Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (85)

Search Parameters:
Keywords = fuel oil 6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2528 KiB  
Article
Testing of JTD Engine Fueled with Hemp and Rapeseed Oil Esters
by Adam Koniuszy, Małgorzata Hawrot-Paw, Wojciech Golimowski, Tomasz Osipowicz, Konrad Prajwowski, Filip Szwajca, Damian Marcinkowski and Wojciech Andrew Berger
Energies 2025, 18(13), 3526; https://doi.org/10.3390/en18133526 - 3 Jul 2025
Viewed by 345
Abstract
Alternative fuels to fossil fuels have been a focus of research since the 1980s, due to the oil crisis. Biofuels for diesel engines are obtained from various types of fats, primarily vegetable oils. Soybean and rapeseed oil are mainly used to produce biofuels. [...] Read more.
Alternative fuels to fossil fuels have been a focus of research since the 1980s, due to the oil crisis. Biofuels for diesel engines are obtained from various types of fats, primarily vegetable oils. Soybean and rapeseed oil are mainly used to produce biofuels. The aim of the research undertaken was to compare the performance characteristics of a 1.3 JTD engine fueled with methyl esters from hemp compared to biofuels made from rapeseed and fossil fuels. Energy parameters and exhaust emissions were measured. The fuels used were 100% biofuels obtained from vegetable oils by transesterification using methanol and KOH. It was shown to be possible to use HME (hemp methyl esters) biofuels as an alternative fuel to RME (rapeseed methyl esters) or DF (diesel fuel) without significant changes in engine performance. The density and heat of combustion of such fuels results in a 6% reduction in power and 17% in NOx emissions, as well as a decrease in HC (hydrocarbons), CO2, and smoke emissions. Full article
Show Figures

Figure 1

36 pages, 1130 KiB  
Review
The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
by Klaus Günter Steinhäuser and Markus Große Ophoff
Sustain. Chem. 2025, 6(2), 16; https://doi.org/10.3390/suschem6020016 - 10 Jun 2025
Viewed by 1470
Abstract
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite [...] Read more.
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite resources. This development exceeds planetary boundaries and calls for a sustainable transformation of the industry. The key transformation areas are as follows: (1) Non-Fossil Energy Supply: The industry must transition away from fossil fuels. Renewable electricity can replace natural gas, while green hydrogen can be used for high-temperature processes. (2) Circularity: Chemical production remains largely linear, with most products ending up as waste. Sustainable product design and improved recycling processes are crucial. (3) Non-Fossil Feedstock: To achieve greenhouse gas neutrality, oil, gas, and coal must be replaced by recycling plastics, renewable biomaterials, or CO2-based processes. (4) Sustainable Chemical Production: Energy and resource savings can be achieved through advancements like catalysis, biotechnology, microreactors, and new separation techniques. (5) Sustainable Chemical Products: Chemicals should be designed to be “Safe and Sustainable by Design” (SSbD), meaning they should not have hazardous properties unless essential to their function. (6) Sufficiency: Beyond efficiency and circularity, reducing overall material flows is essential to stay within planetary boundaries. This shift requires political, economic, and societal efforts. Achieving greenhouse gas neutrality in Europe by 2050 demands swift and decisive action from industry, governments, and society. The speed of transformation is currently too slow to reach this goal. Science can drive innovation, but international agreements are necessary to establish a binding framework for action. Full article
Show Figures

Figure 1

34 pages, 2173 KiB  
Review
Advances in Microbial and Plant-Based Biopolymers: Synthesis and Applications in Next-Generation Materials
by Poova Kattil Drishya, M. Venkateswar Reddy, Gunda Mohanakrishna, Omprakash Sarkar, Isha, M. V. Rohit, Aesha Patel and Young-Cheol Chang
Macromol 2025, 5(2), 21; https://doi.org/10.3390/macromol5020021 - 6 May 2025
Cited by 6 | Viewed by 3253
Abstract
Biopolymers are revolutionizing the materials landscape, driven by a growing demand for sustainable alternatives to traditional petroleum-based materials. Sourced from biological origins, these polymers are not only environment friendly but also present exciting solutions in healthcare, packaging, biosensors, high performance, and durable materials [...] Read more.
Biopolymers are revolutionizing the materials landscape, driven by a growing demand for sustainable alternatives to traditional petroleum-based materials. Sourced from biological origins, these polymers are not only environment friendly but also present exciting solutions in healthcare, packaging, biosensors, high performance, and durable materials as alternatives to crude oil-based products. Recently, biopolymers derived from plants, such as lignin and cellulose, alongside those produced by bacteria, like polyhydroxyalkanoates (PHAs), have captured the spotlight, drawing significant interest for their industrial and eco-friendly applications. The growing interest in biopolymers stems from their potential as sustainable, renewable materials across diverse applications. This review provides an in-depth analysis of the current advancements in plant-based and bacterial biopolymers, covering aspects of bioproduction, downstream processing, and their integration into high-performance next-generation materials. Additionally, we delve into the technical challenges of cost-effectiveness, processing, and scalability, which are critical barriers to widespread adoption. By highlighting these issues, this review aims to equip researchers in the bio-based domain with a comprehensive understanding of how plant-based and bacterial biopolymers can serve as viable alternatives to petroleum-derived materials. Ultimately, we envision a transformative shift from a linear, fossil fuel-based economy to a circular, bio-based economy, fostering more sustainable and environmentally conscious material solutions using novel biopolymers aligning with the framework of the United Nations Sustainable Development Goals (SDGs), including clean water and sanitation (SDG 6), industry, innovation, and infrastructure (SDG 9), affordable and clean energy (SDG 7), sustainable cities and communities (SDG 11), responsible production and consumption (SDG 12), and climate action (SDG 13). Full article
Show Figures

Figure 1

29 pages, 18050 KiB  
Article
Simulating Oil Spill Evolution and Environmental Impact with Specialized Software: A Case Study for the Black Sea
by Dinu Atodiresei, Catalin Popa and Vasile Dobref
Sustainability 2025, 17(9), 3770; https://doi.org/10.3390/su17093770 - 22 Apr 2025
Viewed by 1222
Abstract
Oil spills represent a significant environmental hazard, particularly in marine ecosystems, where their impacts extend to coastal infrastructure, biodiversity, and economic activities. This study utilizes GNOME v.47.2 (General NOAA Operational Modeling Environment) and ADIOS2 v.2.10.2 (Automated Data Inquiry for Oil Spills) to simulate [...] Read more.
Oil spills represent a significant environmental hazard, particularly in marine ecosystems, where their impacts extend to coastal infrastructure, biodiversity, and economic activities. This study utilizes GNOME v.47.2 (General NOAA Operational Modeling Environment) and ADIOS2 v.2.10.2 (Automated Data Inquiry for Oil Spills) to simulate and analyze oil spill dynamics in the Romanian sector of the Black Sea, focusing on trajectory prediction, hydrocarbon weathering, and shoreline contamination risk assessment. The research explores multiple spill scenarios involving different hydrocarbon types (light vs. heavy oils), vessel dynamics, and real-time environmental variables (wind, currents, temperature). The findings reveal that lighter hydrocarbons (e.g., gasoline, aviation fuel) tend to evaporate quickly, while heavier fractions (e.g., crude oil, fuel oil #6) persist in the marine environment and pose a higher risk of coastal pollution. In the first case study, a spill of 10,000 metric tons of medium oil (Arabian Medium EXXON) was simulated using GNOME v.47.2, showing that after 22 h, the slick reached the shoreline. Under forecasted hydro-meteorological conditions, 27% evaporated, 1% dispersed, and 72% remained for mechanical or chemical intervention. In the second simulation, 10,000 metric tons of gasoline were released, and within 6 h, 98% evaporated, with only minor residues reaching the shore. A real-world validation case was also conducted using the December 2024 Kerch Strait oil spill incident, where the model accurately predicted the early arrival of light fractions and delayed coastal contamination by fuel oil carried by subsurface currents. These results emphasize the need for future research focused on the vertical dispersion dynamics of heavier hydrocarbon fractions. Full article
Show Figures

Figure 1

16 pages, 3414 KiB  
Article
Efficiency Improvement in a Crude Oil Heating Furnace Based on Linear Regulation Control Strategies
by Francisco Jacas-Portuondo, Leonardo Peña-Pupo, Miguel R. Forgas-Brioso, Electo E. Silva-Lora, John A. Taborda-Giraldo and José R. Nuñez-Alvarez
Energies 2025, 18(7), 1578; https://doi.org/10.3390/en18071578 - 21 Mar 2025
Viewed by 1115
Abstract
This paper presents research results to improve energy efficiency in one of the crude oil heating furnaces at the “Hermanos Díaz” refinery in Santiago de Cuba, Cuba. It analyzes the main process’s variables and disturbances, and the multivariate dynamic behavior of the F-101 [...] Read more.
This paper presents research results to improve energy efficiency in one of the crude oil heating furnaces at the “Hermanos Díaz” refinery in Santiago de Cuba, Cuba. It analyzes the main process’s variables and disturbances, and the multivariate dynamic behavior of the F-101 furnace temperature is characterized to evaluate different control strategies. In addition, the design of a linear regulation control law was implemented as a way to solve the limitations of the existing control of the furnace, to control the plant for the first time with a multivariable approach, demonstrating superior performance by guaranteeing decoupling between the variables, decreasing the overruns by 6%, and increasing the response speed of the system by more than 5 min. The comparison with results obtained with other control strategies allowed us to determine the better performance of the furnace by increasing its energy efficiency, evidencing the economic and environmental impact and obtaining as benefits a better dynamic behavior by reducing fuel oil consumption by 5%, equivalent to 0.74 m3/day, which reduces the operating costs of the plant, the temperature of the gasses by 2%, emissions of CO2 pollutant gas to the environment by between 3 and 5%, and increasing energy efficiency by 1.5%. Full article
Show Figures

Figure 1

17 pages, 2512 KiB  
Article
Economic Feasibility and Decarbonization Incentives of Sugarcane Biogas Production Pathways
by Flavio Eduardo Fava, Lucílio Rogério Aparecido Alves and Thiago Libório Romanelli
Agriculture 2025, 15(4), 380; https://doi.org/10.3390/agriculture15040380 - 11 Feb 2025
Cited by 1 | Viewed by 985
Abstract
Challenges in investment decisions for new fuels remain due to uncertain scenarios regarding profitability. There is also a challenge to improve production efficiency and waste utilization, either for biomass or by-products. This study evaluates the economic potential of biomethane production within sugarcane biorefineries [...] Read more.
Challenges in investment decisions for new fuels remain due to uncertain scenarios regarding profitability. There is also a challenge to improve production efficiency and waste utilization, either for biomass or by-products. This study evaluates the economic potential of biomethane production within sugarcane biorefineries through the principles of the circular economy and economic feasibility. To obtain price data for CBios, Brent crude oil, and natural gas, stochastic models based on GBM and Monte Carlo simulations were applied to project prices and assess revenue potential over a 10-year horizon. Price data were incorporated to assess market correlations and revenue scenarios. Key findings reveal that biomethane’s price stability, driven by its strong correlation with oil markets, supports its viability as a renewable energy source, while CBio presents a weak correlation and limited price predictability with present challenges for long-term planning. Economic modeling indicates high investment returns, with IRR values surpassing 35% in conservative scenarios and payback periods from 2 to 6 years. These results highlight biomethane’s potential for energy efficiency, carbon emission reduction, and the creation of new revenue through waste use. We conclude that targeted investments in biomethane infrastructure, coupled with policy and market support, are essential for achieving global sustainability goals. Full article
(This article belongs to the Special Issue Sustainability and Energy Economics in Agriculture—2nd Edition)
Show Figures

Figure 1

22 pages, 2516 KiB  
Review
Microbial Fuel Cells and Microbial Electrolysis Cells for the Generation of Green Hydrogen and Bioenergy via Microorganisms and Agro-Waste Catalysts
by Xolile Fuku, Ilunga Kamika and Tshimangadzo S. Munonde
Nanomanufacturing 2025, 5(1), 3; https://doi.org/10.3390/nanomanufacturing5010003 - 10 Feb 2025
Cited by 2 | Viewed by 2460
Abstract
A national energy crisis has emerged in South Africa due to the country’s increasing energy needs in recent years. The reliance on fossil fuels, especially oil and gas, is unsustainable due to scarcity, emissions, and environmental repercussions. Researchers from all over the world [...] Read more.
A national energy crisis has emerged in South Africa due to the country’s increasing energy needs in recent years. The reliance on fossil fuels, especially oil and gas, is unsustainable due to scarcity, emissions, and environmental repercussions. Researchers from all over the world have recently concentrated their efforts on finding carbon-free, renewable, and alternative energy sources and have investigated microbiology and biotechnology as a potential remedy. The usage of microbial electrolytic cells (MECs) and microbial fuel cells (MFCs) is one method for resolving the problem. These technologies are evolving as viable options for hydrogen and bioenergy production. The renewable energy technologies initiative in South Africa, which is regarded as a model for other African countries, has developed in the allocation of over 6000 MW of generation capacity to bidders across several technologies, primarily wind and solar. With a total investment value of R33.7 billion, the Eastern Cape’s renewable energy initiatives have created 18,132 jobs, with the province awarded 16 wind farms and one solar energy farm. Utilizing wastewater as a source of energy in MFCs has been recommended as most treatments, such as activated sludge processes and trickling filter plants, require roughly 1322 kWh per million gallons, whereas MFCs only require a small amount of external power to operate. The cost of wastewater treatment using MFCs for an influent flow of 318 m3 h−1 has been estimated to be only 9% (USD 6.4 million) of the total cost of treatment by a conventional wastewater treatment plant (USD 68.2 million). Currently, approximately 500 billion cubic meters of hydrogen (H2) are generated worldwide each year, exhibiting a growth rate of 10%. This production primarily comes from natural gas (40%), heavy oils and naphtha (30%), coal (18%), electrolysis (4%), and biomass (1%). The hydrogen produced is utilized in the manufacturing of ammonia (49%), the refining of petroleum (37%), the production of methanol (8%), and in a variety of smaller applications (6%). Considering South Africa’s energy issue, this review article examines the production of wastewater and its impacts on society as a critical issue in the global scenario and as a source of green energy. Full article
Show Figures

Figure 1

15 pages, 4198 KiB  
Article
Natural and Waste Materials for Desulfurization of Gaseous Fuels and Petroleum Products
by Iliya Iliev, Antonina Filimonova, Andrey Chichirov, Alena Vlasova, Ruzina Kamalieva and Ivan Beloev
Fuels 2025, 6(1), 13; https://doi.org/10.3390/fuels6010013 - 7 Feb 2025
Cited by 2 | Viewed by 1011
Abstract
Currently, the key challenge of the oil-refining industry worldwide is to produce environmentally friendly fuel in large volumes to meet market demand, which is due to strict environmental standards governing the permissible sulfur content in fuel. Natural gas, refinery gas, and coal gas [...] Read more.
Currently, the key challenge of the oil-refining industry worldwide is to produce environmentally friendly fuel in large volumes to meet market demand, which is due to strict environmental standards governing the permissible sulfur content in fuel. Natural gas, refinery gas, and coal gas contain acid gases such as hydrogen sulfide and carbon dioxide. These compounds must be removed from the gas stream because of the toxicity of H2S and to prevent the acid gas-induced corrosion of pipelines and facilities. Hydrogen sulfide is released as a result of various industrial processes, and its removal is critical because this compound can cause corrosion and environmental damage even at low concentrations. Sulfur compounds are also present in natural gas, biofuels and other fuel gases used in power plants. This article proposes new adsorbents of natural and waste origin and presents the results of their testing for the removal of acid gases. This paper also considers methods for the preparation of adsorbents from waste and procedures for the removal of sulfur-containing compounds. Using agricultural, industrial waste to produce activated sorbents not only solves the problem of waste disposal but also reduces the cost of desulfurization, contributing to the creation of sustainable and environmentally friendly technologies. The Review Section comprehensively summarizes current research on hydrogen sulfide removal in gas cleaning processes using agricultural and industrial waste as highly efficient adsorbents. In the Experimental Section, 10 composite materials based on natural raw materials and wastes, as well as 6 commercial adsorbents, were synthesized and tested under laboratory conditions. The choice of materials for the adsorbent production was based on the principles of environmental friendliness, availability, and cost-effectiveness. The developed materials based on modified sludge from water treatment plants of thermal power plants are effective sorbents for the purification of gas emissions from petrochemical enterprises. For industrial use, it is necessary to solve the problems of increasing the economic attractiveness of sorbents from waste, the ability of regeneration, the competitive adsorption of pollutants, the use of indicator sorbents, the optimization of operating conditions, and safe waste disposal. Full article
Show Figures

Figure 1

20 pages, 2153 KiB  
Article
Energy Efficiency in Greenhouses and Comparison of Energy Sources Used for Heating
by Sedat Boyacı, Joanna Kocięcka, Barbara Jagosz and Atılgan Atılgan
Energies 2025, 18(3), 724; https://doi.org/10.3390/en18030724 - 5 Feb 2025
Cited by 1 | Viewed by 1704
Abstract
Sustainability in greenhouse farming, one of the areas where the most energy is needed in the agricultural sector, can be achieved by increasing energy efficiency. Due to increasing energy costs in Türkiye and worldwide, increasing energy efficiency in greenhouses is seen as possible [...] Read more.
Sustainability in greenhouse farming, one of the areas where the most energy is needed in the agricultural sector, can be achieved by increasing energy efficiency. Due to increasing energy costs in Türkiye and worldwide, increasing energy efficiency in greenhouses is seen as possible using renewable energy sources that do not produce waste instead of fossil energy sources. This study determined the heat-energy demand in the provinces of Türkiye with continental (Kırşehir and Kütahya) and Mediterranean (Antalya and Mersin) climates. For this purpose, the heat-energy requirement was calculated for greenhouse types with three different insulation properties (S-1: roof and side walls polyethylene, S-2: roof polyethylene, side walls polycarbonate, and S-3: roof polyethylene, side walls polycarbonate, and thermal curtain). Then, the amount and cost of fossil (coal, fuel oil, and natural gas) and renewable energy sources (geothermal and biogas) to be used in obtaining this energy, the heating cost for unit tomato yield, and the amount of carbon dioxide (CO2) released into the atmosphere were compared. According to the results obtained, the highest heat-energy requirement was 356.5 kWh m−2 year−1 in the S-1 greenhouse in the Kütahya province, and the lowest was 46.3 kWh m−2 year−1 in the S-3 greenhouse in the Mersin province. Depending on energy conservation, 6% of energy savings can be achieved in S-2 and 29% in S-3 compared to S-1. The highest heating cost for producing one kilogram of tomatoes was 0.70 USD kg−1 in fuel oil and Kütahya province (S-1). The lowest was calculated as 0.06 USD kg−1 in geothermally heated greenhouses in Kırşehir and Kütahya provinces (S-3). The highest CO2 to be released into the atmosphere with fuels was equal to 253.1 kg m−2 year−1 in coal fuel in Kütahya province (S-1). The lowest was calculated as 1.1 kg m−2 year−1 in geothermally heated greenhouses in Kırşehir and Kütahya provinces (S-3). The results of this research can be used to develop feasibility studies for greenhouse companies, greenhouse sector policies, policymakers, environmental protection, and taking precautions against the climate crisis. Full article
(This article belongs to the Special Issue Transformation to a Green Energy Economy—Challenge or Necessity)
Show Figures

Figure 1

19 pages, 2566 KiB  
Article
Predicting the Performance of a Helically Coiled Heat Exchanger for Heat Recovery from a Waste Biomass Incineration System
by Izabela Wardach-Świȩcicka, Sylwia Polesek-Karczewska and Adam Da̧browski
Sustainability 2025, 17(2), 759; https://doi.org/10.3390/su17020759 - 19 Jan 2025
Viewed by 911
Abstract
Nowadays, with increasing concerns about the environment and energy security, efforts have intensified to develop effective energy generation technologies based on renewable sources that align with the principles of sustainable growth. In response to these demands, biomass-fueled furnaces have become essential components of [...] Read more.
Nowadays, with increasing concerns about the environment and energy security, efforts have intensified to develop effective energy generation technologies based on renewable sources that align with the principles of sustainable growth. In response to these demands, biomass-fueled furnaces have become essential components of modern combined heat and power generation systems. This work aims to predict the thermal performance of a helically coiled multi-tube heat exchanger designed to recover heat from waste biomass incineration flue gases. The working fluid used is thermal oil. The work focuses on determining the thermal output of a heat exchanger for prescribed design parameters, including the thermal parameters of cooling oil and the temperature difference of flue gas, and the geometrical details. A novel in-house stationary lumped multi-section model, utilizing the iterative calculation method, was developed, allowing fast predictions of the operation parameters of helically coiled multi-tube type heat exchangers. Two different configurations of the exchanger, three-pipe (case I) and four-pipe (case II), were considered. The thermal output obtained from calculations for case I showed a satisfactory convergence with the value based on the measurement data, at about 6%. Once validated, the model was used to determine the required heat exchange surface area of a four-pipe heat exchanger of larger design heat output (2.2 MW) and assumed tube dimensions and configurations. The accuracy of the heat exchanger capacity prediction was below 12%, proving the developed calculation tool to be reliable for design and optimization purposes. Full article
(This article belongs to the Special Issue Thermally Driven Renewable Energy Technologies)
Show Figures

Figure 1

14 pages, 730 KiB  
Article
Fired Heaters Optimization by Estimating Real-Time Combustion Products Using Numerical Methods
by Ricardo Sánchez, Argemiro Palencia-Díaz, Jonathan Fábregas-Villegas and Wilmer Velilla-Díaz
Energies 2024, 17(23), 6190; https://doi.org/10.3390/en17236190 - 9 Dec 2024
Viewed by 1197
Abstract
Fired heaters upstream of distillation towers, despite their optimal thermal efficiency, often suffer from performance decline due to fluctuations in fuel composition and unpredictable operational parameters. These heaters have high energy consumption, as fuel properties vary depending on the source of the crude [...] Read more.
Fired heaters upstream of distillation towers, despite their optimal thermal efficiency, often suffer from performance decline due to fluctuations in fuel composition and unpredictable operational parameters. These heaters have high energy consumption, as fuel properties vary depending on the source of the crude oil. This study aims to optimize the combustion process of a three-gas mixture, mainly refinery gas, by incorporating more stable fuels such as natural gas and liquefied petroleum gas (LPG) to improve energy efficiency and reduce LPG consumption. Using real-time gas chromatography-mass spectrometry (GC-MS) data, we accurately calculate the mass fractions of individual compounds, allowing for more precise burner flow rate determinations. Thermochemical data are used to calculate equilibrium constants as a function of temperature, with the least squares method, while the Newton–Raphson method solves the resulting nonlinear equations. Four key variables (X4,X6,X8, and X11), representing H2,CO,O2, and N2, respectively, are defined, and a Jacobian matrix is constructed to ensure convergence within a tolerance of 1 ×106 over a maximum of 200 iterations, implemented via Python 3.10.4 and the scipy.optimize library. The optimization resulted in a reduction in LPG consumption by over 50%. By tailoring the fuel supply to the specific thermal needs of each processing unit, we achieved substantial energy savings. For instance, furnaces in the hydrocracking unit, which handle cleaner subproducts and benefit from hydrogen’s adiabatic reactions, require much less energy than those in the primary distillation unit, where high-impurity crude oil is processed. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

18 pages, 29170 KiB  
Article
New Insight into the Related Candidate Genes and Molecular Regulatory Mechanisms of Waterlogging Tolerance in Tree Peony Paeonia ostii
by Minghui Zhou, Xiang Liu, Jiayan Zhao, Feng Jiang, Weitao Li, Xu Yan, Yonghong Hu and Junhui Yuan
Plants 2024, 13(23), 3324; https://doi.org/10.3390/plants13233324 - 27 Nov 2024
Viewed by 978
Abstract
Research on the waterlogging tolerance mechanisms of Paeonia ostii helps us to further understand these mechanisms in the root system and enhance its root bark and oil yields in southern China. In this study, root morphological identification, the statistics of nine physiological and [...] Read more.
Research on the waterlogging tolerance mechanisms of Paeonia ostii helps us to further understand these mechanisms in the root system and enhance its root bark and oil yields in southern China. In this study, root morphological identification, the statistics of nine physiological and biochemical indicators, and a comparative transcriptome analysis were used to investigate the waterlogging tolerance mechanism in this plant. As flooding continued, the roots’ vigor dramatically declined from 6 to 168 h of waterlogging, the root number was extremely reduced by up to 95%, and the number of roots was not restored after 96 h of recovery. Seven of the nine physiological indicators, including leaf transpiration and photosynthetic rate, stomatal conductance, root activity, and soluble protein and sugar, showed similar trends of gradually declining waterlogging stress and gradual waterlogging recovery, with little difference. However, the leaf conductivity and super oxide dismutase (SOD) activity gradually increased during flooding recovery and decreased in recovery. The tricarboxylic acid (TCA) cycle is essential for plants to grow and survive and plays a central role in the breakdown, or catabolism, of organic fuel molecules, also playing an important biological role in waterlogging stress. In total, 591 potential candidate genes were identified, and 13 particular genes (e.g., isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH), ATP citrate lyase (ACLY), succinate dehydrogenase (SDH), and fumarase (FumA)) in the TCA cycle were also tested using qPCR. This study identifies potential candidate genes and provides theoretical support for the breeding, genetic improvement, and enhancement of the root bark yields of P. ostii, supporting an in-depth understanding of the plant’s physiological and molecular response mechanisms to waterlogging stress, helping future research and practice improve plant waterlogging tolerance and promote plant growth and development. Full article
Show Figures

Figure 1

16 pages, 2560 KiB  
Article
Investigation into the Fuel Characteristics of Biodiesel Synthesized through the Transesterification of Palm Oil Using a TiO2/CH3ONa Nanocatalyst
by Cherng-Yuan Lin and Shun-Lien Tseng
Catalysts 2024, 14(9), 623; https://doi.org/10.3390/catal14090623 - 16 Sep 2024
Cited by 1 | Viewed by 1496
Abstract
Biodiesel is a renewable and sustainable alternative fuel to petrol-derived diesel. Decreasing the operating costs by improving the catalyst’s characteristics is an effective way to increase the competitiveness of biodiesel in the fuel market. An aqueous solution of sodium methoxide (CH3ONa), [...] Read more.
Biodiesel is a renewable and sustainable alternative fuel to petrol-derived diesel. Decreasing the operating costs by improving the catalyst’s characteristics is an effective way to increase the competitiveness of biodiesel in the fuel market. An aqueous solution of sodium methoxide (CH3ONa), which is a traditional alkaline catalyst, was immersed in nanometer-sized particles of titanium dioxide (TiO2) powder to prepare the strong alkaline catalyst TiO2/CH3ONa. The immersion method was used to enhance the transesterification reaction. The mixture of TiO2 and CH3ONa was calcined in a high-temperature furnace in a range between 150 and 450 °C continuously for 4 h. The heterogeneous alkaline catalyst TiO2/CH3ONa was then used to catalyze the strong alkaline transesterification reaction of palm oil with methanol. The highest content of fatty acid methyl esters (FAMEs), which amounted to 95.9%, was produced when the molar ratio of methanol to palm oil was equal to 6, and 3 wt.% TiO2/CH3ONa was used, based on the weight of the palm oil. The FAMEs produced from the above conditions were also found to have the lowest kinematic viscosity of 4.17 mm2/s, an acid value of 0.32 mg KOH/g oil, and a water content of 0.031 wt.%, as well as the highest heating value of 40.02 MJ/kg and cetane index of 50.05. The lower catalyst amount of 1 wt.%, in contrast, resulted in the lowest cetane index of 49.31. The highest distillation temperature of 355 °C was found when 3 wt.% of the catalyst was added to the reactant mixture with a methanol/palm oil molar ratio of 6. The prepared catalyst is considered effective for improving the fuel characteristics of biodiesel. Full article
Show Figures

Figure 1

17 pages, 843 KiB  
Article
The Impact of Oil Price on Carbon Dioxide Emissions in the Transport Sector: The Threshold Effect of Environmental Policy Stringency
by Xingong Ding and Mengzhen Wang
Energies 2024, 17(17), 4496; https://doi.org/10.3390/en17174496 - 7 Sep 2024
Viewed by 1269
Abstract
Carbon dioxide emissions from the transport sector make a significant contribution to global greenhouse gases, and understanding the factors that influence these emissions is beneficial for devising effective emission reduction policies. Oil prices are an important influencing factor since the fuel used in [...] Read more.
Carbon dioxide emissions from the transport sector make a significant contribution to global greenhouse gases, and understanding the factors that influence these emissions is beneficial for devising effective emission reduction policies. Oil prices are an important influencing factor since the fuel used in the transport sector is primarily based on oil, and fluctuations in oil prices directly impact the sector’s CO2 emissions. Additionally, environmental policies, as a key means of controlling CO2 emissions, can affect the relationship between oil prices and CO2 emissions in the transport sector. Therefore, this study aims to examine the impact of oil prices on CO2 emissions in the transport sector and explore the nonlinear role of environmental policy stringency in this relationship. Based on data from 27 OECD member countries and 6 non-member countries from 1990 to 2019, we used the environmental policy stringency index as a threshold variable to construct a panel threshold regression model. The analysis results indicate a double-threshold effect: when the environmental policy stringency index is low, the impact of oil prices on CO2 emissions in the transport sector is not significant. However, when the index reaches the first threshold, the impact of oil prices significantly increases; upon reaching the second threshold, the effect is further intensified. This paper also analyzes the three subindicators—market-based policies, non-market-based policies, and technology support policies—to clarify the distinct impact mechanisms of different types of environmental policies. Finally, based on the research findings, we propose policy recommendations to achieve carbon dioxide emission reduction targets in the transport sector. Full article
(This article belongs to the Special Issue Cutting-Edge Research in Energy Economics: Theories and Applications)
Show Figures

Figure 1

20 pages, 3460 KiB  
Article
Hydroprocessing Microbial Oils for Advanced Road Transportation, Aviation, and Maritime Drop-In Fuels: Industrially Relevant Scale Validation
by Athanasios Dimitriadis, Loukia P. Chrysikou, Ioanna Kosma, Nikos Tourlakidis and Stella Bezergianni
Energies 2024, 17(15), 3854; https://doi.org/10.3390/en17153854 - 5 Aug 2024
Cited by 1 | Viewed by 1556
Abstract
Triacylglycerides (TAGs) produced via the syngas fermentation of biogenic residues and wastes were evaluated as a potential feedstock for advanced road transportation, aviation, and maritime drop-in fuels via hydroprocessing technology. Due to the limited availability of TAGs, a simulated feedstock (SM TAGs) was [...] Read more.
Triacylglycerides (TAGs) produced via the syngas fermentation of biogenic residues and wastes were evaluated as a potential feedstock for advanced road transportation, aviation, and maritime drop-in fuels via hydroprocessing technology. Due to the limited availability of TAGs, a simulated feedstock (SM TAGs) was utilized by blending various commercial oils, simulating the fatty acid composition of TAGs. At first, the simulated feedstock and the real TAGs were hydrotreated on a TRL 4 (technology readiness level) pilot plant to evaluate the potential of the SM feedstock to simulate the TAGs based on product quality. The hydrotreatment technology was evaluated and optimized on a TRL 4 plant. The research was further extended to a TRL 5 hydrotreatment plant with the optimum operating window for scaling up the technology. The resulting product was fractionated on a batch fractionation unit under vacuum to separate the jet and diesel fractions. The produced fuels were analyzed and evaluated based on the aviation Jet A1, EN590, EN15940, and marine diesel DMA specifications. The results show that the TAG composition was successfully simulated via a blend of vegetable oils. In addition, the hydrotreatment of the real TAGs and simulated feedstock resulted in similar-quality liquid products. The technology was successfully scaled up on a TRL 5 unit, leading to advanced, high-quality aviation and diesel drop-in fuels from TAGs, while the reaction pathways of hydrotreating can be controlled via the operating parameters of pressure, temperature, and H2/oil ratio. The hydrotreatment process’s optimum conditions were 13.8 MPa pressure, 643 K temperature, 1 h−1 liquid hourly space velocity (LHSV), and 5000 scfb hydrogen-to-oil ratio. Finally, a storage stability study of the hydrotreated liquid product showed that it can be stored for more than 6 months at ambient conditions without any noticeable changes to its properties. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

Back to TopTop