Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = frost heave damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 15115 KB  
Article
Macro-Meso Characteristics and Damage Mechanism of Cement-Stabilized Macadam Under Freeze–Thaw Cycles and Scouring
by Hongfu Liu, Sirui Zhou, Ao Kuang, Dongzhao Jin, Xinghai Peng and Songtao Lv
Materials 2025, 18(21), 4874; https://doi.org/10.3390/ma18214874 - 24 Oct 2025
Viewed by 655
Abstract
This study quantifies the effects of freeze–thaw (FT) cycling and dynamic water scouring, and establishes links between mesoscale pore evolution and macroscale strength degradation in cement-stabilized macadam (CSM) bases. The objective is to provide quantitative indicators for durability design and non-destructive evaluation of [...] Read more.
This study quantifies the effects of freeze–thaw (FT) cycling and dynamic water scouring, and establishes links between mesoscale pore evolution and macroscale strength degradation in cement-stabilized macadam (CSM) bases. The objective is to provide quantitative indicators for durability design and non-destructive evaluation of CSM bases. First, laboratory tests were conducted to simulate alpine service conditions: CSM cylindrical specimens (Ø150 × 150 mm) with 4.5% cement content, cured for 28 days, were exposed to 0, 5, or 20 FT cycles (−18 °C for 16 h ↔ +25 °C for 8 h), followed by dynamic water scouring (0.5 MPa, 10 Hz) for 15, 30, or 60 min. Second, the resulting damage was tracked at two scales. Acoustic emission (AE) sensors monitored internal damage during subsequent splitting tests, while industrial computed tomography (CT) was used to scan selected specimens and quantify porosity, pore number, and average pore diameter. Third, gray relational analysis correlated pore structure parameters with strength loss. The results indicate that under 30 min of scouring, increasing FT cycles from 0 to 20 increased mass loss from 0.33% to 1.27% and reduced splitting strength by 28.8%. AE cumulative ringing count and energy decreased by 97.9% and 98.4%, respectively, indicating severe internal degradation. CT scans revealed porosity and pore count increased monotonically with FT cycles, while average pore diameter decreased (dominated by microcrack formation). Frost-heave pressure and cyclic suction enlarged edge pores and interconnected internal voids, accelerating erosion of cement paste. FT cycles compromise the cement–aggregate interfacial bond, thereby predisposing the matrix to accelerated deterioration under dynamic scouring; the ensuing evolution of pore structure emerges as the pivotal mechanism governing strength degradation. Average pore diameter exhibited the strongest correlation with splitting strength (r = 0.763), and its change was the primary driver of strength loss (r = 0.774). These findings facilitate optimizing cement dosage, validating non-destructive evaluation models for in-service base courses, and erosion durability of road base materials in permafrost regions. Full article
Show Figures

Figure 1

20 pages, 5214 KB  
Article
Damage and Degradation Law of Granite Under Freeze-Thaw Cycles Based on the Discrete Element Method
by Yingxiang Sun, Yuxin Bai, Jun Hou, Huijun Yu and Penghai Zhang
Appl. Sci. 2025, 15(21), 11383; https://doi.org/10.3390/app152111383 - 24 Oct 2025
Viewed by 711
Abstract
This study develops a discrete element model incorporating the water–ice phase transition volume effect to simulate frost damage in saturated granite. The model investigates the damage evolution and mechanical degradation under freeze–thaw cycles. The results show that during freeze–thaw cycles, the model’s temperature [...] Read more.
This study develops a discrete element model incorporating the water–ice phase transition volume effect to simulate frost damage in saturated granite. The model investigates the damage evolution and mechanical degradation under freeze–thaw cycles. The results show that during freeze–thaw cycles, the model’s temperature field exhibits non-uniform distribution characteristics and geometric dependency, with lower maximum temperature differences in Brazilian disk models versus uniaxial compression specimens. Frost heave damage progresses through three distinct stages: localized bond fractures (1~5 cycles); accelerated crack interconnection and branching (15~20 cycles); and fully interconnected damage zones (25~30 cycles). As the number of freeze–thaw cycles increases, the crack network significantly influences the mechanical behavior of the model under load. The failure mode of the loaded model undergoes a transformation from brittle penetration to ductile fragmentation. Freeze–thaw cycles cause more significant degradation in the tensile strength of granite compared to compressive strength. After 30 freeze–thaw cycles, the uniaxial compressive strength and Brazilian tensile strength decrease by 47.5% and 93.8%, respectively. These findings provide theoretical support for assessing frost heave damage in geotechnical engineering in cold regions. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

18 pages, 9127 KB  
Article
Frost Heave Characteristics of Lined Canals with Sand-Gravel Replacement in Seasonally Frozen Regions
by Xinjian Fan, Fei Ye, Li Qin, Yupei Yan, Lirong Wang and Jiafang Wei
Sustainability 2025, 17(21), 9432; https://doi.org/10.3390/su17219432 - 23 Oct 2025
Viewed by 621
Abstract
To address the frost heave damage issue of the trapezoidal lined canals in seasonally frozen regions and further ensure the stable operation of canals while reducing operation and maintenance costs, this study conducted a gradient sand-gravel cushion replacement experiment on the main canal [...] Read more.
To address the frost heave damage issue of the trapezoidal lined canals in seasonally frozen regions and further ensure the stable operation of canals while reducing operation and maintenance costs, this study conducted a gradient sand-gravel cushion replacement experiment on the main canal of the Jingdian Irrigation District, China. For the experiment, east–west and north–south-oriented canal sections were selected, with frost heave meters and soil temperature-humidity meters installed. Dynamic changes in canal ground temperature, moisture content, and frost heave were monitored over two full freeze–thaw cycles. The results indicate the following: (1) The variation of ground temperature lags behind air temperature by 2–3 days; the ground temperature change on the canal slope is more pronounced than that at the canal bottom; and for the east–west-oriented canal, the ground temperature on the sunny slope is higher than that on the shady slope, while the ground temperatures on the two slopes of the north–south-oriented canal are similar. (2) The moisture content of the east–west-oriented canal changes drastically during the freezing period, showing a decreasing trend in the early freezing stage and a significant increasing trend in the thawing stage, whereas the moisture content of the north–south-oriented canal fluctuates slightly. (3) Canals with different orientations exhibit spatial differences in frost heave due to variations in solar radiation distribution. (4) The frost heave is negatively correlated with ground temperature, and its variation lags behind ground temperature by 1–2 days. (5) Increasing the replacement thickness of sand-gravel can significantly reduce the frost heave, with a reduction rate exceeding 50%. Under the action of freeze–thaw cycles, canals with gradient sand-gravel exhibit remarkable anti-frost effects. Thus, for trapezoidal lined canals in seasonally frozen regions, a gradient replacement scheme is recommended: For east–west canals, the replacement thickness is 40–100 cm for shady slopes and 30–70 cm for sunny slopes; for north–south canals, the replacement thickness is 30–70 cm for both slopes. In conclusion, gradient sand-gravel replacement is an effective anti-frost heave measure, providing a theoretical basis for the design of sand-gravel replacement for lined canals in seasonally frozen regions. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

13 pages, 3912 KB  
Article
Thermal Regulation and Moisture Accumulation in Embankments with Insulation–Waterproof Geotextile in Seasonal Frost Regions
by Kun Zhang, Doudou Jin, Ze Zhang, Yuncheng Mao and Guoyu Li
Appl. Sci. 2025, 15(19), 10681; https://doi.org/10.3390/app151910681 - 2 Oct 2025
Cited by 1 | Viewed by 619
Abstract
As an effective engineering countermeasure against frost heave damage in seasonally frozen regions, thermal insulation boards (TIBs) were employed in embankments. This study established a test section featuring a thermal insulation–waterproof geotextile embankment in Dingxi, Gansu Province. Temperature and water content at various [...] Read more.
As an effective engineering countermeasure against frost heave damage in seasonally frozen regions, thermal insulation boards (TIBs) were employed in embankments. This study established a test section featuring a thermal insulation–waterproof geotextile embankment in Dingxi, Gansu Province. Temperature and water content at various positions and depths within both the thermal insulation embankment (TIE) and an ordinary embankment (OE) were monitored and compared to analyze the effectiveness of the TIB. Following the installation of the insulation layer, the temperature distribution within the embankment became more uniform. The TIB effectively impeded downward heat transfer (cold energy influx) during the winter and upward heat transfer (heat energy flux) during the warm season. However, the water content within the TIE was observed to be higher than that in the OE, with water accumulation notably occurring at the embankment toe. While the TIB successfully mitigated slope damage and superficial soil frost heave, the waterproof geotextile concurrently induced moisture accumulation at the embankment toe. Consequently, implementing complementary drainage measures is essential. In seasonally frozen areas characterized by dry weather and relatively high winter temperatures, the potential damage caused by concentrated rainfall events to embankments requires particular attention. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 2416 KB  
Article
Comparison of Two Site Preparation Treatments for the Growth of Direct-Seeded Fraxinus chinensis subsp. rhynchophylla Seedlings and Their Effects on Soil Temperature and Understory Vegetation
by Jong Bin Jung, Hyun Jung Kim, Jongwoo Kim, Ji Sun Jung and Pil Sun Park
Forests 2025, 16(9), 1401; https://doi.org/10.3390/f16091401 - 1 Sep 2025
Viewed by 771
Abstract
Direct seeding is considered a versatile and cost-effective approach to forest regeneration; however, its broader application is limited by low seedling survival rates and species-specific regeneration requirements, which often necessitate site preparation. We investigated the emergence, survival, and growth of Korean ash ( [...] Read more.
Direct seeding is considered a versatile and cost-effective approach to forest regeneration; however, its broader application is limited by low seedling survival rates and species-specific regeneration requirements, which often necessitate site preparation. We investigated the emergence, survival, and growth of Korean ash (Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray) seedlings regenerated by direct seeding over six years following two site preparation treatments—scarification and mixing—to determine appropriate site preparation methods for direct seeding and to assess the effects of site preparation treatments on soil, understory vegetation, and seedling growth. Additionally, the seed germination, shoot and root lengths, and biomass of the seedlings were investigated over 50 days in a growth chamber using soils from each site preparation treatment to examine early-stage growth responses. Both scarification and mixing treatments enhanced seed germination and seedling establishment. Seedling emergence rates were similar between the treatments; however, the seedling mortality and the height and coverage of competing understory vegetation were significantly greater at the scarification treatment than at the mixing treatment during the first year (p < 0.05). Both treatments reduced minimum winter soil temperatures during the first two years, with frost heaving identified as a primary cause of early seedling mortality. From the second year onward, seedling growth was significantly greater in the mixing treatment (p < 0.05), which also more effectively suppressed competing vegetation. A shallow depth mixing treatment (<5 cm) is recommended for direct seeding of Korean ash, as it reduces frost heaving damage and facilitates seedling survival and growth by minimizing understory competition. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 3664 KB  
Article
Water, Heat, Vapor Migration, and Frost Heaving Mechanism of Unsaturated Silty Clay During a Unidirectional Freezing Process
by Dengzhou Li and Hanghang Wang
Symmetry 2025, 17(8), 1357; https://doi.org/10.3390/sym17081357 - 19 Aug 2025
Viewed by 799
Abstract
Infrastructure development in permafrost regions continues to face growing challenges from frost heaves and thaw settlement. The traditional frost heave theory considers that soil freezing is caused by the migration of liquid water in the soil; however, existing engineering practice shows that the [...] Read more.
Infrastructure development in permafrost regions continues to face growing challenges from frost heaves and thaw settlement. The traditional frost heave theory considers that soil freezing is caused by the migration of liquid water in the soil; however, existing engineering practice shows that the migration of water vapor during the freezing process cannot be neglected. Based on the hydrothermal–air migration theory of unsaturated soils and their frost heave mechanism, this study established a coupled hydrothermal–air frost heave model for unsaturated silty clay under unidirectional freezing conditions. The computational model was verified through indoor modelling tests. The entire process of water vapor migration, moisture accumulation, and condensation-induced ice formation in unsaturated silty clay was comprehensively reproduced by numerical simulation. The results showed that the moisture field is redistributed during the freezing process of unsaturated soil. The increase in volumetric ice content in the frozen zone is due mainly to the migration of water vapor. Liquid water and water vapor in the unfrozen zone migrate towards the freezing edge driven by the temperature gradient, where they accumulate, leading to a decrease in the unsaturated pore space and a decrease in the equivalent vapor content. This study’s results can provide theoretical support for frost damage prevention in unsaturated silty clay in permafrost regions. Full article
Show Figures

Figure 1

17 pages, 3817 KB  
Article
The Distribution Characteristics of Frost Heaving Forces on Tunnels in Cold Regions Based on Thermo-Mechanical Coupling
by Yujia Sun, Lei Peng and Qionglin Li
Appl. Sci. 2025, 15(15), 8537; https://doi.org/10.3390/app15158537 - 31 Jul 2025
Viewed by 850
Abstract
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall [...] Read more.
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall frost heaves in a freeze–thaw cycle. Using a COMSOL Multiphysics 6.0 platform and the sequential coupling method, the temperature field evolution of tunnel-surrounding rock, freezing cycle development, and distribution characteristics of the frost heaving force of a tunnel lining under different minimum temperatures, numbers of negative temperature days, frost heave ratios, and anisotropy coefficients of frost heave deformation were systematically simulated. The results revealed that the response of the temperature field of tunnel-surrounding rock to the external temperature varies spatially with time lags, the shallow surface temperatures and the area around the lining fluctuate with the climate, and the temperature of the deep surrounding rock is dominated by the geothermal gradient. The extent of the freezing cycle and the frost heaving force increase significantly when lowering the minimum temperature. The maximum frost heaving force usually occurs in the region of the side wall and the spring line, and tensile stress is prone to be generated at the spring line; the influence of slight fluctuations in the minimum temperature or the short shift in the coldest day on the frost heaving force is limited. A substantial increase in frost heaving force is observed with higher frost heave ratios; for example, an increase from 0.25% to 2.0% results in a 116% rise at the sidewall. Although the increase in the anisotropy coefficient of frost heave deformation does not change the overall distribution pattern of frost heaving force, it can exacerbate the directional concentration of frost heave strain, which can increase the frost heaving force at the periphery of the top arch of the lining. This study revealed the distribution pattern and key influencing factors of the freezing cycle and frost heaving force for tunnels, providing a theoretical basis and data reference for the frost resistance design of tunnels in cold regions. Full article
Show Figures

Figure 1

18 pages, 3141 KB  
Article
Numerical Research on Mitigating Soil Frost Heave Around Gas Pipelines by Utilizing Heat Pipes to Transfer Shallow Geothermal Energy
by Peng Xu and Yuyang Bai
Energies 2025, 18(13), 3316; https://doi.org/10.3390/en18133316 - 24 Jun 2025
Viewed by 1156
Abstract
Frost heave in seasonally frozen soil surrounding natural gas pipelines (NGPs) can cause severe damage to adjacent infrastructure, including road surfaces and buildings. Based on the stratigraphic characteristics of seasonal frozen soil in Beijing, a soil–natural gas pipeline–heat pipe heat transfer model was [...] Read more.
Frost heave in seasonally frozen soil surrounding natural gas pipelines (NGPs) can cause severe damage to adjacent infrastructure, including road surfaces and buildings. Based on the stratigraphic characteristics of seasonal frozen soil in Beijing, a soil–natural gas pipeline–heat pipe heat transfer model was developed to investigate the mitigation effect of the soil-freezing phenomenon by transferring shallow geothermal energy utilizing heat pipes. Results reveal that heat pipe configurations (distance, inclination angle, etc.) significantly affect soil temperature distribution and the soil frost heave mitigation effect. When the distance between the heat pipe wall and the NGP wall reaches 200 mm, or when the inclined angle between the heat pipe axis and the model centerline is 15°, the soil temperature above the NGP increases by 9.7 K and 17.7 K, respectively, demonstrating effective mitigation of the soil frost heave problem. In the range of 2500–40,000 W/(m·K), the thermal conductivity of heat pipes substantially impacts heat transfer efficiency, but the efficiency improvement plateaus beyond 20,000 W/(m·K). Furthermore, adding fins to the heat pipe condensation sections elevates local soil temperature peaks above the NGP to 274.2 K, which is 5.5 K higher than that without fins, indicating enhanced heat transfer performance. These findings show that utilizing heat pipes to transfer shallow geothermal energy can significantly raise soil temperatures above the NGP and effectively mitigate the soil frost heave problem, providing theoretical support for the practical applications of heat pipes in soil frost heave management. Full article
Show Figures

Figure 1

17 pages, 8153 KB  
Article
Numerical Simulation of Freezing-Induced Crack Propagation in Fractured Rock Masses Under Water–Ice Phase Change Using Discrete Element Method
by Hesi Xu, Brian Putsikai, Shuyang Yu, Jun Yu, Yifei Li and Pingping Gu
Buildings 2025, 15(12), 2055; https://doi.org/10.3390/buildings15122055 - 15 Jun 2025
Cited by 2 | Viewed by 1323
Abstract
In cold-region rock engineering, freeze–thaw cycle-induced crack propagation in fractured rock masses serves as a major cause of disasters such as slope instability. Existing studies primarily focus on the influence of individual fissure parameters, yet lack a systematic analysis of the crack propagation [...] Read more.
In cold-region rock engineering, freeze–thaw cycle-induced crack propagation in fractured rock masses serves as a major cause of disasters such as slope instability. Existing studies primarily focus on the influence of individual fissure parameters, yet lack a systematic analysis of the crack propagation mechanisms under the coupled action of multiple parameters. To address this, we establish three groups of slope models with different rock bridge distances (d), rock bridge angles (α), and fissure angles (β) based on the PFC2D discrete element method. Frost heave loads are simulated by incorporating the volumetric expansion during water–ice phase change. The Parallel Bond Model (PBM) is used to capture the mechanical behavior between particles and the bond fracture process. This reveals the crack evolution laws under freeze–thaw cycles. The results show that, at a short rock bridge distance of d = 60 m, stress concentrates in the fracture zone. This easily leads to the rapid penetration of main cracks and triggers sudden instability. At a long rock bridge distance where d ≥ 100 m, the degree of stress concentration decreases. Meanwhile, the stress distribution range expands, promoting multiple crack initiation points and the development of branch cracks. The number of cracks increases as the rock bridge distance grows. In cases where the rock bridge angle is α ≤ 60°, stress is more likely to concentrate in the fracture zone. The crack propagation exhibits strong synergy, easily forming a penetration surface. When α = 75°, the stress concentration areas become dispersed and their distribution range expands. Cracks initiate earliest at this angle, with the largest number of cracks forming. Cumulative damage is significant under this condition. When the fissure angle is β = 60°, stress concentration areas gather around the fissures. Their distribution range expands, making cracks easier to propagate. Crack propagation becomes more dispersed in this case. When β = 30°, the main crack rapidly penetrates due to stress concentration, inhibiting the development of branch cracks, and the number of cracks is the smallest after freeze–thaw cycles. When β = 75°, the freeze–thaw stress dispersion leads to insufficient driving force, and the number of cracks is 623. The research findings provide a theoretical foundation for assessing freeze–thaw damage in fractured rock masses of cold regions and for guiding engineering stability control from a multi-parameter perspective. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

25 pages, 4784 KB  
Article
Dynamic Simulation and Characteristic Analysis on Freezing Process in Ballast Tanks of Polar LNG Carriers
by Xu Bai, Cao Xu and Daolei Wu
Appl. Sci. 2025, 15(9), 5192; https://doi.org/10.3390/app15095192 - 7 May 2025
Cited by 1 | Viewed by 1102
Abstract
The ballast tank is a critical system for LNG carriers, ensuring structural safety and stability during navigation. When LNG carriers navigate in polar regions, the ballast tank is prone to freezing, which will reduce the efficiency of ballast water circulation. Furthermore, the freezing [...] Read more.
The ballast tank is a critical system for LNG carriers, ensuring structural safety and stability during navigation. When LNG carriers navigate in polar regions, the ballast tank is prone to freezing, which will reduce the efficiency of ballast water circulation. Furthermore, the freezing process generates frost heaving forces that may damage the walls of the ballast tank, shorten the structure’s service life, and disrupt the ship’s normal operations. Therefore, analyzing the freezing process of ballast tanks is essential. This paper focuses on the ballast tank of a polar LNG carrier as the research subject. It assumes that the ballast water is fresh water with unchanging physical properties and takes into account the environmental conditions in polar regions. A numerical simulation model of the freezing process within the ballast tank is established. This study investigates the influence of various environmental parameters on the freezing process and determines the evolution of ice shape in relation to temperature field changes under different environmental conditions. The results indicate that as the ambient temperature decreases, the rate of temperature reduction at the ballast water level accelerates, resulting in a thicker ice layer formed by freezing. Additionally, as the seawater temperature decreases, the rate of temperature decline in the ballast water at the bulkhead is significantly accelerated, leading to an increased rate of ice shape evolution. Furthermore, a reduction in the height of the ballast water level enhances the heat transfer rate of the ballast water, which markedly increases the degree of freezing in the ballast water. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

24 pages, 22739 KB  
Article
Macro–Micro Properties of Remodeled Waste Slurry Under Freeze–Thaw Cycles
by Long Wang, Houren Xiong, Junguang Huang, Minjie Wen, Pan Ding and Yiming Zhang
Materials 2025, 18(1), 178; https://doi.org/10.3390/ma18010178 - 3 Jan 2025
Cited by 1 | Viewed by 1191
Abstract
Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze–thaw environments, which can induce frost heave and thaw settlement, and the mechanism of [...] Read more.
Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze–thaw environments, which can induce frost heave and thaw settlement, and the mechanism of the influence of freeze–thaw cycles on its macro and micro properties are still unclear and need thorough investigation. This study explores the macroscopic and microscopic properties of waste slurry subjected to freeze–thaw cycles. We conducted unconfined compressive strength (UCS) and triaxial unconsolidated undrained (UU) shear tests, focusing on fissure compaction, elastic deformation, plastic yielding, and strain hardening stages. The results reveal a decrease in strength and elastic modulus with increasing freeze–thaw cycles, as well as in the damage degree generated by freeze–thaw cycles. To uncover the underlying microscopic mechanisms, we performed Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and mercury intrusion porosimetry (MIP) analyses. These tests highlighted the evolution of pores and microcracks during freeze–thaw cycles. These results have important reference values for the reutilization of waste slurry discharged from large-diameter bored piles for roadbed backfill materials that need to be repaired quickly in seasonally frozen areas. Full article
(This article belongs to the Special Issue Recycling and Sustainability of Industrial Solid Waste)
Show Figures

Figure 1

16 pages, 4117 KB  
Article
Unified Elasto-Plastic Solution for High-Speed Railway Tunnel in Cold Regions Considering Dual Transverse Isotropic Model of Frozen Rock Mass
by Peng Zhao, Weibin Ma and Qian Fang
Appl. Sci. 2024, 14(24), 11796; https://doi.org/10.3390/app142411796 - 17 Dec 2024
Viewed by 964
Abstract
Frost damage is one of the main influencing factors for the deterioration of support structures in cold-region tunnels. A new dual transverse isotropic model of frozen rock mass is first proposed based on parameter strain and elastic modulus to serve as the theoretical [...] Read more.
Frost damage is one of the main influencing factors for the deterioration of support structures in cold-region tunnels. A new dual transverse isotropic model of frozen rock mass is first proposed based on parameter strain and elastic modulus to serve as the theoretical basis for tunnel operation safety in cold regions. Subsequently, a unified elasto-plastic solution for high-speed railway tunnels in cold regions is derived based on the new dual transverse isotropic model, and the accuracy of the analytical solution is verified by comparisons with existing models and experimental results. Finally, the effect of the model parameters on stress and displacement is explored. The results reveal a significant negative correlation between the plastic radius of the frozen rock mass zone and the pressure acting on the inner surface of the support structure, the influence coefficient of intermediate principal stress, radial-gradient influence coefficient of the frozen rock mass, and anisotropic frost heave coefficient of the frozen rock mass, as well as between the frost-heaving force and the influence coefficient of intermediate principal stress parameter. However, the frost-heaving force is positively correlated with the pressure acting on the inner surface of the support structure, the radial gradient influence coefficient of the frozen rock mass, and the anisotropic frost heave coefficients of the frozen rock mass. Therefore, the pressure acting on the inner surface of the support structure, the radial gradient influence co-efficient of the frozen rock mass, and the anisotropic frost heave coefficients of frozen rock mass should be reasonably considered, but the strength theory of the surrounding rock should be strongly considered in the design of tunnel structures in cold regions. Full article
Show Figures

Figure 1

15 pages, 4152 KB  
Article
Study on Frost Heave and Thaw Settlement Characteristics of Sanya Estuary Channel Soil Layer
by Xiuwen Wu, Jun Hu, Junxin Shi, Hui Xiang and Jiangtao Xia
Appl. Sci. 2024, 14(21), 9761; https://doi.org/10.3390/app14219761 - 25 Oct 2024
Cited by 2 | Viewed by 1748
Abstract
In order to explore the frost heave and thaw settlement characteristics of soil layers in the Sanya Estuary Channel Project, the frost heave rate and thaw settlement coefficient of gravel sand, fine sand, silty clay, and clay are obtained. The most unfavorable soil [...] Read more.
In order to explore the frost heave and thaw settlement characteristics of soil layers in the Sanya Estuary Channel Project, the frost heave rate and thaw settlement coefficient of gravel sand, fine sand, silty clay, and clay are obtained. The most unfavorable soil layers are then compared and analyzed. The variation law of frost heave and thaw settlement performance of the most unfavorable soil layer under different water content is studied. The results are as follows: (1) The freezing stage of the passage through the typical soil layer is divided into four stages: frost shrinkage, rapid frost heave, slow frost heave, and frost heave stability. The melting stage is divided into three stages: slow thaw settlement, rapid thaw settlement, and thaw settlement stability. (2) The most unfavorable soil layer in the typical soil layer of the Sanya Estuary Channel Project is silty clay, with a frost heave rate and thaw settlement coefficient of 4.51% and 5.88% at −28 °C. (3) The frost heave and thaw settlement performance of the most unfavorable soil layer is linearly related to water content. The larger the water content, the greater the frost heave rate and thaw settlement coefficient, and the more prone to damage. Full article
(This article belongs to the Special Issue Recent Research on Tunneling and Underground Engineering)
Show Figures

Figure 1

21 pages, 7200 KB  
Article
Study on Seasonal Permafrost Roadbed Deformation Based on Water–Heat Coupling Characteristics
by Bo Lu, Wen Zhao, Shengang Li, Manman Dong, Zhikang Xia and Yunfang Shi
Buildings 2024, 14(9), 2710; https://doi.org/10.3390/buildings14092710 - 30 Aug 2024
Cited by 7 | Viewed by 1783
Abstract
The deformation and damage to seasonal permafrost roadbeds, as seasons shift, stems from the intricate interplay of temperature, moisture, and stress fields. Fundamentally, the frost heave and thaw-induced settlement of soil represent a multi-physics coupling phenomenon, where various physical processes interact and influence [...] Read more.
The deformation and damage to seasonal permafrost roadbeds, as seasons shift, stems from the intricate interplay of temperature, moisture, and stress fields. Fundamentally, the frost heave and thaw-induced settlement of soil represent a multi-physics coupling phenomenon, where various physical processes interact and influence each other. In this investigation, a comprehensive co-coupling numerical simulation of both the temperature and moisture fields was successfully executed, utilizing the secondary development module within the finite element software, COMSOL Multiphysics 6.0. This simulation inverted the classical freezing–thawing experiment involving a soil column under constant temperature conditions, yielding simulation results that were in excellent agreement with the experimental outcomes, with an error of no more than 10%. Accordingly, the temperature, ice content, and liquid water content distributions within the seasonal permafrost region were derived. These parameters were then incorporated into the stress field analysis to explore the intricate coupling between the moisture and temperature fields with the displacement field. Subsequently, the frost heave and thaw settlement deformations of the roadbed were calculated, accounting for seasonal variations, thereby gaining insights into their dynamic behavior. The research results show that during the process of freezing and thawing, water migrates from the frozen zone towards the unfrozen zone, with the maximum migration amount reaching 20% of the water content, culminating in its accumulation at the interface separating the two. Following multiple freeze–thaw cycles, this study reveals that the maximum extent of freezing within the roadbed reaches 2.5 m, while the road shoulder experiences a maximum freezing depth of 2 m. A continuous trend of heightened frost heave and thaw settlement deformation of the roadbed is observed in response to temperature fluctuations, leading to the uneven deformation of the road surface. Specifically, the maximum frost heave measured was 51 mm, while the maximum thaw settlement amounted to 13 mm. Full article
(This article belongs to the Special Issue Research on the Crack Control of Concrete)
Show Figures

Figure 1

23 pages, 12778 KB  
Article
Research on Mechanical Properties of Rock Mass with Tiny Cracks under FTCs Conditions
by Yin-Ge Zhu, Yue Wu, An-Qi Li and Shuai Zhang
Symmetry 2024, 16(2), 234; https://doi.org/10.3390/sym16020234 - 14 Feb 2024
Cited by 1 | Viewed by 1694
Abstract
After the repeated freezing and dissolution of fractured rock masses in cold regions, the liquid present in the pores undergoes a water–ice phase transition, resulting in frost heave forces and damage to the internal structure of the rock mass. This causes the rock [...] Read more.
After the repeated freezing and dissolution of fractured rock masses in cold regions, the liquid present in the pores undergoes a water–ice phase transition, resulting in frost heave forces and damage to the internal structure of the rock mass. This causes the rock masses to continuously develop new cracks, which further expand and connect, leading to rock mass failure and ultimately reducing the overall stability of the rock mass in engineering projects. In this study, uniaxial compression tests, direct shear tests, and Brazilian splitting tests were conducted on rock after freeze–thaw cycles (FTCs), and the changes in the physical and mechanical properties of the rock under freeze–thaw conditions were obtained (this study used raw rock from an engineering project and processed it into symmetrical jointed rock samples). The roughness of the shear fracture surfaces was analyzed through 3D cross-sectional scanning experiments. Using statistical damage theory, the mechanism of freeze–thaw damage was analyzed, and a constitutive model for freeze–thaw rock damage was established. The research results can provide a theoretical basis and support for engineering safety and stability in cold regions. Full article
Show Figures

Figure 1

Back to TopTop