Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (289)

Search Parameters:
Keywords = frosts and thaws

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6787 KiB  
Article
Frost Resistance Prediction of Concrete Based on Dynamic Multi-Stage Optimisation Algorithm
by Xuwei Dong, Jiashuo Yuan and Jinpeng Dai
Algorithms 2025, 18(7), 441; https://doi.org/10.3390/a18070441 - 18 Jul 2025
Abstract
Concrete in cold areas is often subjected to a freeze–thaw cycle period, and a harsh environment will seriously damage the structure of concrete and shorten its life. The frost resistance of concrete is primarily evaluated by relative dynamic elastic modulus and mass loss [...] Read more.
Concrete in cold areas is often subjected to a freeze–thaw cycle period, and a harsh environment will seriously damage the structure of concrete and shorten its life. The frost resistance of concrete is primarily evaluated by relative dynamic elastic modulus and mass loss rate. To predict the frost resistance of concrete more accurately, based on the four ensemble learning models of random forest (RF), adaptive boosting (AdaBoost), categorical boosting (CatBoost), and extreme gradient boosting (XGBoost), this paper optimises the ensemble learning models by using a dynamic multi-stage optimisation algorithm (DMSOA). These models are trained using 7090 datasets, which use nine features as input variables; relative dynamic elastic modulus (RDEM) and mass loss rate (MLR) as prediction indices; and six indices of the coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (CC), and standard deviation ratio (SDR) are selected to evaluate the models. The results show that the DMSOA-CatBoost model exhibits the best prediction performance. The R2 of RDEM and MLR are 0.864 and 0.885, respectively, which are 6.40% and 11.15% higher than those of the original CatBoost model. Moreover, the model performs better in error control, with significantly lower MSE, RMSE, and MAE and stronger generalization ability. Additionally, compared with the two mainstream optimisation algorithms (SCA and AOA), DMSOA-CatBoost also has obvious advantages in prediction accuracy and stability. Related work in this paper has a certain significance for improving the durability and quality of concrete, which is conducive to predicting the performance of concrete in cold conditions faster and more accurately to optimise the concrete mix ratio whilst saving on engineering cost. Full article
Show Figures

Figure 1

23 pages, 3120 KiB  
Article
An Experimental Study on the Effects of Basalt Fiber and Iron Ore Tailings on the Durability of Recycled Concrete
by Yang Zhang, Xu-Hui Wang and Xian-Jie Tang
Buildings 2025, 15(14), 2492; https://doi.org/10.3390/buildings15142492 - 16 Jul 2025
Viewed by 135
Abstract
To elucidate the effects of iron ore tailings (IOTs) and basalt fiber (BF) on the durability of recycled aggregate concrete (RAC) with different recycled aggregate replacement rates, this study used IOTs to replace natural sand at mass replacement rates of 0%, 20%, 40%, [...] Read more.
To elucidate the effects of iron ore tailings (IOTs) and basalt fiber (BF) on the durability of recycled aggregate concrete (RAC) with different recycled aggregate replacement rates, this study used IOTs to replace natural sand at mass replacement rates of 0%, 20%, 40%, 60%, 80%, and 100% and incorporated BF at volume fractions of 0%, 0.1%, 0.2%, and 0.3%. Carbonation and freeze–thaw cycle tests were conducted on C30 grade RAC. The carbonation depth and compressive strength of RAC at different carbonation ages and the mass loss rate, relative dynamic elastic modulus, and changes in compressive strength of RAC under different freeze–thaw cycle times were determined. Scanning electron microscopy (SEM) was utilized to meticulously observe the micro-morphological alterations of BF-IOT-RAC before and after carbonation. We then investigated the mechanisms by which BF and IOTs enhance the carbonation resistance of RAC. Utilizing the experimental data, we fitted relevant models to establish both a carbonation depth prediction model and a freeze–thaw damage prediction model specific to BF-IOT-RAC. Furthermore, we projected the service life of BF-IOT-RAC under conditions typical of northwest China. The results showed that as the dosages of the two materials increased, the carbonation resistance and frost resistance of RAC initially improved and then declined. Specifically, the optimal volume content of BF was ascertained to be 0.1%, while the optimal replacement rate of IOTs was determined to be 40%. Compared to using BF or IOTs individually, the composite incorporation of both materials significantly improves the durability of RAC while simultaneously enhancing the reuse of construction waste and mining solid waste, thereby contributing to environmental sustainability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 16538 KiB  
Article
Experimental Study on Interface Bonding Performance of Frost-Damaged Concrete Reinforced with Yellow River Sedimentary Sand Engineered Cementitious Composites
by Binglin Tan, Ali Raza, Ge Zhang and Chengfang Yuan
Materials 2025, 18(14), 3278; https://doi.org/10.3390/ma18143278 - 11 Jul 2025
Viewed by 270
Abstract
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged [...] Read more.
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged concrete using engineered cementitious composites (ECC) prepared with Yellow River sedimentary sand (YRS), employed as a 100% mass replacement for quartz sand to promote sustainability. The interface bonding performance of ECC-C40 specimens was evaluated by testing the impact of various surface roughness treatments, freeze–thaw cycles, and interface agents. A multi-factor predictive formula for determining interface bonding strength was created, and the bonding mechanism and model were examined through microscopic analysis. The results show that ECC made with YRS significantly improved the interface bonding performance of ECC-C40 specimens. Specimens treated with a cement expansion slurry as the interface agent and those subjected to the splitting method for surface roughness achieves the optimal reinforced condition, exhibited a 27.57%, 35.17%, 43.57%, and 42.92% increase in bonding strength compared to untreated specimens under 0, 50, 100, and 150 cycles, respectively. Microscopic analysis revealed a denser interfacial microstructure. Without an interface agent, the bond interface followed a dual-layer, three-zone model; with the interface agent, a three-layer, three-zone model was observed. Full article
Show Figures

Graphical abstract

31 pages, 16466 KiB  
Article
Study on the Influencing Factors of UHPC Durability and Its Microscopic Performance Characterization
by Risheng Wang, Yongzhuang Zhang, Hongrui Wu and Xueni Jiang
Materials 2025, 18(14), 3268; https://doi.org/10.3390/ma18143268 - 10 Jul 2025
Viewed by 219
Abstract
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing [...] Read more.
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing methods, aggregate types, and mineral admixtures on key durability indicators, including chloride ion permeability, compressive strength loss, and mass loss. Scanning electron microscopy (SEM) examined microstructural changes under various conditions. Results showed that curing method significantly affected chloride ion permeability and sulfate resistance. High-temperature curing (70 ± 2 °C) reduced 28-day chloride ion electric flux by about 50%, and the compressive strength loss rate of specimens subjected to sulfate attack decreased by 2.7% to 45.7% compared to standard curing. Aggregate type had minimal impact on corrosion resistance, while mineral admixtures improved durability more effectively. Frost resistance was excellent, with mass loss below 0.87% after 500 freeze–thaw cycles. SEM analysis revealed that high-temperature curing decreased free cement particles, and mineral admixtures refined pore structure, enhancing matrix compactness. Among all mixtures, Mix Proportion 4 demonstrated the best overall durability. This study offers valuable insights for UHPC design in aggressive marine conditions. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

25 pages, 9967 KiB  
Article
Study on the Influence and Mechanism of Mineral Admixtures and Fibers on Frost Resistance of Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Huawei Shi, Kunpeng Li, Jialing Li, Enhui Jiang, Chengfang Yuan and Chen Chen
Nanomaterials 2025, 15(13), 1051; https://doi.org/10.3390/nano15131051 - 6 Jul 2025
Viewed by 233
Abstract
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica [...] Read more.
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles. The high pozzolanic reactivity of SiO2 in SF20 promoted continuous secondary gel formation, producing low C/S ratio C-(A)-S-H gels and increasing the gel pore content from 24% to 27%, thereby refining the pore structure. Due to their high elastic deformation capacity (6.5% elongation rate), PVA fibers effectively mitigate frost heave stress. At the same dosage, the compressive strength loss rate (6.18%) and splitting tensile strength loss rate (21.79%) of the PVA fiber-reinforced group were significantly lower than those of the steel fiber-reinforced group (9.03% and 27.81%, respectively). During the freeze-thaw process, the matrix pore structure exhibited a typical two-stage evolution characteristic of “refinement followed by coarsening”: In the initial stage (0–100 cycles), secondary hydration products from mineral admixtures filled pores, reducing the proportion of macropores by 5–7% and enhancing matrix densification; In the later stage (100–400 cycles), due to frost heave pressure and differences in thermal expansion coefficients between matrix phases (e.g., C-(A)-S-H gel and fibers), interfacial microcracks propagated, causing the proportion of macropores to increase back to 35–37%. This study reveals the synergistic interaction between mineral admixtures and fibers in enhancing freeze–thaw performance. It provides theoretical support for the high-value application of Yellow River sediment in F400-grade geopolymer composites. The findings have significant implications for infrastructure in cold regions, including subgrade materials, hydraulic structures, and related engineering applications. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

21 pages, 15449 KiB  
Article
Experimental Study on the Performance of Sustainable Epoxy Resin-Modified Concrete Under Coupled Salt Corrosion and Freeze–Thaw Cycles
by Zhen Zhang, Fang Zhang, Chuangzhou Wu and Yafei Chen
Sustainability 2025, 17(13), 6186; https://doi.org/10.3390/su17136186 - 5 Jul 2025
Viewed by 343
Abstract
Epoxy resin-modified concrete (ERMC) demonstrates significant potential for enhancing the durability of concrete structures exposed to harsh environmental conditions. However, the performance of ERMC under the combined effects of salt erosion and freeze–thaw cycles remains inadequately explored. This study systematically evaluates the durability [...] Read more.
Epoxy resin-modified concrete (ERMC) demonstrates significant potential for enhancing the durability of concrete structures exposed to harsh environmental conditions. However, the performance of ERMC under the combined effects of salt erosion and freeze–thaw cycles remains inadequately explored. This study systematically evaluates the durability of ERMC through experimental investigations on specimens with epoxy resin-poly ash ratios of 0%, 5%, 10%, 15%, 20%, and 25%. Resistance to salt erosion was assessed using composite salt solutions with concentrations of 0%, 1.99%, 9.95%, and 19.90%, while frost resistance was tested under combined conditions using a 1.99% Na2SO4 solution. Key performance metrics were analyzed with microstructural observations to elucidate the underlying damage mechanisms, including the compressive strength corrosion coefficient, dynamic elastic modulus, mass loss rate, and flexural strength loss rate. The results reveal that incorporating epoxy resin enhances concrete’s resistance to salt erosion and freeze–thaw damage by inhibiting crack propagation and reducing pore development. Optimal performance was achieved with an epoxy resin content of 10–15%, which exhibited minimal surface deterioration, a denser microstructure, and superior long-term durability. These findings provide critical insights for optimizing the design of ERMC to improve the resilience of concrete structures in aggressive environments, demonstrating that ERM is a sustainable material, and offering practical implications for infrastructure exposed to extreme climatic and chemical conditions. Full article
(This article belongs to the Special Issue Sustainable Construction and Built Environments)
Show Figures

Figure 1

26 pages, 8827 KiB  
Article
Three-Dimensional Refined Numerical Modeling of Artificial Ground Freezing in Metro Cross-Passage Construction: Thermo-Mechanical Coupling Analysis and Field Validation
by Qingzi Luo, Junsheng Li, Wei Huang, Wanying Wang and Bingxiang Yuan
Buildings 2025, 15(13), 2356; https://doi.org/10.3390/buildings15132356 - 4 Jul 2025
Viewed by 228
Abstract
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus [...] Read more.
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus on analyzing the soil’s thermo-mechanical behavior and assessing safety performance throughout the construction process. A combined approach integrating field monitoring and refined three-dimensional numerical simulation using FLAC3D is adopted, considering critical factors, such as freezing pipe inclination, thermo-mechanical coupling, and ice–water phase transitions. Both field data and simulation results demonstrate that increasing the density of freezing pipes accelerates temperature reduction and intensifies frost heave-induced displacements near the pipes. After 45 days of active freezing, the freezing curtain reaches a thickness of 3.7 m with an average temperature below −10 °C. Extending the freezing duration beyond this period yields negligible improvement in curtain performance. Frost heave deformation develops rapidly during the initial phase and stabilizes after approximately 25 days, with maximum vertical displacements reaching 12 cm. Significant stress concentrations occur in the soil adjacent to the freezing pipes, with shield tunnel segments experiencing up to 5 MPa of stress. Thaw settlement is primarily concentrated in areas previously affected by frost heave, with a maximum settlement of 3 cm. Even after 45 days of natural thawing, a frozen curtain approximately 3.3 m thick remains intact, maintaining sufficient structural strength. The refined numerical model accurately captures the mechanical response of soil during the freezing and thawing processes under realistic engineering conditions, with field monitoring data validating its effectiveness. This research provides valuable guidance for managing construction risks and ensuring safety in similar cross-passage and cross-river tunnel projects, with broader implications for underground engineering requiring precise control of frost heave and thaw settlement. Full article
Show Figures

Figure 1

34 pages, 8670 KiB  
Article
Assessing Climate Impact on Heritage Buildings in Trentino—South Tyrol with High-Resolution Projections
by Camille Luna Stella Blavier, Elena Maines, Piero Campalani, Harold Enrique Huerto-Cardenas, Claudio Del Pero and Fabrizio Leonforte
Atmosphere 2025, 16(7), 799; https://doi.org/10.3390/atmos16070799 - 1 Jul 2025
Viewed by 422
Abstract
Climate variations impact the preservation of heritage buildings, necessitating a strategic understanding of potential effects to effectively guide preservation efforts. This study analyzes temperature- and precipitation-dependent climate-heritage indices in Trentino–South Tyrol using EURO-CORDEX regional climate models for the period 1971–2100 under RCP 4.5 [...] Read more.
Climate variations impact the preservation of heritage buildings, necessitating a strategic understanding of potential effects to effectively guide preservation efforts. This study analyzes temperature- and precipitation-dependent climate-heritage indices in Trentino–South Tyrol using EURO-CORDEX regional climate models for the period 1971–2100 under RCP 4.5 and RCP 8.5 scenarios. The selected indices were calculated with climdex-kit and relied on bias-adjusted temperature and precipitation data with a 1 km spatial resolution. The obtained results indicate a geographically punctuated increase in biomass accumulation on horizontal surfaces, a slight decreasing trend in freeze–thaw events, an increase in growing degree days indicating a small, heightened insect activity, and a rise in heavy precipitation days. The Scheffer Index shows a significantly increased potential for wood degradation, particularly under the RCP 8.5 scenario, while the Wet-Frost Index remains consistently low. Finally, according to each identified hazard, adaptive solutions are suggested. These findings provide critical insights into future climate impacts on heritage buildings in the region, aiding stakeholders in planning targeted interventions. The study emphasizes the crucial role of integrating detailed climate data into heritage preservation strategies, advocating for the inclusion of future risk analysis in the “knowledge path” in order to enhance the resilience of buildings. Full article
(This article belongs to the Special Issue Climate Change Challenges for Heritage Architecture)
Show Figures

Figure 1

29 pages, 4333 KiB  
Article
Characterization of Bricks from Baroque Monuments in Northeastern Poland: A Comparative Study of Hygric Behavior and Microstructural Properties for Restoration Applications
by Joanna Misiewicz, Maria Tunkiewicz, Gergő Ballai and Ákos Kukovecz
Materials 2025, 18(13), 3023; https://doi.org/10.3390/ma18133023 - 26 Jun 2025
Viewed by 315
Abstract
This study presents a comprehensive material characterization, including physical, hygric, and mechanical properties, of historical ceramic bricks to enhance the understanding of heritage masonry structures and support the effective planning of conservation interventions. The primary objective is to systematize the knowledge of constituent [...] Read more.
This study presents a comprehensive material characterization, including physical, hygric, and mechanical properties, of historical ceramic bricks to enhance the understanding of heritage masonry structures and support the effective planning of conservation interventions. The primary objective is to systematize the knowledge of constituent materials in brick walls from different historical periods and to evaluate the compatibility of modern repair materials with the original fabric. To this end, a comprehensive experimental protocol was employed, which included the determination of fundamental physical properties such as density, water absorption, and sorptivity. Additionally, chemical and thermogravimetric analyses were performed, followed by freeze–thaw resistance testing and compressive strength measurements. Microstructural analysis was conducted using mercury intrusion porosimetry. The results identified the pore size ranges most susceptible to frost-induced degradation and revealed correlations between the physical, hygric, and mechanical properties of the tested ceramic materials. These findings provide essential data on the physico-mechanical characteristics of historical bricks, establishing a basis for the informed selection of compatible materials in conservation practice. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

29 pages, 17376 KiB  
Article
A Study on the Thermal and Moisture Transfer Characteristics of Prefabricated Building Wall Joints in the Inner Mongolia Region
by Liting He and Dezhi Zou
Buildings 2025, 15(13), 2197; https://doi.org/10.3390/buildings15132197 - 23 Jun 2025
Viewed by 179
Abstract
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection [...] Read more.
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection interfaces during winter significantly exacerbates freeze–thaw damage due to persistent thermal gradients. A coupled heat–moisture transfer model incorporating gas–liquid–solid phase transitions was developed, with the liquid moisture content and temperature gradient as dual driving forces. A validation against internationally recognized BS EN 15026:2007 benchmark cases confirmed the model robustness. The prefabricated sandwich insulation walls reconstructed with region-specific volcanic ash materials underwent a comparative evaluation of temperature and relative humidity distributions under varied winter conditions. Furthermore, we analyze and assess the potential for freezing at connection points and identify the specific areas at risk. Synergistic effects between assembly gaps and indoor–outdoor environmental interactions on wall performance degradation were systematically assessed. The results indicated that, across all working conditions, both the temperature and relative humidity at each wall measurement point underwent periodic variations influenced by the outdoor environment. These fluctuations decreased in amplitude from the exterior to the interior, accompanied by a noticeable delay effect. Specifically, at Section 2, the wall temperatures at points B2–B8 were higher compared to those at A2–A8 of Section 1. The relative humidity gradient remained relatively stable at each measurement point, while the temperature fluctuation amplitude was smaller by 2.58 ± 0.3 °C compared to Section 1. Under subfreezing conditions, Section 1 demonstrates a marked reduction in relative humidity (Cases 1-3 and 2-3) compared to reference cases, which is indicative of internal ice crystallization. Conversely, Section 2 maintains higher relative humidity values under identical therma. These findings suggest that prefabricated building joints significantly impact indoor and outdoor wall temperatures, potentially increasing the indoor heat loss and accelerating temperature transfer during winter. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 3569 KiB  
Article
Comprehensive Assessment and Freeze–Thaw Durability Prediction of Wet-Sprayed Concrete for Cold-Region Tunnels
by Haiyan Wang, Yanli Wang, Zhaohui Sun, Lichuan Wang, Hongtao Zhang, Wenhua Zheng and Qianqian Wang
Materials 2025, 18(13), 2955; https://doi.org/10.3390/ma18132955 - 22 Jun 2025
Viewed by 391
Abstract
This study examines freeze–thaw deterioration patterns and predicts the service life of wet-sprayed concrete with composite cementitious materials in cold-region tunnels. The microstructure and particle size distribution of four materials (cement, fly ash, silica fume, and mineral powder) were analyzed. Subsequent tests evaluated [...] Read more.
This study examines freeze–thaw deterioration patterns and predicts the service life of wet-sprayed concrete with composite cementitious materials in cold-region tunnels. The microstructure and particle size distribution of four materials (cement, fly ash, silica fume, and mineral powder) were analyzed. Subsequent tests evaluated the rebound rate, mechanical properties, and durability of wet-sprayed concrete with various compositions and proportions of cementitious materials, emphasizing freeze–thaw resistance under cyclic freezing and thawing. A freeze–thaw deterioration equation was developed using damage mechanics theory to predict the service life of early-stage wet-sprayed concrete in tunnels. The results indicate that proportionally combining cementitious materials with different particle sizes and gradations can enhance concrete compactness. Adding mineral admixtures increases concrete viscosity, effectively reducing rebound rates and dust generation during wet spraying. Concrete incorporating binary and ternary mineral admixtures shows reduced early-age strength but significantly enhanced later-age strength. Its frost resistance is also improved to varying degrees. The ternary composite binder fills voids between cement particles and at the interface between paste and aggregate, resulting in a dense microstructure due to a ‘composite superposition effect.’ This significantly enhances the frost resistance of wet-mixed shotcrete, enabling it to withstand up to 200 freeze–thaw cycles, compared to failure after 75 cycles in plain cement concrete. The relative dynamic modulus of elasticity of wet-shotcrete follows a parabolic deterioration trend with increasing freeze–thaw cycles. Except for specimen P5 (R2 = 0.89), the correlation coefficients of deterioration models exceed 0.94, supporting their use in durability prediction. Simulation results indicate that, across all regions of China, the service life of wet-shotcrete with ternary admixtures can exceed 100 years, while that of plain cement concrete remains below 41 years. Full article
Show Figures

Figure 1

28 pages, 7612 KiB  
Article
Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing Conditions
by Yanhua Zhao, Bo Yang, Kai Zhang, Aojun Guo, Yonghui Yu and Li Chen
Materials 2025, 18(12), 2856; https://doi.org/10.3390/ma18122856 - 17 Jun 2025
Viewed by 385
Abstract
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed [...] Read more.
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed using, for example, machine learning algorithms. This study utilizes four machine learning models—Support Vector Machine (SVM), extreme learning machine (ELM), long short-term memory (LSTM), and radial basis function neural network (RBFNN)—to predict freeze–thaw damage factors in concrete under low and subzero temperature conservation conditions. Building on the prediction results, the optimal model is refined to develop a new machine learning model: the Sparrow Search Algorithm-optimized Extreme Learning Machine (SSA-ELM). Furthermore, the SHapley Additive exPlanations (SHAP) value analysis method is employed to interpret this model, clarifying the relationship between factors affecting the freezing resistance of concrete and freeze–thaw damage factors. In conclusion, the empirical formula for concrete freeze–thaw damage is compared and validated against the prediction results from the SSA-ELM model. The study results indicate that the SSA-ELM model offers the most accurate predictions for concrete freeze–thaw resistance compared to the SVM, ELM, LSTM, and RBFNN models. SHAP value analysis quantitatively confirms that the number of freeze–thaw cycles is the most significant input parameter affecting the freeze–thaw damage coefficient of concrete. Comparative analysis shows that the accuracy of the SSA-ELMDE prediction set is improved by 15.46%, 9.19%, 21.79%, and 11.76%, respectively, compared with the prediction results of SVM, ELM, LSTM, and RBF. This parameter positively influences the prediction results for the freeze–thaw damage coefficient. Curing humidity has the least influence on the freeze–thaw damage factor of concrete. Comparing the prediction results with empirical formulas shows that the machine learning model provides more accurate predictions. This introduces a new approach for predicting the extent of freeze–thaw damage to concrete under low and subzero temperature conservation conditions. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

17 pages, 8153 KiB  
Article
Numerical Simulation of Freezing-Induced Crack Propagation in Fractured Rock Masses Under Water–Ice Phase Change Using Discrete Element Method
by Hesi Xu, Brian Putsikai, Shuyang Yu, Jun Yu, Yifei Li and Pingping Gu
Buildings 2025, 15(12), 2055; https://doi.org/10.3390/buildings15122055 - 15 Jun 2025
Viewed by 308
Abstract
In cold-region rock engineering, freeze–thaw cycle-induced crack propagation in fractured rock masses serves as a major cause of disasters such as slope instability. Existing studies primarily focus on the influence of individual fissure parameters, yet lack a systematic analysis of the crack propagation [...] Read more.
In cold-region rock engineering, freeze–thaw cycle-induced crack propagation in fractured rock masses serves as a major cause of disasters such as slope instability. Existing studies primarily focus on the influence of individual fissure parameters, yet lack a systematic analysis of the crack propagation mechanisms under the coupled action of multiple parameters. To address this, we establish three groups of slope models with different rock bridge distances (d), rock bridge angles (α), and fissure angles (β) based on the PFC2D discrete element method. Frost heave loads are simulated by incorporating the volumetric expansion during water–ice phase change. The Parallel Bond Model (PBM) is used to capture the mechanical behavior between particles and the bond fracture process. This reveals the crack evolution laws under freeze–thaw cycles. The results show that, at a short rock bridge distance of d = 60 m, stress concentrates in the fracture zone. This easily leads to the rapid penetration of main cracks and triggers sudden instability. At a long rock bridge distance where d ≥ 100 m, the degree of stress concentration decreases. Meanwhile, the stress distribution range expands, promoting multiple crack initiation points and the development of branch cracks. The number of cracks increases as the rock bridge distance grows. In cases where the rock bridge angle is α ≤ 60°, stress is more likely to concentrate in the fracture zone. The crack propagation exhibits strong synergy, easily forming a penetration surface. When α = 75°, the stress concentration areas become dispersed and their distribution range expands. Cracks initiate earliest at this angle, with the largest number of cracks forming. Cumulative damage is significant under this condition. When the fissure angle is β = 60°, stress concentration areas gather around the fissures. Their distribution range expands, making cracks easier to propagate. Crack propagation becomes more dispersed in this case. When β = 30°, the main crack rapidly penetrates due to stress concentration, inhibiting the development of branch cracks, and the number of cracks is the smallest after freeze–thaw cycles. When β = 75°, the freeze–thaw stress dispersion leads to insufficient driving force, and the number of cracks is 623. The research findings provide a theoretical foundation for assessing freeze–thaw damage in fractured rock masses of cold regions and for guiding engineering stability control from a multi-parameter perspective. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

17 pages, 4183 KiB  
Article
Physical, Mechanical, and Durability Performance of Olive Pomace Ash in Eco-Friendly Mortars
by Besma Belaidi, Abderraouf Messai, Cherif Belebchouche, Mourad Boutlikht, Kamel Hebbache, Abdellah Douadi and Laura Moretti
Materials 2025, 18(11), 2667; https://doi.org/10.3390/ma18112667 - 5 Jun 2025
Viewed by 524
Abstract
The cement industry is a major contributor to global CO2 emissions, driving the research for sustainable alternatives. Olive biomass ash (OBA), a byproduct from burning all types of biomass from the olive tree, has emerged as a potential supplementary cementitious material (SCM). [...] Read more.
The cement industry is a major contributor to global CO2 emissions, driving the research for sustainable alternatives. Olive biomass ash (OBA), a byproduct from burning all types of biomass from the olive tree, has emerged as a potential supplementary cementitious material (SCM). This study investigates the effects of incorporating olive pomace ash (OPA) as a partial cement substitute (0% to 50% by weight) on mortar properties over extended curing periods. Workability, compressive and flexural strengths, water absorption, and freeze–thaw resistance were evaluated. Up to 20% OPA replacement improved workability while maintaining acceptable strength and durability. Beyond this level, mechanical properties and frost resistance decreased significantly. Correlation analyses revealed strong relationships between flow time and wet bulk density (R2 = 0.93), an exponential relationship between 28-day compressive strength and water absorption (R2 = 0.87), and linear correlations between pre- and post-freeze–thaw mechanical properties (R2 ≥ 0.99 for both compressive and flexural strengths). The results demonstrate that optimal OPA incorporation enhances mortar performance without compromising structural integrity and provides a viable strategy for valorizing agricultural waste. Full article
Show Figures

Figure 1

25 pages, 5455 KiB  
Article
Experimental Study on Frost Durability of Sprayed Glass Fibre Epoxy Mortar (GFEM)-Reinforced Concrete Specimens
by Jianhui Si, Yuanhao Li, Wenshuo Sun, Xiaoyu Niu, Junpeng Ju, Lizhe He and Junlin Xiang
Buildings 2025, 15(11), 1896; https://doi.org/10.3390/buildings15111896 - 30 May 2025
Viewed by 252
Abstract
Addressing the shortcomings of currently available concrete reinforcement techniques, a new method using sprayed Glass Fibre Epoxy Mortar (GFEM) reinforcement is proposed. To investigate the effect of this method on the frost durability of concrete, a total of 156 specimens in four groups [...] Read more.
Addressing the shortcomings of currently available concrete reinforcement techniques, a new method using sprayed Glass Fibre Epoxy Mortar (GFEM) reinforcement is proposed. To investigate the effect of this method on the frost durability of concrete, a total of 156 specimens in four groups were designed, and related freezing and thawing cycle tests were conducted. The apparent morphology, mass loss rate, ultrasonic velocity, freeze–thaw damage, and strength loss rate of each group of specimens after different freeze–thaw cycles were analysed comparatively. The test results show that the concrete specimens reinforced with GFEM have a better mass loss rate after freeze–thaw cycles and ultrasonic wave velocity than the unreinforced concrete specimens. The compressive strength of specimens in group A is 24.04 MPa, and the compressive strengths of specimens in groups B, C, and D are 35.28 MPa, 35.73 MPa, and 36.37 MPa, respectively, which is higher than that of group A by 46.76%, 48.63%, and 51.29%, respectively, and 46.76%, 48.63%, and 51.29% higher than group A, respectively. It can be seen that the concrete specimens reinforced with sprayed Glass Fibre Epoxy Mortar can effectively improve the frost durability of concrete; the reinforcing effect is obvious, and in a certain range of fibre mixing, the larger the better the frost resistance. The integration of GFEM is cost-effective and improves viscosity, and the best glass fibre mix percentage is about 0.8%. A freeze–thaw damage model for GFEM-reinforced concrete was developed using the Weibull distribution theory, and an improved strength attenuation model under freeze–thaw cycles was established. By correlating the strength attenuation model with the freeze–thaw damage model, a damage evolution equation for the reinforced specimens was formulated, allowing for the prediction of freeze–thaw damage based on the number of cycles and the relative compressive strength. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop