The Impact of Oil Price on Carbon Dioxide Emissions in the Transport Sector: The Threshold Effect of Environmental Policy Stringency
Abstract
1. Introduction
2. Literature Review
3. Empirical Strategy, Data, and Variable Definitions
3.1. Panel Threshold Regression Model
3.2. Data and Variable Definitions
4. Results
4.1. Panel Threshold Model Results
4.2. Robustness Test
4.3. Mechanism Analysis
4.4. Discussion of Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solaymani, S. CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector. Energy 2019, 168, 989–1001. [Google Scholar] [CrossRef]
- IEA. International Energy Agency. Available online: https://www.iea.org/ (accessed on 15 February 2024).
- Wang, L.; Zhao, Y.; Wang, J.; Liu, J. Regional inequality of total factor CO2 emission performance and its geographical detection in the China’s transportation industry. Environ. Sci. Pollut. Res. 2022, 29, 3037–3050. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dong, H.; Lu, S. Research on application of a hybrid heuristic algorithm in transportation carbon emission. Environ. Sci. Pollut. Res. 2021, 28, 48610–48627. [Google Scholar] [CrossRef]
- Tian, X.; Geng, Y.; Zhong, S.; Wilson, J.; Gao, C.; Chen, W.; Yu, Z.; Hao, H. A bibliometric analysis on trends and characters of carbon emissions from transport sector. Transp. Res. Part D Transp. Environ. 2018, 59, 1–10. [Google Scholar] [CrossRef]
- Marsden, G.; Rye, T. The governance of transport and climate change. J. Transp. Geogr. 2010, 18, 669–678. [Google Scholar] [CrossRef]
- Brand, C.; Tran, M.; Anable, J. The UK transport carbon model: An integrated life cycle approach to explore low carbon futures. Energy Policy 2012, 41, 107–124. [Google Scholar] [CrossRef]
- Andress, D.; Nguyen, T.D.; Das, S. Reducing GHG emissions in the United States’ transportation sector. Energy Sustain. Dev. 2011, 15, 117–136. [Google Scholar] [CrossRef]
- Ross Morrow, W.; Gallagher, K.S.; Collantes, G.; Lee, H. Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector. Energy Policy 2010, 38, 1305–1320. [Google Scholar] [CrossRef]
- Mao, X.; Yang, S.; Liu, Q.; Tu, J.; Jaccard, M. Achieving CO2 emission reduction and the co-benefits of local air pollution abatement in the transportation sector of China. Environ. Sci. Policy 2012, 21, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, R.; Yang, H.; Dong, K. Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions reduction? Transp. Policy 2022, 125, 151–163. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, T. Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China. Energy Policy 2022, 165, 112991. [Google Scholar] [CrossRef]
- Demircan Çakar, N.; Gedikli, A.; Erdoğan, S.; Yıldırım, D.Ç. A comparative analysis of the relationship between innovation and transport sector carbon emissions in developed and developing Mediterranean countries. Environ. Sci. Pollut. Res. 2021, 28, 45693–45713. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022—Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- van Ruijven, B.; van Vuuren, D.P. Oil and natural gas prices and greenhouse gas emission mitigation. Energy Policy 2009, 37, 4797–4808. [Google Scholar] [CrossRef]
- Shahbaz, M.; Khraief, N.; Jemaa, M.M.B. On the causal nexus of road transport CO2 emissions and macroeconomic variables in Tunisia: Evidence from combined cointegration tests. Renew. Sustain. Energy Rev. 2015, 51, 89–100. [Google Scholar] [CrossRef]
- Liddle, B. Urban Transport Pollution: Revisiting the Environmental Kuznets Curve. Int. J. Sustain. Transp. 2015, 9, 502–508. [Google Scholar] [CrossRef]
- Olsthoorn, X. Carbon dioxide emissions from international aviation: 1950–2050. J. Air Transp. Manag. 2001, 7, 87–93. [Google Scholar] [CrossRef]
- Marrero, Á.S.; Marrero, G.A.; González, R.M.; Rodríguez-López, J. Convergence in road transport CO2 emissions in Europe. Energy Econ. 2021, 99, 105322. [Google Scholar] [CrossRef]
- Kartal, M.T.; Ayhan, F.; Ulussever, T. Impact of environmental policy stringency on sectoral GHG emissions: Evidence from Finland and Sweden by nonlinear quantile-based methods. Int. J. Sustain. Dev. World Ecol. 2024, 1–13. [Google Scholar] [CrossRef]
- Lin, B.; Benjamin, N.I. Influencing factors on carbon emissions in China transport industry. A new evidence from quantile regression analysis. J. Clean. Prod. 2017, 150, 175–187. [Google Scholar] [CrossRef]
- Lin, D.; Zhang, L.; Chen, C.; Lin, Y.; Wang, J.; Qiu, R.; Hu, X. Understanding driving patterns of carbon emissions from the transport sector in China: Evidence from an analysis of panel models. Clean Technol. Environ. Policy 2019, 21, 1307–1322. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Li, L. Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality. Energies 2022, 15, 3064. [Google Scholar] [CrossRef]
- Cai, J.; Ma, S.; Ji, H.; Jiang, W.; Bai, Z. Spatial–temporal characteristics and decoupling effects of China’s transportation CO2 emissions. Environ. Sci. Pollut. Res. 2023, 30, 32614–32627. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, H.; Zhang, Z. The heterogeneous effect of driving factors on carbon emission intensity in the Chinese transport sector: Evidence from dynamic panel quantile regression. Sci. Total Environ. 2020, 727, 138578. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Ji, Q. Regional differences and driving factors analysis of carbon emission intensity from transport sector in China. Energy 2021, 224, 120178. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy 2009, 37, 4523–4539. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shrestha, A. Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: An LMDI decomposition analysis. Int. J. Energy Res. 2009, 33, 396–414. [Google Scholar] [CrossRef]
- Rasool, Y.; Zaidi, S.A.H.; Zafar, M.W. Determinants of carbon emissions in Pakistan’s transport sector. Environ. Sci. Pollut. Res. 2019, 26, 22907–22921. [Google Scholar] [CrossRef]
- Georgatzi, V.V.; Stamboulis, Y.; Vetsikas, A. Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries. Econ. Anal. Policy 2020, 65, 11–20. [Google Scholar] [CrossRef]
- Alataş, S. Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries. Res. Transp. Econ. 2022, 91, 101047. [Google Scholar] [CrossRef]
- Bhowmik, R.; Rahut, D.B.; Syed, Q.R. Investigating the Impact of Climate Change Mitigation Technology on the Transport Sector CO2 Emissions: Evidence From Panel Quantile Regression. Front. Environ. Sci. 2022, 10, 916356. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Wang, Q. The impact of energy efficiency on carbon emissions: Evidence from the transportation sector in Chinese 30 provinces. Sustain. Cities Soc. 2022, 82, 103880. [Google Scholar] [CrossRef]
- Irfan, M.; Mahapatra, B.; Shahbaz, M. Energy efficiency in the Indian transportation sector: Effect on carbon emissions. Environ. Dev. Sustain. 2024, 26, 6653–6676. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, T.; Liao, Z. The impact of technology-environmental innovation on CO2 emissions in China’s transportation sector. Environ. Sci. Pollut. Res. 2020, 27, 29485–29501. [Google Scholar] [CrossRef]
- Yang, X.; Jia, Z.; Yang, Z. Does biased technological progress facilitate the reduction of transportation carbon emissions? A threshold-based perspective. Environ. Dev. Sustain. 2024, 26, 4269–4292. [Google Scholar] [CrossRef]
- Lee, C.-C.; Yuan, Y.; Wen, H. Can digital economy alleviate CO2 emissions in the transport sector? Evidence from provincial panel data in China. Nat. Resour. Forum 2022, 46, 289–310. [Google Scholar] [CrossRef]
- Song, Z. Economic growth and carbon emissions: Estimation of a panel threshold model for the transition process in China. J. Clean. Prod. 2021, 278, 123773. [Google Scholar] [CrossRef]
- Huo, T.; Cao, R.; Du, H.; Zhang, J.; Cai, W.; Liu, B. Nonlinear influence of urbanization on China’s urban residential building carbon emissions: New evidence from panel threshold model. Sci. Total Environ. 2021, 772, 145058. [Google Scholar] [CrossRef]
- Girma, S. Absorptive Capacity and Productivity Spillovers from FDI: A Threshold Regression Analysis. Oxf. Bull. Econ. Stat. 2005, 67, 281–306. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Pata, U.K.; Li, R.; Kartal, M.T. Digital economy and carbon dioxide emissions: Examining the role of threshold variables. Geosci. Front. 2024, 15, 101644. [Google Scholar] [CrossRef]
- Ouyang, X.; Shao, Q.; Zhu, X.; He, Q.; Xiang, C.; Wei, G. Environmental regulation, economic growth and air pollution: Panel threshold analysis for OECD countries. Sci. Total Environ. 2019, 657, 234–241. [Google Scholar] [CrossRef]
- Wang, Q. Fixed-Effect Panel Threshold Model using Stata. Stata J. 2015, 15, 121–134. [Google Scholar] [CrossRef]
- Ben Cheikh, N.; Rault, C. Financial inclusion and threshold effects in carbon emissions. Energy Policy 2024, 192, 114265. [Google Scholar] [CrossRef]
- Hansen, B.E. Sample Splitting and Threshold Estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. CO2 and greenhouse gas emissions. Our World Data 2024. [Google Scholar]
- Gorus, M.S. Do tight environmental regulations cause economic contraction? Panel evidence from the European countries. Nat. Resour. Forum 2023, 48, 663–680. [Google Scholar] [CrossRef]
- Kartal, M.T.; Kirikkaleli, D.; Pata, U.K. Role of Environmental Policy Stringency on Sectoral CO2 Emissions in EU-5 Countries: Disaggregated Level Evidence by Novel Quantile-Based Approaches. Energy Environ. 2024, 0958305X241241026. [Google Scholar] [CrossRef]
- Botta, E.; Koźluk, T. Measuring Environmental Policy Stringency in OECD Countries. OECD Econ. Dep. Work. Pap. 2014, 1177. [Google Scholar] [CrossRef]
- Kruse, T.; Dechezleprêtre, A.; Saffar, R.; Robert, L. Measuring environmental policy stringency in OECD countries: An update of the OECD composite EPS indicator. OECD Econ. Dep. Work. Pap. 2022, 1703. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Guo, X. Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors. Energy Policy 2019, 132, 611–619. [Google Scholar] [CrossRef]
- Sharma, S.S. Determinants of carbon dioxide emissions: Empirical evidence from 69 countries. Appl. Energy 2011, 88, 376–382. [Google Scholar] [CrossRef]
- Danish; Baloch, M.A.; Suad, S. Modeling the impact of transport energy consumption on CO2 emission in Pakistan: Evidence from ARDL approach. Environ. Sci. Pollut. Res. 2018, 25, 9461–9473. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wang, P.; Chen, B.; Fan, W. Decoupling and decomposition analysis of CO2 emissions from government spending in China. Energy 2022, 243, 122741. [Google Scholar] [CrossRef]
- Shi, H.; Li, X.; Zhang, H.; Liu, X.; Li, T.; Zhong, Z. Global difference in the relationships between tourism, economic growth, CO2 emissions, and primary energy consumption. Curr. Issues Tour. 2020, 23, 1122–1137. [Google Scholar] [CrossRef]
- Wang, E.-Z.; Yang, M. Green complexity and CO2 emission: Does institutional quality matter? Energy Econ. 2022, 110, 106022. [Google Scholar] [CrossRef]
- Mensah, I.A.; Sun, M.; Gao, C.; Omari-Sasu, A.Y.; Zhu, D.; Ampimah, B.C.; Quarcoo, A. Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. J. Clean. Prod. 2019, 228, 161–174. [Google Scholar] [CrossRef]
- Li, K.; Fang, L.; He, L. The impact of energy price on CO2 emissions in China: A spatial econometric analysis. Sci. Total Environ. 2020, 706, 135942. [Google Scholar] [CrossRef]
- Malik, M.Y.; Latif, K.; Khan, Z.; Butt, H.D.; Hussain, M.; Nadeem, M.A. Symmetric and asymmetric impact of oil price, FDI and economic growth on carbon emission in Pakistan: Evidence from ARDL and non-linear ARDL approach. Sci. Total Environ. 2020, 726, 138421. [Google Scholar] [CrossRef]
- Wang, Z.; Yen-Ku, K.; Li, Z.; An, N.B.; Abdul-Samad, Z. The transition of renewable energy and ecological sustainability through environmental policy stringency: Estimations from advance panel estimators. Renew. Energy 2022, 188, 70–80. [Google Scholar] [CrossRef]
- Fang, G.; Yang, K.; Tian, L.; Ma, Y. Can environmental tax promote renewable energy consumption?—An empirical study from the typical countries along the Belt and Road. Energy 2022, 260, 125193. [Google Scholar] [CrossRef]
- Lans Bovenberg, A.; de Mooij, R.A. Environmental tax reform and endogenous growth. J. Public Econ. 1997, 63, 207–237. [Google Scholar] [CrossRef]
- Reboredo, J.C. Volatility spillovers between the oil market and the European Union carbon emission market. Econ. Model. 2014, 36, 229–234. [Google Scholar] [CrossRef]
- Heinrichs, H.; Jochem, P.; Fichtner, W. Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector. Energy 2014, 69, 708–720. [Google Scholar] [CrossRef]
- Amin, A.; Altinoz, B.; Dogan, E. Analyzing the determinants of carbon emissions from transportation in European countries: The role of renewable energy and urbanization. Clean Technol. Environ. Policy 2020, 22, 1725–1734. [Google Scholar] [CrossRef]
- Wang, K.; Yan, M.; Wang, Y.; Chang, C.-P. The impact of environmental policy stringency on air quality. Atmos. Environ. 2020, 231, 117522. [Google Scholar] [CrossRef]
- Michaelis, L.; Davidson, O. GHG mitigation in the transport sector. Energy Policy 1996, 24, 969–984. [Google Scholar] [CrossRef]
- Hao, H.; Wang, H.; Ouyang, M. Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet. Energy 2011, 36, 6520–6528. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.J. Energy consumption and emissions from the road transport in Spain: A conceptual approach. Transport 2012, 27, 383–396. [Google Scholar] [CrossRef]
- Janic, M. Estimating the long-term effects of different passenger car technologies on energy/fuel consumption and emissions of greenhouse gases in Europe. Transp. Plan. Technol. 2014, 37, 409–429. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, M.; Feng, G.-F.; Chang, C.-P. Does an environmental policy bring to green innovation in renewable energy? Renew. Energy 2022, 195, 1113–1124. [Google Scholar] [CrossRef]
- Li, S.; Shao, Q. How do financial development and environmental policy stringency affect renewable energy innovation? The Porter Hypothesis and beyond. J. Innov. Knowl. 2023, 8, 100369. [Google Scholar] [CrossRef]
- Godawska, J.; Wyrobek, J. The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries. Energies 2021, 14, 6225. [Google Scholar] [CrossRef]
OECD Countries | Non-OECD Countries |
---|---|
Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, South Korea, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States | Brazil, China, India, Indonesia, Russia, South Africa |
Symbol | Variable | Unit | Data Source |
---|---|---|---|
Explained variable | |||
CO2 | Transport sector CO2 emissions | Metric tons per capita | Our world in Data |
Explanatory variable | |||
OIL | Crude oil import prices | USD/barrel | OECD |
Threshold variables | |||
EPS | Environmental policy stringency index | Index (from 0 to 6) | OECD |
MBI | Market-based instrument index | Index (from 0 to 6) | OECD |
NMBI | Non-market-based instrument index | Index (from 0 to 6) | OECD |
TS | Technology support policy index | Index (from 0 to 6) | OECD |
Control variables | |||
GDP | Real GDP per capita | Constant 2015 USD | World bank |
FDI | Foreign direct investment | As % of GDP | World bank |
TRADE | Trade | As % of GDP | World bank |
GOV | Government spending | As % of GDP | World bank |
PT | Primary energy consumption per capita | Million tons | OECD |
Variable | Obs | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
990 | 0.430 | 0.817 | −2.579 | 1.841 | |
990 | 3.669 | 0.667 | 2.456 | 4.769 | |
990 | 1.885 | 1.137 | 0 | 4.722 | |
990 | 1.066 | 0.801 | 0 | 4.167 | |
990 | 3.099 | 1.945 | 0 | 6 | |
990 | 1.490 | 1.253 | 0 | 6 | |
975 | 9.870 | 1.050 | 6.271 | 11.375 | |
976 | 3.641 | 7.913 | −40.087 | 86.479 | |
979 | 73.612 | 40.115 | 15.156 | 252.250 | |
979 | 18.478 | 4.161 | 5.694 | 30.324 | |
990 | −12.689 | 0.637 | −14.949 | −11.676 |
Variable | Im–Pesaran–Shin Test (Level) | |
---|---|---|
C | C&T | |
Threshold | Hypothesis | F-Value | p-Value | Threshold Estimated Value | 95% Confidence Interval |
---|---|---|---|---|---|
Threshold variables: Environmental policy stringency index (EPS) | |||||
Single | H0: no threshold H1: one threshold | ||||
Double | H0: one threshold H1: double threshold | ||||
Triple | H0: double threshold H1: triple threshold |
Variables | Threshold Model |
---|---|
Variables | Sample (EPS < 2.94) | Sample (EPS > 2.94) |
---|---|---|
Threshold | Hypothesis | F-Value | p-Value | Threshold Estimated Value | 95% Confidence Interval |
---|---|---|---|---|---|
Threshold variables: Market-based instrument index (MBI) | |||||
Single | H0: no threshold H1: one threshold | ||||
Double | H0: one threshold H1: double threshold | ||||
Triple | H0: double threshold H1: triple threshold | ||||
Threshold variables: Non-market-based instrument index (NMBI) | |||||
Single | H0: no threshold H1: one threshold | ||||
Double | H0: one threshold H1: double threshold | ||||
Triple | H0: double threshold H1: triple threshold | ||||
Threshold variables: Technology support policy index (TS) | |||||
Single | H0: no threshold H1: one threshold | ||||
Double | H0: one threshold H1: double threshold | ||||
Triple | H0: double threshold H1: triple threshold |
Variables | Threshold Model (MBI) | Variables | Threshold Model (NMBI) | Variables | Threshold Model (TS) |
---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Wang, M. The Impact of Oil Price on Carbon Dioxide Emissions in the Transport Sector: The Threshold Effect of Environmental Policy Stringency. Energies 2024, 17, 4496. https://doi.org/10.3390/en17174496
Ding X, Wang M. The Impact of Oil Price on Carbon Dioxide Emissions in the Transport Sector: The Threshold Effect of Environmental Policy Stringency. Energies. 2024; 17(17):4496. https://doi.org/10.3390/en17174496
Chicago/Turabian StyleDing, Xingong, and Mengzhen Wang. 2024. "The Impact of Oil Price on Carbon Dioxide Emissions in the Transport Sector: The Threshold Effect of Environmental Policy Stringency" Energies 17, no. 17: 4496. https://doi.org/10.3390/en17174496
APA StyleDing, X., & Wang, M. (2024). The Impact of Oil Price on Carbon Dioxide Emissions in the Transport Sector: The Threshold Effect of Environmental Policy Stringency. Energies, 17(17), 4496. https://doi.org/10.3390/en17174496