Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = fullerene C60 derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 1428 KB  
Review
Germanium in Carbon Fullerenes: Quantum-Chemical Insights into Substitution, Adsorption, and Encapsulation Phenomena
by Monika Zielińska-Pisklak, Adrianna Jakubiec, Łukasz Szeleszczuk and Marcin Gackowski
Int. J. Mol. Sci. 2025, 26(24), 12067; https://doi.org/10.3390/ijms262412067 - 15 Dec 2025
Viewed by 226
Abstract
Germanium (Ge) incorporation profoundly modifies the structural and electronic characteristics of carbon fullerenes, giving rise to a diverse landscape of substitutional, exohedral, and endohedral Ge–fullerene architectures. Although experimental studies demonstrate that Ge can be introduced into fullerene matrices through nuclear recoil implantation and [...] Read more.
Germanium (Ge) incorporation profoundly modifies the structural and electronic characteristics of carbon fullerenes, giving rise to a diverse landscape of substitutional, exohedral, and endohedral Ge–fullerene architectures. Although experimental studies demonstrate that Ge can be introduced into fullerene matrices through nuclear recoil implantation and arc-discharge synthesis, only exohedral germylated derivatives have been structurally confirmed to date. Substitutional germanium-doped fullerene (Ge-C60) species remain experimentally elusive, with available evidence relying largely on radiochemical signatures and indirect spectroscopic data. In contrast, computational investigations provide a detailed and coherent picture of germanium doping across fullerene sizes, showing that Ge induces significant cage distortion, breaks local symmetry, narrows the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gap, and enhances charge localization at the dopant site. These electronic perturbations strongly increase the affinity of Ge-doped fullerenes for external guest molecules, leading to enhanced adsorption energies and distinct optical and transport responses in exohedral complexes. Theoretical studies of endohedral systems further indicate that Ge atoms or small clusters could form stable encapsulated species with unique electronic properties. Collectively, current evidence positions germanium-doped fullerenes as electronically versatile nanostructures with potential applications in sensing, optoelectronics, catalysis, and nanomedicine, while highlighting the need for definitive experimental synthesis and structural validation of substitutional Ge-fullerene derivatives. Full article
(This article belongs to the Special Issue Structure, Properties, and Applications of Carbon Materials)
Show Figures

Figure 1

18 pages, 3595 KB  
Article
Influence of OH Groups of Hydroxyfullerene on the Mechanism of Its Complex Formation with the Lys-2Gly Peptide Dendrimer
by Valeriy V. Bezrodnyi, Sofia E. Mikhtaniuk, Alexey Y. Vakulyuk, Igor M. Neelov, Nadezhda N. Sheveleva, Denis A. Markelov and Oleg V. Shavykin
Physchem 2025, 5(4), 53; https://doi.org/10.3390/physchem5040053 - 3 Dec 2025
Viewed by 320
Abstract
Fullerenes are promising drug candidates, but they are virtually insoluble in water. Surface hydroxylation of fullerenes and their encapsulation in nanocarrier systems, such as dendrimers, can be used to increase their solubility. However, hydroxylated fullerene (hydroxyfullerene, fullerenol) has lower bioactivity than fullerene. Our [...] Read more.
Fullerenes are promising drug candidates, but they are virtually insoluble in water. Surface hydroxylation of fullerenes and their encapsulation in nanocarrier systems, such as dendrimers, can be used to increase their solubility. However, hydroxylated fullerene (hydroxyfullerene, fullerenol) has lower bioactivity than fullerene. Our previous research showed that fullerene is encapsulated by the Lys-2Gly dendrimer. This study demonstrates, for the first time, that hydroxylated fullerenes C60(OH)n with n = 12, 24, 36 form complexes with the same dendrimer. All these fullerenols are encapsulated near the dendrimer’s center, similar to fullerene. Surprisingly, the complex’s structure remains stable even at the maximal hydroxylation (n = 36), despite a significant reduction in hydrophobicity of the fullerene surface. We demonstrated that this stability results from an increase in the number of hydrogen bonds between the dendrimer and the fullerenol with increasing n. Thus, we established that the mechanism of complex formation changes from hydrophobic interactions to hydrogen bonding as hydroxylation increases. This means that simultaneous partial hydroxylation of the fullerene and encapsulation within a water-soluble dendrimeric nanocarrier enhances its solubility in water. This combined approach enables the use of less hydroxylated fullerene derivatives to achieve desired solubility while maintaining higher biological activity. Full article
(This article belongs to the Section Biophysical Chemistry)
Show Figures

Figure 1

20 pages, 2348 KB  
Article
Effect of Fullerenol C60(OH)24 on the Viability and Metabolism of THP-1 Cells
by Darya Usanina, Svetlana Zamorina, Maria Bochkova, Valeria Timganova, Violetta Vlasova, Valeria Ponomareva, Maria Dolgikh, Sergey Lazarev and Mikhail Rayev
Molecules 2025, 30(22), 4407; https://doi.org/10.3390/molecules30224407 - 14 Nov 2025
Cited by 1 | Viewed by 638
Abstract
Fullerenols are polyhydroxylated derivatives of fullerene (C60(OH)n) with antioxidant, antiviral, and antibacterial properties and potential biomedical applications due to their solubility and biocompatibility. However, comprehensive assessment of their cytotoxicity is required, particularly regarding their effects on immune system cells. [...] Read more.
Fullerenols are polyhydroxylated derivatives of fullerene (C60(OH)n) with antioxidant, antiviral, and antibacterial properties and potential biomedical applications due to their solubility and biocompatibility. However, comprehensive assessment of their cytotoxicity is required, particularly regarding their effects on immune system cells. This study investigated the effects of fullerenol C60(OH)24 (MST-Nano, St. Petersburg, Russia) on the viability, apoptosis, and metabolism of THP-1 human monocytic leukemia cells. Cells were treated with concentrations ranging from 0.25 to 1000 µg/mL and incubated for 24, 48, and 72 h. Viability, apoptosis, and nanoparticle association were assessed by flow cytometry; glycolysis and mitochondrial respiration were measured after 24 h on a Seahorse XFe96 analyzer (Agilent Technologies, Santa Clara, CA, USA). Results showed that the effects of fullerenol depend on concentration and exposure time. At 24 h, 750 µg/mL increased viability, while 1000 µg/mL induced apoptosis. After 48 and 72 h, apoptosis increased at concentrations ≥750 µg/mL, with reduced viability. Nanoparticle association correlated with concentration and inversely correlated with viability but was independent of incubation time. Metabolic analysis revealed decreased glycolysis at 750 µg/mL after 24 h, while mitochondrial respiration was unaffected. Thus, our study demonstrated that fullerenol nanoparticles were safe for the THP-1 monocytic cell line up to 500 µg/mL. Full article
Show Figures

Graphical abstract

19 pages, 3214 KB  
Article
Molecular “Yin-Yang” Machinery of Synthesis of the Second and Third Fullerene C60 Derivatives
by Djuro Lj. Koruga, Lidija R. Matija, Ivana M. Stanković, Vladimir B. Pavlović and Aleksandra P. Dinić
Micromachines 2025, 16(7), 770; https://doi.org/10.3390/mi16070770 - 30 Jun 2025
Viewed by 1176
Abstract
To overcome the negative effects of the biochemical application of nano-substances in medicine (toxicity problem), using the example of fullerene C60’s first derivative (fullerenol, FD-C60), we show that their biophysical effect is possible through non-covalent hydrogen bonds when around [...] Read more.
To overcome the negative effects of the biochemical application of nano-substances in medicine (toxicity problem), using the example of fullerene C60’s first derivative (fullerenol, FD-C60), we show that their biophysical effect is possible through non-covalent hydrogen bonds when around FD-C60 water layers are formed. SD-C60 (Zeta potential is −43.29 mV) is much more stable than fullerol (Zeta potential is −25.85 mV), so agglomeration/fragmentation of the fullerol structure, due to instability, can cause toxic effects. When fullerol in solution was exposed to an oscillatory magnetic field with Re (real) part [250/−92 mT, H(ωt) = Acos(ωt)], water layers around FD-C60 (fullerenol) are formed according to the Penrose process of 3D tiling formation, and the second derivative, SD-C60 (or 3HFWC), is self-organized. However, when Im (imaginary) part [250/−92 mT, H(ωt) = Bisin (ωt)] of the external magnetic field is applied in addition to SD-C60, ordered water chains and bubbling of water (“micelle”) are formed as a third derivative (TD-C60). Fullerol (FD-C60) interacts with biological structures biochemically, while the second (SD-C60) and third (TD-C60) derivatives act biophysically via non-covalent hydrogen bond oscillation. SD-C60 and TD-C60 significantly increased water solubility and reduced toxicity. The paper explains the synthesis of SD-C60 and TD-C60 from FD-C60 (fullerol) as a precursor by the influence of an oscillatory magnetic field (“Yin-Yang” principle) on hydrogen bonds in order to create water layers around fullerol. Examples of biomedical applications (cancer and Alzheimer’s) of this synergetic complex are given. This study shows that the “Yin-Yang” machinery, based on the nanophysics of C60 molecules and non-covalent hydrogen bonds, is possible. The first attempt has been composed to synthesize nanomaterial for biophysical vibrational nanomedicine. Full article
Show Figures

Figure 1

28 pages, 4032 KB  
Article
Synthesis and Characterization of a Water-Soluble Nanomaterial via Deep Nitration of Light Fullerene C60
by Natalya Kulenova, Marzhan Sadenova, Bagdat Azamatov, Bauyrzhan Maratuly, Nikolay Charykov, Mikhail Arshinov and Nail Beisekenov
Inorganics 2025, 13(7), 212; https://doi.org/10.3390/inorganics13070212 - 24 Jun 2025
Viewed by 1118
Abstract
A direct non-catalytic synthesis of a new water-soluble polynitro-hydroxylated fullerene derivative, C60(NO2)18(OH)2, was carried out using a mixture of concentrated nitric and sulfuric acids. The resulting poly-nitro adduct was comprehensively characterized by elemental C-H-N analysis, [...] Read more.
A direct non-catalytic synthesis of a new water-soluble polynitro-hydroxylated fullerene derivative, C60(NO2)18(OH)2, was carried out using a mixture of concentrated nitric and sulfuric acids. The resulting poly-nitro adduct was comprehensively characterized by elemental C-H-N analysis, energy-dispersive X-ray spectroscopy, infrared (IR) and electron spectroscopy, nuclear magnetic resonance (NMR), high-performance liquid chromatography (HPLC), and thermogravimetric analysis (TGA). A detailed investigation of the physicochemical properties of aqueous solutions of C60(NO2)18(OH)2 demonstrated that the synthesized compound is a previously undescribed mixed polynitro-hydroxyl adduct of light fullerene C60, featuring a high degree of nitration (18 nitro groups per fullerene core). The composition and structure of the adduct were confirmed by spectroscopic and refractometric analyses. In terms of redox behavior, the compound exhibits significant reducing and antioxidant properties. These physicochemical characteristics suggest the potential of C60(NO2)18(OH)2 for further development as a biocompatible nanomaterial suitable for medical applications. Full article
Show Figures

Figure 1

28 pages, 12369 KB  
Review
Raman Spectroscopy of Fullerenes: From C60 to Functionalized Derivatives
by Yifan Qin, Jilian Xu, Zhewen Liang, Haijun Teng, Da Zhan and Hai Xu
Molecules 2025, 30(3), 738; https://doi.org/10.3390/molecules30030738 - 6 Feb 2025
Cited by 3 | Viewed by 3504
Abstract
Fullerenes, a unique allotrope of carbon, have captured significant attention in multiple scientific fields. As a non-destructive characterization technique, Raman spectroscopy has proven indispensable for investigating fullerenes and their derivatives, offering detailed insights into their vibrational properties. This review discusses the broad utility [...] Read more.
Fullerenes, a unique allotrope of carbon, have captured significant attention in multiple scientific fields. As a non-destructive characterization technique, Raman spectroscopy has proven indispensable for investigating fullerenes and their derivatives, offering detailed insights into their vibrational properties. This review discusses the broad utility of Raman spectroscopy in revealing the structural and physicochemical characteristics of fullerenes—from the iconic C60 molecule to an array of its derivatives—highlighting its capacity to detect functionalization-induced changes in molecular structure and electronic properties, while also assessing environmental influences such as solvent effects and temperature variations. Particular emphasis is placed on advanced Raman-based techniques, including enhanced Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and tip-enhanced Raman spectroscopy (TERS), for the characterization of fullerenes and their derivatives. These cutting-edge methods offer high sensitivity and ultra-high spatial resolution, greatly expanding the scope of fullerene research and delivering deeper insights into their structural and functional properties. Full article
Show Figures

Figure 1

4 pages, 1261 KB  
Proceeding Paper
Functionalization of Fullerene C60 with Organic Carbonates in the Presence of a Grignard Reagent and Ti(Oi-Pr)4 
by Liliya Khuzina and Artur Khuzin
Chem. Proc. 2024, 16(1), 66; https://doi.org/10.3390/ecsoc-28-20108 - 14 Nov 2024
Viewed by 668
Abstract
Fullerene C60 is by far the most studied of all allotropic modifications of carbon. Chemical modification of the double bond over the years has led to the emergence of a variety of fullerene derivatives. These derivatives have now found numerous applications in [...] Read more.
Fullerene C60 is by far the most studied of all allotropic modifications of carbon. Chemical modification of the double bond over the years has led to the emergence of a variety of fullerene derivatives. These derivatives have now found numerous applications in medicine, materials and supramolecular chemistry, and as efficient electron acceptors in organic photovoltaic devices. The main method for the functionalization of C60 fullerenes, which makes it possible to obtain its derivatives in a preparative volume, is the Bingel–Hirsch reaction. But this method makes it possible to obtain fullerocyclopropanes containing only carboxyl substituents at the bridging carbon atom. Therefore, in order to obtain new materials, we began to study the interaction with organic carbonates in combination with Grignard reagents in the presence of Ti-containing complex catalysts. We hope that replacing the olefin in the Kulinkovich reaction with a C60 fullerene molecule will lead to new and hard-to-find functionalization products of the latter. Organic carbonates were chosen as the object of study due to the fact that they are used in the industry as solvents for natural and synthetic resins, cellulose ethers, dispersants, blowing agents, emulsifiers, absorbents of hydrogen sulfide and carbon dioxide, starting materials for the industrial synthesis of fibers and plastics, as well as plasticizers, pharmaceuticals and plant protection products. Full article
Show Figures

Figure 1

17 pages, 4413 KB  
Article
MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications
by Carmen Breazu, Mihaela Girtan, Anca Stanculescu, Nicoleta Preda, Oana Rasoga, Andreea Costas, Ana Maria Catargiu, Gabriel Socol, Andrei Stochioiu, Gianina Popescu-Pelin, Sorina Iftimie, Gabriela Petre and Marcela Socol
Nanomaterials 2024, 14(21), 1733; https://doi.org/10.3390/nano14211733 - 29 Oct 2024
Cited by 1 | Viewed by 1379
Abstract
Nowadays, the development of devices based on organic materials is an interesting research challenge. The performance of such devices is strongly influenced by material selection, material properties, design, and the manufacturing process. Usually, buckminsterfullerene (C60) is employed as electron transport material in organic [...] Read more.
Nowadays, the development of devices based on organic materials is an interesting research challenge. The performance of such devices is strongly influenced by material selection, material properties, design, and the manufacturing process. Usually, buckminsterfullerene (C60) is employed as electron transport material in organic photovoltaic (OPV) devices due to its high mobility. However, considering its low solubility, there have been many attempts to replace it with more soluble non-fullerene compounds. In this study, bulk heterojunction thin films with various compositions of zinc phthalocyanine (ZnPc), a perylene diimide derivative, or C60 were prepared by matrix-assisted pulsed laser evaporation (MAPLE) technique to assess the influence of C60 replacement on fabricated heterostructure properties. The investigations revealed that the optical features and the electrical parameters of the organic heterostructures based on this perylene diimide derivative used as an organic acceptor were improved. An increase in the JSC value (4.3 × 10−4 A/cm2) was obtained for the structures where the perylene diimide derivative acceptor entirely replaced C60 compared to the JSC value (7.5 × 10−8 A/cm2) for the heterostructure fabricated only with fullerene. These results are encouraging, demonstrating the potential of non-fullerene compounds as electron transport material in OPV devices. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

17 pages, 2816 KB  
Article
Z-Scheme BiVO4/g-C3N4 Photocatalyst—With or Without an Electron Mediator?
by Tomasz Łęcki, Kamila Zarębska, Ewelina Wierzyńska, Krzysztof P. Korona, Paulina Chyży, Piotr Piotrowski and Magdalena Skompska
Molecules 2024, 29(21), 5092; https://doi.org/10.3390/molecules29215092 - 28 Oct 2024
Cited by 5 | Viewed by 2549
Abstract
The hybrid system BiVO4/g-C3N4 is a prospective photocatalyst because of the favorable mutual alignment of the energy bands of both semiconductors. However, the path of the photocatalytic process is still unclear because of contradictory information in the literature [...] Read more.
The hybrid system BiVO4/g-C3N4 is a prospective photocatalyst because of the favorable mutual alignment of the energy bands of both semiconductors. However, the path of the photocatalytic process is still unclear because of contradictory information in the literature on whether the mechanism of charge carrier separation at the BiVO4/g-C3N4 interface is band-to-band or Z-scheme. In this work, we clarified this issue by comparative photocatalytic studies with the use of systems without a mediator and with different kinds of mediators including Au nanoparticles, fullerene derivatives, and the Fe3+/Fe2+ redox couple. Additionally, the charge transfer dynamics at the BiVO4/g-C3N4 and BiVO4/mediator/g-C3N4 interfaces were investigated by time-resolved photoluminescence (TRPL) measurements, while the influence of the mediator on the surface recombination of the charge carriers was verified by intensity-modulated photocurrent spectroscopy (IMPS). We proved that the charge carrier separation at the BiVO4/g-C3N4 interface occurs according to the mechanism typical for a heterojunction of type II, while the incorporation of the mediator between BiVO4 and g-C3N4 leads to the Z-scheme mechanism. Moreover, a very strong synergetic effect on caffeine (CAF) degradation rate was found for the system BiVO4/Au/g-C3N4 in the presence of Fe3+ ions in the CAF solution. Full article
(This article belongs to the Special Issue Advances in Composite Photocatalysts)
Show Figures

Figure 1

14 pages, 3318 KB  
Article
A Quantum Mechanical MP2 Study of the Electronic Effect of Nonplanarity on the Carbon Pyramidalization of Fullerene C60
by Yuemin Liu, Yunxiang Gao, Tariq Altalhi, Di-Jia Liu and Boris I. Yakobson
Nanomaterials 2024, 14(19), 1576; https://doi.org/10.3390/nano14191576 - 29 Sep 2024
Cited by 4 | Viewed by 2220
Abstract
Among C60’s diverse functionalities, its potential application in CO2 sequestration has gained increasing interest. However, the processes involved are sensitive to the molecule’s electronic structure, aspects of which remain debated and require greater precision. To address this, we performed structural [...] Read more.
Among C60’s diverse functionalities, its potential application in CO2 sequestration has gained increasing interest. However, the processes involved are sensitive to the molecule’s electronic structure, aspects of which remain debated and require greater precision. To address this, we performed structural optimization of fullerene C60 using the QM MP2/6–31G* method. The nonplanarity of the optimized icosahedron is characterized by two types of dihedral angles: 138° and 143°. The 120 dihedrals of 138° occur between two hexagons intersecting at C–C bonds of 1.42 Å, while the 60 dihedrals of 143° are observed between hexagons and pentagons at C–C bonds of 1.47 Å. NBO analysis reveals less pyramidal sp1.78 hybridization for carbons at the 1.42 Å bonds and more pyramidal sp2.13 hybridization for the 1.47 Å bonds. Electrostatic potential charges range from −0.04 a.u. to 0.04 a.u. on the carbon atoms. Second-order perturbation analysis indicates that delocalization interactions in the C–C bonds of 1.42 Å (143.70 kcal/mol) and 1.47 Å (34.98 kcal/mol) are 22% and 38% higher, respectively, than those in benzene. MP2/Def2SVP calculations yield a correlation energy of 13.49 kcal/mol per electron for C60, slightly higher than the 11.68 kcal/mol for benzene. However, the results from HOMO-LUMO calculations should be interpreted with caution. This study may assist in the rational design of fullerene C60 derivatives for CO2 reduction systems. Full article
Show Figures

Figure 1

4 pages, 1012 KB  
Short Note
1-(Dicyanomethylene)-3-hydroxy-1H-indene-2-carboxylic Acid
by Sofia D. Usova, Ekaterina A. Knyazeva and Oleg A. Rakitin
Molbank 2024, 2024(3), M1871; https://doi.org/10.3390/M1871 - 19 Aug 2024
Viewed by 1878
Abstract
Bulk heterojunction solar cells are among the most promising organic solar cells (OSCs). One of the two important parts of OSCs are acceptors, and the development of the design and synthesis of non-fullerene acceptors involves an electron-deficient heterocyclic central core and anchor acceptor [...] Read more.
Bulk heterojunction solar cells are among the most promising organic solar cells (OSCs). One of the two important parts of OSCs are acceptors, and the development of the design and synthesis of non-fullerene acceptors involves an electron-deficient heterocyclic central core and anchor acceptor malonitrile derivatives of 3-methylene-2,3-dihydro-1H-inden-1-ones. In this communication, an intermediate for the synthesis of this compound, 1-(dicyanomethylene)-3-hydroxy-1H-indene-2-carboxylic acid, was prepared by the Perkin reaction of 2-(3-oxoisobenzofuran-1(3H)-ylidene)malononitrile with tert-butyl acetoacetate in the presence of acetic anhydride and triethylamine. The structure of the newly synthesized compound was established by means of elemental analysis, high-resolution mass spectrometry, 1H NMR, 13C NMR and IR spectroscopy, and mass spectrometry. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Scheme 1

12 pages, 10730 KB  
Article
Fluorinated Fullerenes as Electrolyte Additives for High Ionic Conductivity Lithium-Ion Batteries
by Haoyu Pan, Zhanlin Yang, Jianhui Chen, Hengyi Li, Cuilian Wen and Baisheng Sa
Molecules 2024, 29(13), 2955; https://doi.org/10.3390/molecules29132955 - 21 Jun 2024
Cited by 3 | Viewed by 2469
Abstract
Currently, lithium-ion batteries have an increasingly urgent need for high-performance electrolytes, and additives are highly valued for their convenience and cost-effectiveness features. In this work, the feasibilities of fullerenes and fluorinated fullerenes as typical bis(fluorosulfonyl)imide/1,2-dimethoxymethane (LiFSI/DME) electrolyte additives are rationally evaluated based on [...] Read more.
Currently, lithium-ion batteries have an increasingly urgent need for high-performance electrolytes, and additives are highly valued for their convenience and cost-effectiveness features. In this work, the feasibilities of fullerenes and fluorinated fullerenes as typical bis(fluorosulfonyl)imide/1,2-dimethoxymethane (LiFSI/DME) electrolyte additives are rationally evaluated based on density functional theory calculations and molecular dynamic simulations. Interestingly, electronic structures of C60, C60F2, C60F4, C60F6, 1-C60F8, and 2-C60F8 are found to be compatible with the properties required as additives. It is noted that that different numbers and positions of F atoms lead to changes in the deformation and electronic properties of fullerenes. The F atoms not only show strong covalent interactions with C cages, but also affect the C-C covalent interaction in C cages. In addition, molecular dynamic simulations unravel that the addition of trace amounts of C60F4, C60F6, and 2-C60F8 can effectively enhance the Li+ mobility in LiFSI/DME electrolytes. The results expand the range of applications for fullerenes and their derivatives and shed light on the research into novel additives for high-performance electrolytes. Full article
(This article belongs to the Special Issue Computational Studies of Novel Function Materials—2nd Edition)
Show Figures

Graphical abstract

14 pages, 2707 KB  
Article
Ternary Polymer Solar Cells: Impact of Non-Fullerene Acceptors on Optical and Morphological Properties
by Quentin Eynaud, Tomoyuki Koganezawa, Hidehiro Sekimoto, Mohamed el Amine Kramdi, Gilles Quéléver, Olivier Margeat, Jörg Ackermann, Noriyuki Yoshimoto and Christine Videlot-Ackermann
Electronics 2024, 13(9), 1752; https://doi.org/10.3390/electronics13091752 - 2 May 2024
Cited by 1 | Viewed by 2118
Abstract
Ternary organic solar cells contain a single three-component photoactive layer with a wide absorption window, achieved without the need for multiple stacking. However, adding a third component into a well-known binary blend can influence the energetics, optical window, charge carrier transport, crystalline order [...] Read more.
Ternary organic solar cells contain a single three-component photoactive layer with a wide absorption window, achieved without the need for multiple stacking. However, adding a third component into a well-known binary blend can influence the energetics, optical window, charge carrier transport, crystalline order and conversion efficiency. In the form of binary blends, the low-bandgap regioregular polymer donor poly(3-hexylthiophene-2,5-diyl), known as P3HT, is combined with the acceptor PC61BM, an inexpensive fullerene derivative. Two different non-fullerene acceptors (ITIC and eh-IDTBR) are added to this binary blend to form ternary blends. A systematic comparison between binary and ternary systems was carried out as a function of the thermal annealing temperature of organic layers (100 °C and 140 °C). The power conversion efficiency (PCE) is improved due to increased fill factor (FF) and open-circuit voltage (Voc) for thermal-annealed ternary blends at 140 °C. The transport properties of electrons and holes were investigated in binary and ternary blends following a Space-Charge-Limited Current (SCLC) protocol. A favorable balanced hole–electron mobility is obtained through the incorporation of either ITIC or eh-IDTBR. The charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from atomic force microscopy (AFM), contact water angle (CWA) measurement and 2D grazing-incidence X-ray diffractometry (2D-GIXRD). Full article
Show Figures

Figure 1

26 pages, 1183 KB  
Article
New Insights into Aromaticity through Novel Delta Polynomials and Delta Aromatic Indices
by Krishnan Balasubramanian
Symmetry 2024, 16(4), 391; https://doi.org/10.3390/sym16040391 - 27 Mar 2024
Cited by 13 | Viewed by 2908
Abstract
We have developed novel polynomials called delta polynomials, which are, in turn, derived from the characteristic and matching polynomials of graphs associated with polycyclic aromatic compounds. Natural logarithmic aromatic indices are derived from these delta polynomials, which are shown to provide new insights [...] Read more.
We have developed novel polynomials called delta polynomials, which are, in turn, derived from the characteristic and matching polynomials of graphs associated with polycyclic aromatic compounds. Natural logarithmic aromatic indices are derived from these delta polynomials, which are shown to provide new insights into the aromaticity of polycyclic aromatic compounds, including the highly symmetric C60 buckminsterfullerene, several other fullerenes, graphene, kekulene series and other cycloarenes, such as polycyclic circumcoronaphenes and coronoids. The newly developed aromatic index yields a value of 6.77 for graphene, 6.516865 for buckminsterfullerene C60(Ih), 5.914023 for kekulene (D6h symmetry), 6.064420 for coronene (D6h), 6.137828 for circumcoronene (D6h), 6.069668 for dicronylene and so forth. Hence, the novel scaled logarithmic aromatic delta indices developed here appear to provide good quantitative measures of aromaticity, especially when they are used in conjunction with other aromatic indicators. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

22 pages, 14059 KB  
Article
Comparative Studies of the Structural and Physicochemical Properties of the First Fullerene Derivative FD-C60 (Fullerenol) and Second Fullerene Derivate SD-C60 (3HFWC)
by Djuro Koruga, Ivana Stanković, Lidija Matija, Dietmar Kuhn, Bastian Christ, Sofia Dembski, Nenad Jevtić, Jelena Janać, Vladimir Pavlović and Bart De Wever
Nanomaterials 2024, 14(5), 480; https://doi.org/10.3390/nano14050480 - 6 Mar 2024
Cited by 4 | Viewed by 2563
Abstract
In order to maximally reduce the toxicity of fullerenol (the first derivative of C60, FD-C60), and increase its biomedical efficiency, the second derivative SD-C60 (3HFWC, Hyper-Harmonized Hydroxylated Fullerene Water Complex) was created. Several different methods were applied in [...] Read more.
In order to maximally reduce the toxicity of fullerenol (the first derivative of C60, FD-C60), and increase its biomedical efficiency, the second derivative SD-C60 (3HFWC, Hyper-Harmonized Hydroxylated Fullerene Water Complex) was created. Several different methods were applied in the comparative characterization of FD-C60 and SD-C60 with the same OH groups in their core. FD-C60 as an individual structure was about 1.3 nm in size, while SD-C60 as an individual structure was 10–30 nm in size. Based on ten physicochemical methods and techniques, FD-C60 and SD-C60 were found to be two different substances in terms of size, structure, and physicochemical properties; FD-C60, at 100 °C, had endothermic characteristics, while SD-C60, at 133 °C, had exothermic characteristics; FD-C60 did not have water layers, while SD-C60 had water layers; the zeta potential of FD-C60 was −25.85 mV, while it was −43.29 mV for SD-C60. SD-C60 is a promising substance for use in cosmetics and pharmaceuticals. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Theranostic Applications)
Show Figures

Figure 1

Back to TopTop