Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = fructan extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16313 KB  
Article
Comparison of Extraction, Isolation, Purification, Structural Characterization and Immunomodulatory Activity of Polysaccharides from Two Species of Cistanche
by Jingya Ruan, Juan Zhang, Lequan Yu, Ping Zhang, Anxin Chen, Dongmei Wang, Yi Zhang and Tao Wang
Molecules 2025, 30(24), 4754; https://doi.org/10.3390/molecules30244754 - 12 Dec 2025
Viewed by 515
Abstract
This study focuses on polysaccharides from Cistanche deserticola and Cistanche tubulosa, medicinal plants renowned for their health benefits. The “water extraction and alcohol precipitation” method was used to obtain the crude polysaccharides of the wine-making residues of C. deserticola (CDP) and C. [...] Read more.
This study focuses on polysaccharides from Cistanche deserticola and Cistanche tubulosa, medicinal plants renowned for their health benefits. The “water extraction and alcohol precipitation” method was used to obtain the crude polysaccharides of the wine-making residues of C. deserticola (CDP) and C. tubulosa (CTP), respectively. Then, ultrafiltration membrane (UFM), DEAE-52, and Sephadex-G75 or Smartdex-G100 gel chromatography were used to separate and purify the crude polysaccharides, yielding the homogeneous fractions CDP1-5-1, CDP2-2-2, CDP2-3-2, CTP1-5-1, and CTP1-5-3. Structural analysis was conducted by using Fourier-transform infrared spectroscopy (FT-IR), high-performance anion-exchange chromatography coupled with multi-angle laser light scattering and refractive index detection (HPAEC-MALLS-RID), gas chromatography–mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), congo red, and scanning electron microscopy (SEM). CDP1-5-1 was found to be an arabinan, while CDP2-2-2 and CDP2-3-2 were agavin-like fructans with different molecular weights. CTP1-5-1 and CTP1-5-3 were identified as a heteropolysaccharide and a galacturonan, respectively. Immunological evaluation using RAW264.7 macrophages showed that they all significantly enhanced nitric oxide (NO) production, with CDP1-5-1 exhibiting the most potent activity. The structural–activity relationship is summarized as follows: the arabinose was a key active unit with NO stimulatory effects. This research provides foundational data on the structure and immune-enhancing potential of Cistanche polysaccharides, supporting their further development and application. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

6 pages, 443 KB  
Proceeding Paper
Preliminary Studies on the Biosynthesis of Microbial Inulinase by Aspergillus niger ICCF 92
by Mariana Gratiela Vladu, Mihaela Carmen Eremia, Dana Maria Miu, Gabriela Valeria Savoiu and Maria Monica Petrescu
Chem. Proc. 2025, 18(1), 48; https://doi.org/10.3390/ecsoc-29-26690 - 11 Nov 2025
Viewed by 146
Abstract
Modern diets are high in fructans, which may lead to abdominal discomfort, particularly in sensitive individuals. Microbial inulinase, an enzyme that hydrolyzes inulin into fructose and fructo-oligosaccharides (FOS), has significant prebiotic potential and may contribute to the prevention of metabolic disorders by enhancing [...] Read more.
Modern diets are high in fructans, which may lead to abdominal discomfort, particularly in sensitive individuals. Microbial inulinase, an enzyme that hydrolyzes inulin into fructose and fructo-oligosaccharides (FOS), has significant prebiotic potential and may contribute to the prevention of metabolic disorders by enhancing fructan digestion. This study investigates inulinase production by the Aspergillus niger ICCF 92 strain under various growth conditions. Three carbon sources (inulin, molasses, and carob pod decoction), the time required for biosynthesis processes, and stirring speed were evaluated for their influence on inulinase activity. Nitrogen sources included yeast extract, ammonium nitrate, and ammonium phosphate. Process monitoring included pH measurement, protein quantification via the Bradford assay, and inulinase activity assessment using the 3,5-dinitrosalicylic acid method. The highest inulinase production (38.29 U/mL) and protein concentration (0.7548 mg/mL) were achieved after 14 days of static fermentation with carob pod decoction as the carbon source. Full article
Show Figures

Figure 1

40 pages, 3054 KB  
Review
Techno-Functional Properties and Applications of Inulin in Food Systems
by Elisa Canazza, Miriam Grauso, Dasha Mihaylova and Anna Lante
Gels 2025, 11(10), 829; https://doi.org/10.3390/gels11100829 - 15 Oct 2025
Cited by 2 | Viewed by 4502
Abstract
Inulin, a type of fructan primarily extracted from chicory, Jerusalem artichoke, and dahlia, is a prebiotic dietary fiber increasingly valued for its multifunctional roles in food systems. Beyond its well-established nutritional benefits linked to gut microbiota modulation and metabolic health, inulin also provides [...] Read more.
Inulin, a type of fructan primarily extracted from chicory, Jerusalem artichoke, and dahlia, is a prebiotic dietary fiber increasingly valued for its multifunctional roles in food systems. Beyond its well-established nutritional benefits linked to gut microbiota modulation and metabolic health, inulin also provides unique techno-functional properties that make it a versatile structuring ingredient. This review emphasizes inulin’s ability to form gel-like networks and emulsion gels, examining the mechanisms of gelation and the influence of chain length, degree of polymerization, and processing conditions on gel stability and performance. Inulin-based gels act as effective fat replacers, texture modifiers, and carriers of bioactive compounds, supporting the reformulation of foods with reduced fat and sugar while maintaining desirable texture and sensory quality. Applications span a wide range of food systems, including dairy, meat, bakery, confectionery, plant-based, and gluten-free products, where inulin contributes to enhanced structure, stability, and palatability. Furthermore, the potential to obtain inulin from agro-industrial by-products strengthens its role in sustainable food design within a circular economy framework. By integrating nutritional, structural, and technological functionalities, inulin and inulin-based gels emerge as promising tools for the development of innovative and health-oriented food products. Full article
Show Figures

Graphical abstract

17 pages, 2518 KB  
Article
Evaluation of Dahlia and Agave Fructans as Defense Inducers in Tomato Plants Against Phytophthora capsici
by Elizabeth Sánchez-Jiménez, Kristel Alejandra Herrejón-López, Mayra Itzcalotzin Montero-Cortés, Julio César López-Velázquez, Soledad García-Morales and Joaquín Alejandro Qui-Zapata
Polysaccharides 2025, 6(3), 72; https://doi.org/10.3390/polysaccharides6030072 - 10 Aug 2025
Viewed by 1090
Abstract
In agriculture, the use of fructans has gained relevance due to their ability to improve plant immunity and resistance to pathogens. However, many studies use high-purity fructans, which makes their application more expensive. In this work, the efficacy of two agave fructans, one [...] Read more.
In agriculture, the use of fructans has gained relevance due to their ability to improve plant immunity and resistance to pathogens. However, many studies use high-purity fructans, which makes their application more expensive. In this work, the efficacy of two agave fructans, one food grade from Agave tequilana Weber var. Azul (FT) and the other obtained by semi-craft extraction from A. cupreata (FC) were evaluated in comparison with reagent-grade inulin from dahlia tubers. The effectiveness of their defense response against Phytophthora capsici infection in tomato (Solanum lycopersicum L.) was analyzed by evaluating defense mechanisms, including lignin deposition, hydrogen peroxide (H2O2) accumulation, and β-1,3-glucanase and peroxidase activity. The results indicated that foliar application of both fructans showed protection against infection, reducing disease incidence and severity. FT fructans at lower concentration (0.5 g/L) showed the highest protection, followed by FC, while dahlia inulin showed lower effectiveness. An early and progressive accumulation of H2O2 was observed in fructan-treated plants, in contrast to the late increase in untreated infected plants. Also, peroxidase activity was higher in the fructan treatments, suggesting a more efficient defense response. Although lignin deposition was not directly correlated with protection against P. capsici, fructans showed potential as resistance inducers. Given their low cost, easy extraction, and zero environmental impact, agave fructans represent a viable alternative for crop protection in sustainable agricultural systems. This study opens the door to their validation in the field and their application in other economically important crops, contributing to biological control strategies with less dependence on agrochemicals. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Graphical abstract

31 pages, 4915 KB  
Article
Disaccharides and Fructooligosaccharides (FOS) Production by Wild Yeasts Isolated from Agave
by Yadira Belmonte-Izquierdo, Luis Francisco Salomé-Abarca, Mercedes G. López and Juan Carlos González-Hernández
Foods 2025, 14(15), 2714; https://doi.org/10.3390/foods14152714 - 1 Aug 2025
Cited by 1 | Viewed by 1307
Abstract
Fructooligosaccharides (FOS) are short fructans with different degrees of polymerization (DP) and bonds in their structure, generated by the distinct activities of fructosyltransferase enzymes, which produce distinct types of links. FOS are in high demand on the market, mainly because of their prebiotic [...] Read more.
Fructooligosaccharides (FOS) are short fructans with different degrees of polymerization (DP) and bonds in their structure, generated by the distinct activities of fructosyltransferase enzymes, which produce distinct types of links. FOS are in high demand on the market, mainly because of their prebiotic effects. In recent years, depending on the link type in the FOS structure, prebiotic activity has been shown to be increased. Studies on β-fructanofuranosidases (Ffasa), enzymes with fructosyltransferase activity in yeasts, have reported the production of 1F-FOS, 6F-FOS, and 6G-FOS. The aims of this investigation were to evaluate the capability of fifteen different yeasts to grow in Agave sp. juices and to determine the potential of these juices as substrates for FOS production. Additionally, the research aimed to corroborate and analyze the fructosyltransferase activity of enzymatic extracts obtained from agave yeasts by distinct induction media and to identify the role and optimal parameters (time and sucrose and glucose concentrations) for FOS and disaccharides production through Box–Behnken designs. To carry out such a task, different techniques were employed: FT-IR, TLC, and HPAEC-PAD. We found two yeasts with fructosyltransferase activity, P. kudriavzevii ITMLB97 and C. lusitaniae ITMLB85. In addition, within the most relevant results, the production of the FOS 1-kestose, 6-kestose, and neokestose, as well as disaccharides inulobiose, levanobiose, and blastose, molecules with potential applications, was determined. Overall, FOS production requires suitable yeast species, which grow in a medium under optimal conditions, from which microbial enzymes with industrial potential can be obtained. Full article
Show Figures

Figure 1

24 pages, 2809 KB  
Article
Physicochemical, Functional, and Antibacterial Properties of Inulin-Type Fructans Isolated from Dandelion (Taraxacum officinale) Roots by “Green” Extraction Techniques
by Nadezhda Petkova, Ivanka Hambarliyska, Ivan Ivanov, Manol Ognyanov, Krastena Nikolova, Sevginar Ibryamova and Tsveteslava Ignatova-Ivanova
Appl. Sci. 2025, 15(8), 4091; https://doi.org/10.3390/app15084091 - 8 Apr 2025
Cited by 3 | Viewed by 4586
Abstract
The current study aims for the isolation and physicochemical characterization of inulin from defatted dandelion roots using green extraction techniques, including microwave extraction (MAE) and ultrasound-assisted extraction (UAE). The structure and degree of polymerization of inulin were elucidated by chromatographic techniques, as well [...] Read more.
The current study aims for the isolation and physicochemical characterization of inulin from defatted dandelion roots using green extraction techniques, including microwave extraction (MAE) and ultrasound-assisted extraction (UAE). The structure and degree of polymerization of inulin were elucidated by chromatographic techniques, as well as by FTIR and NMR spectroscopies. The color characteristics, water- and oil-holding capacity, solubility, swelling properties, wettability, angle of repose, flowability, and cohesiveness of dandelion inulin were evaluated. Moreover, the antioxidant and antibacterial potential of dandelion inulin were revealed. The results were compared with the conventional extraction and inulin from chicory. Dandelion inulin was evaluated as a powder substance with a degree of polymerization (DP) of 17–24. The highest yield (20%) was obtained by classical extraction; however, UAE and MAE demonstrated the highest purity. FT-IR and NMR spectra revealed that dandelion inulin is glucofructan with a molecular weight of 2.7–3.2 kDa that consists mainly of fructosyl units β-(2→1) linked to one α-D-glucose unit UAE was evaluated as the most perspective technique for the simultaneous extraction of inulin from dandelion roots, with the highest average DP 24 and high purity (82%), molecular mass, total fructose content, swelling index, and oil-holding capacity. Dandelion inulin exhibited intermediate cohesiveness, fair flowability, and moderate antimicrobial activity against Listeria monocytogenes 863 and Bacillus subtilis 6633. The physicochemical and functional properties of dandelion inulin reveal its future potential as an additive in food, cosmetic, and pharmaceutics formulations as a texture modifier, a fat replacer, and a drug carrier. Full article
(This article belongs to the Special Issue Novel Extraction Methods and Applications)
Show Figures

Figure 1

16 pages, 4029 KB  
Article
Pulsed Electric Field-Assisted Extraction of Inulin from Ecuadorian Cabuya (Agave americana)
by Alejandra Rivera, Marcelo Pozo, Vanessa E. Sánchez-Moreno, Edwin Vera and Lorena I. Jaramillo
Molecules 2024, 29(14), 3428; https://doi.org/10.3390/molecules29143428 - 22 Jul 2024
Cited by 6 | Viewed by 1888
Abstract
Inulin is a carbohydrate that belongs to fructans; due to its health benefits, it is widely used in the food and pharmaceutical industries. In this research, cabuya (Agave americana) was employed to obtain inulin by pulsed electric field-assisted extraction (PEFAE) and [...] Read more.
Inulin is a carbohydrate that belongs to fructans; due to its health benefits, it is widely used in the food and pharmaceutical industries. In this research, cabuya (Agave americana) was employed to obtain inulin by pulsed electric field-assisted extraction (PEFAE) and FTIR analysis confirmed its presence. The influence of PEFAE operating parameters, namely, electric field strength (1, 3 and 5 kV/cm), pulse duration (0.1, 0.2 and 0.5 ms), number of pulses (10,000, 20,000 and 40,000) and work cycle (20, 50 and 80%) on the permeabilization index and energy expenditure were tested. Also, once the operating conditions for PEFAE were set, the temperature for conventional extraction (CE) and PEFAE were defined by comparing extraction kinetics. The cabuya meristem slices were exposed to PEFAE to obtain extracts that were quantified, purified and concentrated. The inulin was isolated by fractional precipitation with ethanol to be characterized. The highest permeabilization index and the lowest energy consumption were reached at 5 kV/cm, 0.5 ms, 10,000 pulses and 20%. The same extraction yield and approximately the same amount of inulin were obtained by PEFAE at 60 °C compared to CE at 80 °C. Despite, the lower amount of inulin obtained by PEFAE in comparison to CE, its quality was better because it is mainly constituted of inulin of high average polymerization degree with more than 38 fructose units. In addition, TGA analyses showed that inulin obtained by PEFAE has a lower thermal degradation rate than the obtained by CE and to the standard. Full article
Show Figures

Figure 1

21 pages, 3799 KB  
Review
Polysaccharides from Medicinal Plants: Bridging Ancestral Knowledge with Contemporary Science
by Lucas de Freitas Pedrosa and João Paulo Fabi
Plants 2024, 13(13), 1721; https://doi.org/10.3390/plants13131721 - 21 Jun 2024
Cited by 7 | Viewed by 3766
Abstract
Plants are a core part of cultural identity, as part of a diet, decorations, ceremonies, or as medicinal agents. Empirical knowledge regarding plants and their healing potential has existed worldwide for centuries. With the advance of science and technology, not only is the [...] Read more.
Plants are a core part of cultural identity, as part of a diet, decorations, ceremonies, or as medicinal agents. Empirical knowledge regarding plants and their healing potential has existed worldwide for centuries. With the advance of science and technology, not only is the refinement of such sources or isolation of specific compounds possible, but these compounds can also be characterized based on their natural occurrence. Besides their importance for plant metabolism and structure, polysaccharides have been demonstrated to have substantial positive human health impacts on inflammation, metabolism, oxidative stress, and others. As an inherent part of plant cell walls, many polysaccharides from medicinal herbs, such as fructans, glucans, and pectins, have been extracted and analyzed for their structure and function. However, a review summarizing a significant portion of these studies was still unavailable. This review helps to fill the knowledge gap between polysaccharide bioactivity, their structure, and their plant matrix sources, focusing on historical medicinal usage. Full article
Show Figures

Figure 1

2 pages, 139 KB  
Abstract
Systematic Review and Meta-Analysis of Chicory Inulin-Type Fructans Supplementation on Weight Management Aspects
by Yoghatama Cindya Zanzer and Stephan Theis
Proceedings 2023, 91(1), 155; https://doi.org/10.3390/proceedings2023091155 - 1 Feb 2024
Viewed by 3373
Abstract
Maintaining and reducing weight are considered as important features in reducing mortality and morbidity caused by metabolic-associated diseases. Increasing evidence from in vivo mechanistic and clinical studies has shown that the gut microbiota is interacting with the host's physiological function in regulating energy [...] Read more.
Maintaining and reducing weight are considered as important features in reducing mortality and morbidity caused by metabolic-associated diseases. Increasing evidence from in vivo mechanistic and clinical studies has shown that the gut microbiota is interacting with the host's physiological function in regulating energy intake and body weight. A prebiotic is a substrate that is selectively utilized by host microorganisms conferring a health benefit. Numerous clinical studies showed multifaceted benefits of prebiotic chicory inulin-type fructans (ITFs) on gut and metabolic health. The present systematic review and meta-analysis aimed to synthesize the totality of evidence through pooled estimates of ITF supplementation in supporting weight management on both healthy and diseased subjects. A systematic search for eligible articles was performed in databases (EMBASE, MEDLINE (PubMed), Web of Science) without a language restriction. Two reviewers independently extracted data from eligible articles. We chose primary (body weight) and secondary (BMI, total fat mass, body fat percentage and waist circumference) outcomes as weight management parameters. The baseline-corrected mean difference (MD) was used to synthesize the pooled effect size by employing a random-effects model using the inverse variance method. A sub-group analysis based on dose, duration, health status and ITF-type was also conducted. A total of 31 randomized controlled trials with 40 arms (n = 1309 participants) were included in this review. A significant reduction was observed on body weight (MD: −1.03 kg, 95% CI: −1.42 to −0.64, p < 0.0001), BMI (MD: −0.39 kg/m2, 95% CI: −0.58 to −0.21, p = 0.0001), fat mass (MD: −0.45 kg, 95% CI: −0.71 to −0.2, p = 0.0023), and waist circumference (MD: −0.99 cm, 95% CI: −1.61 to −0.37, p = 0.003) following ITF supplementation. For body fat percentage, a significant effect was observed following subgroup analysis on an intervention that lasted for more than 8 weeks (MD: −0.78 percent, 95% CI: −1.17 to −0.39, p < 0.01). The present meta-analysis of randomized controlled trials provides further evidence to support that ITF supplementation could help benefit weight management by reducing body weight, BMI, fat mass, waist circumference, and to a certain extent on body fat percentage. Full article
(This article belongs to the Proceedings of The 14th European Nutrition Conference FENS 2023)
14 pages, 2133 KB  
Article
The Influence of Oxidizing and Non-Oxidizing Biocides on Enzymatic and Microbial Activity in Sugarcane Processing
by Evan Terrell, Yunci Qi, Gillian O. Bruni and Emily Heck
Processes 2023, 11(9), 2693; https://doi.org/10.3390/pr11092693 - 8 Sep 2023
Cited by 3 | Viewed by 2791
Abstract
Processing aids are utilized during raw sugar manufacturing at sugarcane processing facilities to mitigate unwanted contamination from microorganisms and their associated exopolysaccharides (EPS). Microorganisms in processing facilities contribute to sugar losses through sucrose inversion and consumption, with many bacteria strains subsequently producing dextran [...] Read more.
Processing aids are utilized during raw sugar manufacturing at sugarcane processing facilities to mitigate unwanted contamination from microorganisms and their associated exopolysaccharides (EPS). Microorganisms in processing facilities contribute to sugar losses through sucrose inversion and consumption, with many bacteria strains subsequently producing dextran and fructan EPS that can cause downstream issues related to viscosity and crystallization. Similar issues also result from the presence of unwanted starches from plant material in cane juices. Processing aids include biocides for bacterial inhibition, and enzymes (e.g., dextranase, amylase) to break down polysaccharides in juices. However, oxidizing biocide processing aids (e.g., sodium hypochlorite) may inhibit enzymatic processing aid activity. In this study, biocides (sodium hypochlorite, carbamate, and hop extract) and enzymes (dextranase and amylase) were simultaneously added to sugarcane juice to measure residual enzymatic activity for dextranase and amylase. The same biocides were also tested to estimate minimum inhibitory concentrations against bacterial strains isolated from Louisiana sugarcane processing facilities. These experiments provide evidence to suggest that sodium hypochlorite may interfere with enzymatic processing aid activity, with lesser/limited enzymatic inhibition from carbamates and hop extracts. Biocide susceptibility assays suggest that sodium hypochlorite has limited effectiveness against tested bacterial strains. Hop extract biocide was only effective against Gram-positive Leuconostoc while carbamate biocide showed more broad-spectrum activity against all tested strains. Full article
(This article belongs to the Special Issue Agriculture Products Processing and Storage)
Show Figures

Figure 1

23 pages, 2588 KB  
Article
Effect of Wild Strawberry Tree and Hawthorn Extracts Fortification on Functional, Physicochemical, Microbiological, and Sensory Properties of Yogurt
by Teresa Herrera, Maite Iriondo-DeHond, Ana Ramos Sanz, Ana Isabel Bautista and Eugenio Miguel
Foods 2023, 12(18), 3332; https://doi.org/10.3390/foods12183332 - 5 Sep 2023
Cited by 16 | Viewed by 4374
Abstract
The composition analyses and health-promoting properties (antioxidant capacity, antidiabetic, and antihypertensive properties) of wild fruit extracts and the effect of the incorporation of strawberry tree (STE) and hawthorn (HTE) extracts on the physicochemical, instrumental textural, microbiological, and sensory parameters of yogurts were evaluated. [...] Read more.
The composition analyses and health-promoting properties (antioxidant capacity, antidiabetic, and antihypertensive properties) of wild fruit extracts and the effect of the incorporation of strawberry tree (STE) and hawthorn (HTE) extracts on the physicochemical, instrumental textural, microbiological, and sensory parameters of yogurts were evaluated. The incorporation of wild fruit extracts in yogurt increased antioxidant and antidiabetic properties (inhibition of digestive α-amylase, α-glucosidase, and lipase enzymatic activities) compared to the control, without decreasing their sensory quality or acceptance by consumers. The hawthorn yogurt (YHTE) showed the highest total phenolic content (TPC) and antioxidant capacity (ABTS and ORAC methods). Yogurts containing wild fruit extracts and dietary fiber achieved high overall acceptance scores (6.16–7.04) and showed stable physicochemical, textural, and microbiological properties. Therefore, the use of wild fruit extracts and inulin-type fructans as ingredients in yogurt manufacture stands as a first step towards the development of non-added sugar dairy foods for sustainable health. Full article
Show Figures

Graphical abstract

14 pages, 1059 KB  
Article
Phytochemical Characterization of Purple Coneflower Roots (Echinacea purpurea (L.) Moench.) and Their Extracts
by Ani Petrova, Manol Ognyanov, Nadezhda Petkova and Petko Denev
Molecules 2023, 28(9), 3956; https://doi.org/10.3390/molecules28093956 - 8 May 2023
Cited by 9 | Viewed by 4253
Abstract
Echinacea purpurea is a perennial plant that belongs to the Asteraceae family. It has a wide range of applications mainly in the treatment and prevention of inflammations in the respiratory system. The current study aimed to perform a phytochemical characterization of purple coneflower [...] Read more.
Echinacea purpurea is a perennial plant that belongs to the Asteraceae family. It has a wide range of applications mainly in the treatment and prevention of inflammations in the respiratory system. The current study aimed to perform a phytochemical characterization of purple coneflower (Echinacea purpurea) roots and their extracts (water, 40%, 50%, 60% ethanol, and 60% glycerol). Phytochemical characterization was carried out by gravimetric, spectrophotometric, and chromatographic methods. Echinacea roots were characterized by a low lipid (0.8%) content. In contrast, carbohydrates (45%) and proteins (20%) occupied a large part of the dry matter. Amongst the extracts, the highest yield was obtained using water as a solvent (53%). Water extract was rich in protein and carbohydrates as fructans (inulin) were the most abundant carbohydrate constituent. The most exhaustive recovery of the phenolic components was conducted by extraction with 40% ethanol and 60% glycerol. It was found that water is the most suitable extractant for obtaining a polysaccharide-containing complex (PSC) (8.87%). PSC was composed mainly of fructans (inulin) and proteins with different molecular weight distributions. The yield of PSC decreased with an increasing ethanol concentration (40% > 50% > 60%) but the lowest yield was obtained from 60% glycerol extract. The obtained results showed that Echinacea roots contained a large amount of biologically active substances—phenolic components and polysaccharides and that glycerol was equally efficient to ethanol in extracting caffeic acid derivatives from purple coneflower roots. The data can be used for the preparation of extracts having different compositions and thus easily be incorporated into commercial products. Full article
Show Figures

Figure 1

19 pages, 2765 KB  
Article
Asparagus Fructans as Emerging Prebiotics
by Amel Hamdi, Isabel Viera-Alcaide, Rafael Guillén-Bejarano, Rocío Rodríguez-Arcos, Manuel Jesús Muñoz, Jose Manuel Monje Moreno and Ana Jiménez-Araujo
Foods 2023, 12(1), 81; https://doi.org/10.3390/foods12010081 - 23 Dec 2022
Cited by 18 | Viewed by 5908
Abstract
Commercial fructans (inulin and oligofructose) are generally obtained from crops such as chicory, Jerusalem artichoke or agave. However, there are agricultural by-products, namely asparagus roots, which could be considered potential sources of fructans. In this work, the fructans extracted from asparagus roots and [...] Read more.
Commercial fructans (inulin and oligofructose) are generally obtained from crops such as chicory, Jerusalem artichoke or agave. However, there are agricultural by-products, namely asparagus roots, which could be considered potential sources of fructans. In this work, the fructans extracted from asparagus roots and three commercial ones from chicory and agave were studied in order to compare their composition, physicochemical characteristics, and potential health effects. Asparagus fructans had similar chemical composition to the others, especially in moisture, simple sugars and total fructan contents. However, its contents of ash, protein and phenolic compounds were higher. FTIR analysis confirmed these differences in composition. Orafti®GR showed the highest degree of polymerization (DP) of up to 40, with asparagus fructans (up to 25) falling between Orafti®GR and the others (DP 10–11). Although asparagus fructan powder had a lower fructan content and lower DP than Orafti®GR, its viscosity was higher, probably due to the presence of proteins. The existence of phenolic compounds lent antioxidant activity to asparagus fructans. The prebiotic activity in vitro of the four samples was similar and, in preliminary assays, asparagus fructan extract presented health effects related to infertility and diabetes diseases. All these characteristics confer a great potential for asparagus fructans to be included in the prebiotics market. Full article
Show Figures

Graphical abstract

17 pages, 4488 KB  
Article
Agave Fructans in Oaxaca’s Emblematic Specimens: Agave angustifolia Haw. and Agave potatorum Zucc.
by Ruth E. Márquez-López, Patricia Araceli Santiago-García and Mercedes G. López
Plants 2022, 11(14), 1834; https://doi.org/10.3390/plants11141834 - 13 Jul 2022
Cited by 14 | Viewed by 4385
Abstract
Despite the recognition of Agave tequilana Weber var. Azul as raw material for producing tequila and obtaining prebiotics, there are other highly relevant Agave species in Mexico. Oaxaca contains a startlingly diverse range of Agave species; Agave angustifolia Haw. and Agave potatorum Zucc. [...] Read more.
Despite the recognition of Agave tequilana Weber var. Azul as raw material for producing tequila and obtaining prebiotics, there are other highly relevant Agave species in Mexico. Oaxaca contains a startlingly diverse range of Agave species; Agave angustifolia Haw. and Agave potatorum Zucc. are two classic specimens with great commercial potential. In this study, we examined the fructan fluctuation in these two species during their lifetime in the field (from 1 to 6 years old). First, we analyzed their morphological diversity based on vegetative characteristics. Subsequently, fructan extracts were analyzed by TLC, FT-IR, and HPAEC-PAD to identify carbohydrates. Multivariate analyses of the morphological parameters indicated a morphological divergence between the two species. Furthermore, we found that the concentration of simple carbohydrates and fructans, as well as the fructan DP, changed during plant development. Glucose, fructose, and fructooligosaccharides (FOS) were more abundant in A. potatorum, while A. angustifolia showed a greater amount of sucrose and fructans with a high DP. Fructan DP heatmaps were constructed using HPAEC-PAD profiles—the heatmaps were very helpful for establishing an easy correlation between age and the carbohydrate types present in the fructan extracts. This study is an important contribution to the agave fructan knowledge of the Mexican agave diversity. Full article
(This article belongs to the Special Issue Germplasm Resources and Breeding of Agave)
Show Figures

Graphical abstract

17 pages, 11028 KB  
Article
Immunomodulatory Properties of Polysaccharide-Rich Young Green Barley (Hordeum vulgare) Extract and Its Structural Characterization
by Marta Kinga Lemieszek, Iwona Komaniecka, Michał Chojnacki, Adam Choma and Wojciech Rzeski
Molecules 2022, 27(5), 1742; https://doi.org/10.3390/molecules27051742 - 7 Mar 2022
Cited by 11 | Viewed by 4715
Abstract
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells’ ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has [...] Read more.
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells’ ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention. Full article
(This article belongs to the Special Issue A Feasible Approach for Natural Products to Treatment of Diseases)
Show Figures

Figure 1

Back to TopTop