, 5(3), 54; https://doi.org/10.3390/jcp5030054 - 4 Aug 2025
Viewed by 246
Abstract
Frame-wise steganalysis is a crucial task in low-bit-rate speech streams that can achieve active defense. However, there is no common theory on how to extract steganalysis features for frame-wise steganalysis. Moreover, existing frame-wise steganalysis methods cannot extract fine-grained steganalysis features. Therefore, in this [...] Read more.
Frame-wise steganalysis is a crucial task in low-bit-rate speech streams that can achieve active defense. However, there is no common theory on how to extract steganalysis features for frame-wise steganalysis. Moreover, existing frame-wise steganalysis methods cannot extract fine-grained steganalysis features. Therefore, in this paper, we propose a frame-wise steganalysis method based on mask-gating attention and bilinear codeword feature interaction mechanisms. First, this paper utilizes the mask-gating attention mechanism to dynamically learn the importance of the codewords. Second, the bilinear codeword feature interaction mechanism is used to capture an informative second-order codeword feature interaction pattern in a fine-grained way. Finally, multiple fully connected layers with a residual structure are utilized to capture higher-order codeword interaction features while preserving lower-order interaction features. The experimental results show that the performance of our method is better than that of the state-of-the-art frame-wise steganalysis method on large steganography datasets. The detection accuracy of our method is 74.46% on 1000K testing samples, whereas the detection accuracy of the state-of-the-art method is 72.32%. Full article
(This article belongs to the Special Issue Multimedia Security and Privacy)
Show Figures

Figure 1

12 pages, 1329 KiB  
Article
Steady-State Visual-Evoked-Potential–Driven Quadrotor Control Using a Deep Residual CNN for Short-Time Signal Classification
by Jiannan Chen, Chenju Yang, Rao Wei, Changchun Hua, Dianrui Mu and Fuchun Sun
Sensors 2025, 25(15), 4779; https://doi.org/10.3390/s25154779 - 3 Aug 2025
Viewed by 311
Abstract
In this paper, we study the classification problem of short-time-window steady-state visual evoked potentials (SSVEPs) and propose a novel deep convolutional network named EEGResNet based on the idea of residual connection to further improve the classification performance. Since the frequency-domain features extracted from [...] Read more.
In this paper, we study the classification problem of short-time-window steady-state visual evoked potentials (SSVEPs) and propose a novel deep convolutional network named EEGResNet based on the idea of residual connection to further improve the classification performance. Since the frequency-domain features extracted from short-time-window signals are difficult to distinguish, the EEGResNet starts from the filter bank (FB)-based feature extraction module in the time domain. The FB designed in this paper is composed of four sixth-order Butterworth filters with different bandpass ranges, and the four bandwidths are 19–50 Hz, 14–38 Hz, 9–26 Hz, and 3–14 Hz, respectively. Then, the extracted four feature tensors with the same shape are directly aggregated together. Furthermore, the aggregated features are further learned by a six-layer convolutional neural network with residual connections. Finally, the network output is generated through an adaptive fully connected layer. To prove the effectiveness and superiority of our designed EEGResNet, necessary experiments and comparisons are conducted over two large public datasets. To further verify the application potential of the trained network, a virtual simulation of brain computer interface (BCI) based quadrotor control is presented through V-REP. Full article
(This article belongs to the Special Issue Intelligent Sensor Systems in Unmanned Aerial Vehicles)
Show Figures

Figure 1

21 pages, 7677 KiB  
Article
Hyperspectral Imaging Combined with a Dual-Channel Feature Fusion Model for Hierarchical Detection of Rice Blast
by Yuan Qi, Tan Liu, Songlin Guo, Peiyan Wu, Jun Ma, Qingyun Yuan, Weixiang Yao and Tongyu Xu
Agriculture 2025, 15(15), 1673; https://doi.org/10.3390/agriculture15151673 - 2 Aug 2025
Viewed by 396
Abstract
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to [...] Read more.
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to achieve effective identification of rice blast. The DCFM model extracted spectral features using successive projection algorithm (SPA), random frog (RFrog), and competitive adaptive reweighted sampling (CARS), and extracted spatial features from spectral images using MobileNetV2 combined with the convolutional block attention module (CBAM). Then, these features were fused using the feature fusion adaptive conditioning module in DCFM and input into the fully connected layer for disease identification. The results show that the model combining spectral and spatial features was superior to the classification models based on single features for rice blast detection, with OA and Kappa higher than 90% and 88%, respectively. The DCFM model based on SPA screening obtained the best results, with an OA of 96.72% and a Kappa of 95.97%. Overall, this study enables the early and accurate identification of rice blast, providing a rapid and reliable method for rice disease monitoring and management. It also offers a valuable reference for the detection of other crop diseases. Full article
Show Figures

Figure 1

20 pages, 2779 KiB  
Article
Complex Network Analytics for Structural–Functional Decoding of Neural Networks
by Jiarui Zhang, Dongxiao Zhang, Hu Lou, Yueer Li, Taijiao Du and Yinjun Gao
Appl. Sci. 2025, 15(15), 8576; https://doi.org/10.3390/app15158576 - 1 Aug 2025
Viewed by 271
Abstract
Neural networks (NNs) achieve breakthroughs in computer vision and natural language processing, yet their “black box” nature persists. Traditional methods prioritise parameter optimisation and loss design, overlooking NNs’ fundamental structure as topologically organised nonlinear computational systems. This work proposes a complex network theory [...] Read more.
Neural networks (NNs) achieve breakthroughs in computer vision and natural language processing, yet their “black box” nature persists. Traditional methods prioritise parameter optimisation and loss design, overlooking NNs’ fundamental structure as topologically organised nonlinear computational systems. This work proposes a complex network theory framework decoding structure–function coupling by mapping convolutional layers, fully connected layers, and Dropout modules into graph representations. To overcome limitations of heuristic compression techniques, we develop a topology-sensitive adaptive pruning algorithm that evaluates critical paths via node strength centrality, preserving structural–functional integrity. On CIFAR-10, our method achieves 55.5% parameter reduction with only 7.8% accuracy degradation—significantly outperforming traditional approaches. Crucially, retrained pruned networks exceed original model accuracy by up to 2.63%, demonstrating that topology optimisation unlocks latent model potential. This research establishes a paradigm shift from empirical to topologically rationalised neural architecture design, providing theoretical foundations for deep learning optimisation dynamics. Full article
(This article belongs to the Special Issue Artificial Intelligence in Complex Networks (2nd Edition))
Show Figures

Figure 1

18 pages, 8520 KiB  
Article
Cross-Layer Controller Tasking Scheme Using Deep Graph Learning for Edge-Controlled Industrial Internet of Things (IIoT)
by Abdullah Mohammed Alharthi, Fahad S. Altuwaijri, Mohammed Alsaadi, Mourad Elloumi and Ali A. M. Al-Kubati
Future Internet 2025, 17(8), 344; https://doi.org/10.3390/fi17080344 - 30 Jul 2025
Viewed by 194
Abstract
Edge computing (EC) plays a critical role in advancing the next-generation Industrial Internet of Things (IIoT) by enhancing production, maintenance, and operational outcomes across heterogeneous network boundaries. This study builds upon EC intelligence and integrates graph-based learning to propose a Cross-Layer Controller Tasking [...] Read more.
Edge computing (EC) plays a critical role in advancing the next-generation Industrial Internet of Things (IIoT) by enhancing production, maintenance, and operational outcomes across heterogeneous network boundaries. This study builds upon EC intelligence and integrates graph-based learning to propose a Cross-Layer Controller Tasking Scheme (CLCTS). The scheme operates through two primary phases: task grouping assignment and cross-layer control. In the first phase, controller nodes executing similar tasks are grouped based on task timing to achieve monotonic and synchronized completions. The second phase governs controller re-tasking both within and across these groups. Graph structures connect the groups to facilitate concurrent tasking and completion. A learning model is trained on inverse outcomes from the first phase to mitigate task acceptance errors (TAEs), while the second phase focuses on task migration learning to reduce task prolongation. Edge nodes interlink the groups and synchronize tasking, migration, and re-tasking operations across IIoT layers within unified completion periods. Departing from simulation-based approaches, this study presents a fully implemented framework that combines learning-driven scheduling with coordinated cross-layer control. The proposed CLCTS achieves an 8.67% reduction in overhead, a 7.36% decrease in task processing time, and a 17.41% reduction in TAEs while enhancing the completion ratio by 13.19% under maximum edge node deployment. Full article
Show Figures

Figure 1

29 pages, 36251 KiB  
Article
CCDR: Combining Channel-Wise Convolutional Local Perception, Detachable Self-Attention, and a Residual Feedforward Network for PolSAR Image Classification
by Jianlong Wang, Bingjie Zhang, Zhaozhao Xu, Haifeng Sima and Junding Sun
Remote Sens. 2025, 17(15), 2620; https://doi.org/10.3390/rs17152620 - 28 Jul 2025
Viewed by 269
Abstract
In the task of PolSAR image classification, effectively utilizing convolutional neural networks and vision transformer models with limited labeled data poses a critical challenge. This article proposes a novel method for PolSAR image classification that combines channel-wise convolutional local perception, detachable self-attention, and [...] Read more.
In the task of PolSAR image classification, effectively utilizing convolutional neural networks and vision transformer models with limited labeled data poses a critical challenge. This article proposes a novel method for PolSAR image classification that combines channel-wise convolutional local perception, detachable self-attention, and a residual feedforward network. Specifically, the proposed method comprises several key modules. In the channel-wise convolutional local perception module, channel-wise convolution operations enable accurate extraction of local features from different channels of PolSAR images. The local residual connections further enhance these extracted features, providing more discriminative information for subsequent processing. Additionally, the detachable self-attention mechanism plays a pivotal role: it facilitates effective interaction between local and global information, enabling the model to comprehensively perceive features across different scales, thereby improving classification accuracy and robustness. Subsequently, replacing the conventional feedforward network with a residual feedforward network that incorporates residual structures aids the model in better representing local features, further enhances the capability of cross-layer gradient propagation, and effectively alleviates the problem of vanishing gradients during the training of deep networks. In the final classification stage, two fully connected layers with dropout prevent overfitting, while softmax generates predictions. The proposed method was validated on the AIRSAR Flevoland, RADARSAT-2 San Francisco, and RADARSAT-2 Xi’an datasets. The experimental results demonstrate that the proposed method can attain a high level of classification performance even with a limited amount of labeled data, and the model is relatively stable. Furthermore, the proposed method has lower computational costs than comparative methods. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

25 pages, 17505 KiB  
Article
A Hybrid Spatio-Temporal Graph Attention (ST D-GAT Framework) for Imputing Missing SBAS-InSAR Deformation Values to Strengthen Landslide Monitoring
by Hilal Ahmad, Yinghua Zhang, Hafeezur Rehman, Mehtab Alam, Zia Ullah, Muhammad Asfandyar Shahid, Majid Khan and Aboubakar Siddique
Remote Sens. 2025, 17(15), 2613; https://doi.org/10.3390/rs17152613 - 28 Jul 2025
Viewed by 403
Abstract
Reservoir-induced landslides threaten infrastructures and downstream communities, making continuous deformation monitoring vital. Time-series InSAR, notably the SBAS algorithm, provides high-precision surface-displacement mapping but suffers from voids due to layover/shadow effects and temporal decorrelation. Existing deep-learning approaches often operate on fixed-size patches or ignore [...] Read more.
Reservoir-induced landslides threaten infrastructures and downstream communities, making continuous deformation monitoring vital. Time-series InSAR, notably the SBAS algorithm, provides high-precision surface-displacement mapping but suffers from voids due to layover/shadow effects and temporal decorrelation. Existing deep-learning approaches often operate on fixed-size patches or ignore irregular spatio-temporal dependencies, limiting their ability to recover missing pixels. With this objective, a hybrid spatio-temporal Graph Attention (ST-GAT) framework was developed and trained on SBAS-InSAR values using 24 influential features. A unified spatio-temporal graph is constructed, where each node represents a pixel at a specific acquisition time. The nodes are connected via inverse distance spatial edges to their K-nearest neighbors, and they have bidirectional temporal edges to themselves in adjacent acquisitions. The two spatial GAT layers capture terrain-driven influences, while the two temporal GAT layers model annual deformation trends. A compact MLP with per-map bias converts the fused node embeddings into normalized LOS estimates. The SBAS-InSAR results reveal LOS deformation, with 48% of missing pixels and 20% located near the Dasu dam. ST D-GAT reconstructed fully continuous spatio-temporal displacement fields, filling voids at critical sites. The model was validated and achieved an overall R2 (0.907), ρ (0.947), per-map R2 ≥ 0.807 with RMSE ≤ 9.99, and a ROC-AUC of 0.91. It also outperformed the six compared baseline models (IDW, KNN, RF, XGBoost, MLP, simple-NN) in both RMSE and R2. By combining observed LOS values with 24 covariates in the proposed model, it delivers physically consistent gap-filling and enables continuous, high-resolution landslide monitoring in radar-challenged mountainous terrain. Full article
Show Figures

Graphical abstract

14 pages, 4462 KiB  
Article
Precise Cruise Control for Fixed-Wing Aircraft Based on Proximal Policy Optimization with Nonlinear Attitude Constraints
by Haotian Wu, Yan Guo, Juliang Cao, Zhiming Xiong and Junda Chen
Aerospace 2025, 12(8), 670; https://doi.org/10.3390/aerospace12080670 - 27 Jul 2025
Viewed by 247
Abstract
In response to the issues of severe pitch oscillation and unstable roll attitude present in existing reinforcement learning-based aircraft cruise control methods during dynamic maneuvers, this paper proposes a precise control method for aircraft cruising based on proximal policy optimization (PPO) with nonlinear [...] Read more.
In response to the issues of severe pitch oscillation and unstable roll attitude present in existing reinforcement learning-based aircraft cruise control methods during dynamic maneuvers, this paper proposes a precise control method for aircraft cruising based on proximal policy optimization (PPO) with nonlinear attitude constraints. This method first introduces a combination of long short-term memory (LSTM) and a fully connected layer (FC) to form the policy network of the PPO method, improving the algorithm’s learning efficiency for sequential data while avoiding feature compression. Secondly, it transforms cruise control into tracking target heading, altitude, and speed, achieving a mapping from motion states to optimal control actions within the policy network, and designs nonlinear constraints as the maximum reward intervals for pitch and roll to mitigate abnormal attitudes during maneuvers. Finally, a JSBSim simulation platform is established to train the network parameters, obtaining the optimal strategy for cruise control and achieving precise end-to-end control of the aircraft. Experimental results show that, compared to the cruise control method without dynamic constraints, the improved method reduces heading deviation by approximately 1.6° during ascent and 4.4° during descent, provides smoother pitch control, decreases steady-state altitude error by more than 1.5 m, and achieves higher accuracy in overlapping with the target trajectory during hexagonal trajectory tracking. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

24 pages, 5256 KiB  
Article
In-Wheel Motor Fault Diagnosis Method Based on Two-Stream 2DCNNs with DCBA Module
by Junwei Zhu, Xupeng Ouyang, Zongkang Jiang, Yanlong Xu, Hongtao Xue, Huiyu Yue and Huayuan Feng
Sensors 2025, 25(15), 4617; https://doi.org/10.3390/s25154617 - 25 Jul 2025
Cited by 1 | Viewed by 257
Abstract
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) [...] Read more.
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) module. The main contributions are twofold: (1) A DCBA module is introduced to extract multi-scale features—including prominent, local, and average information—from grayscale images reconstructed from vibration signals across different domains; and (2) a two-stream network architecture is designed to learn complementary feature representations from time-domain and time–frequency-domain signals, which are fused through fully connected layers to improve diagnostic accuracy. Experimental results demonstrate that the proposed method achieves high recognition accuracy under various working speeds, loads, and road surfaces. Comparative studies with SENet, ECANet, CBAM, and single-stream 2DCNN models confirm its superior performance and robustness. The integration of DCBA with dual-domain feature learning effectively enhances fault feature extraction under complex operating conditions. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

18 pages, 1687 KiB  
Article
Beyond Classical AI: Detecting Fake News with Hybrid Quantum Neural Networks
by Volkan Altıntaş
Appl. Sci. 2025, 15(15), 8300; https://doi.org/10.3390/app15158300 - 25 Jul 2025
Viewed by 301
Abstract
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully [...] Read more.
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully connected neural layers with a parameterized quantum circuit, enabling the processing of textual data within both classical and quantum computational domains. To assess its effectiveness, we conducted experiments on the widely used LIAR dataset utilizing Term Frequency–Inverse Document Frequency (TF-IDF) features, as well as transformer-based DistilBERT embeddings. The experimental results demonstrate that the HQDNN achieves a superior recall performance—92.58% with TF-IDF and 94.40% with DistilBERT—surpassing traditional machine learning models such as Logistic Regression, Linear SVM, and Multilayer Perceptron. Additionally, we compare the HQDNN with SetFit, a recent CPU-efficient few-shot transformer model, and show that while SetFit achieves higher precision, the HQDNN significantly outperforms it in recall. Furthermore, an ablation experiment confirms the critical contribution of the quantum component, revealing a substantial drop in performance when the quantum layer is removed. These findings highlight the potential of hybrid quantum–classical models as effective and compact alternatives for high-sensitivity classification tasks, particularly in domains such as fake news detection. Full article
Show Figures

Figure 1

23 pages, 9603 KiB  
Article
Label-Efficient Fine-Tuning for Remote Sensing Imagery Segmentation with Diffusion Models
by Yiyun Luo, Jinnian Wang, Jean Sequeira, Xiankun Yang, Dakang Wang, Jiabin Liu, Grekou Yao and Sébastien Mavromatis
Remote Sens. 2025, 17(15), 2579; https://doi.org/10.3390/rs17152579 - 24 Jul 2025
Viewed by 327
Abstract
High-resolution remote sensing imagery plays an essential role in urban management and environmental monitoring, providing detailed insights for applications ranging from land cover mapping to disaster response. Semantic segmentation methods are among the most effective techniques for comprehensive land cover mapping, and they [...] Read more.
High-resolution remote sensing imagery plays an essential role in urban management and environmental monitoring, providing detailed insights for applications ranging from land cover mapping to disaster response. Semantic segmentation methods are among the most effective techniques for comprehensive land cover mapping, and they commonly employ ImageNet-based pre-training semantics. However, traditional fine-tuning processes exhibit poor transferability across different downstream tasks and require large amounts of labeled data. To address these challenges, we introduce Denoising Diffusion Probabilistic Models (DDPMs) as a generative pre-training approach for semantic features extraction in remote sensing imagery. We pre-trained a DDPM on extensive unlabeled imagery, obtaining features at multiple noise levels and resolutions. In order to integrate and optimize these features efficiently, we designed a multi-layer perceptron module with residual connections. It performs channel-wise optimization to suppress feature redundancy and refine representations. Additionally, we froze the feature extractor during fine-tuning. This strategy significantly reduces computational consumption and facilitates fast transfer and deployment across various interpretation tasks on homogeneous imagery. Our comprehensive evaluation on the sparsely labeled dataset MiniFrance-S and the fully labeled Gaofen Image Dataset achieved mean intersection over union scores of 42.7% and 66.5%, respectively, outperforming previous works. This demonstrates that our approach effectively reduces reliance on labeled imagery and increases transferability to downstream remote sensing tasks. Full article
(This article belongs to the Special Issue AI-Driven Mapping Using Remote Sensing Data)
Show Figures

Graphical abstract

18 pages, 5079 KiB  
Article
Graph Representation Learning on Street Networks
by Mateo Neira and Roberto Murcio
ISPRS Int. J. Geo-Inf. 2025, 14(8), 284; https://doi.org/10.3390/ijgi14080284 - 22 Jul 2025
Viewed by 502
Abstract
Street networks provide an invaluable source of information about the different temporal and spatial patterns emerging in our cities. These streets are often represented as graphs where intersections are modeled as nodes and streets as edges between them. Previous work has shown that [...] Read more.
Street networks provide an invaluable source of information about the different temporal and spatial patterns emerging in our cities. These streets are often represented as graphs where intersections are modeled as nodes and streets as edges between them. Previous work has shown that raster representations of the original data can be created through a learning algorithm on low-dimensional representations of the street networks. In contrast, models that capture high-level urban network metrics can be trained through convolutional neural networks. However, the detailed topological data is lost through the rasterization of the street network, and the models cannot recover this information from the image alone, failing to capture complex street network features. This paper proposes a model capable of inferring good representations directly from the street network. Specifically, we use a variational autoencoder with graph convolutional layers and a decoder that generates a probabilistic, fully connected graph to learn latent representations that encode both local network structure and the spatial distribution of nodes. We train the model on thousands of street network segments and use the learned representations to generate synthetic street configurations. Finally, we proposed a possible application to classify the urban morphology of different network segments, investigating their common characteristics in the learned space. Full article
Show Figures

Figure 1

26 pages, 2178 KiB  
Article
Testing Neural Architecture Search Efficient Evaluation Methods in DeepGA
by Jesús-Arnulfo Barradas-Palmeros, Carlos-Alberto López-Herrera, Efrén Mezura-Montes, Héctor-Gabriel Acosta-Mesa and Adriana-Laura López-Lobato
Math. Comput. Appl. 2025, 30(4), 74; https://doi.org/10.3390/mca30040074 - 17 Jul 2025
Viewed by 229
Abstract
Neural Architecture search (NAS) aims to automate the design process of Deep Neural Networks, reducing the Deep Learning (DL) expertise required and avoiding a trial-and-error process. Nonetheless, one of the main drawbacks of NAS is the high consumption of computational resources. Consequently, efficient [...] Read more.
Neural Architecture search (NAS) aims to automate the design process of Deep Neural Networks, reducing the Deep Learning (DL) expertise required and avoiding a trial-and-error process. Nonetheless, one of the main drawbacks of NAS is the high consumption of computational resources. Consequently, efficient evaluation methods (EEMs) to assess the quality of candidate architectures are an open research problem. This work tests various EEMs in the Deep Genetic Algorithm (DeepGA), including early stopping, population memory, and training-free proxies. The Fashion MNIST, CIFAR-10, and CIFAR-100 datasets were used for experimentation. The results show that population memory has a valuable impact on avoiding repeated evaluations. Additionally, early stopping achieved competitive performance while significantly reducing the computational cost of the search process. The training-free configurations using the Logsynflow and Linear Regions proxies, as well as a combination of both, were only partially competitive but dramatically reduced the search time. Finally, a comparison of the architectures and hyperparameters obtained with the different algorithm configurations is presented. The training-free search processes resulted in deeper architectures with more fully connected layers and skip connections than the ones obtained with accuracy-guided search configurations. Full article
(This article belongs to the Special Issue Feature Papers in Mathematical and Computational Applications 2025)
Show Figures

Figure 1

Back to TopTop