Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (201)

Search Parameters:
Keywords = frost and heat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2097 KB  
Article
Cold Climate Field Study of the Effect of Defrost Controls on the Integrated Performance of a Ductless Air-Source Heat Pump
by Jeffrey Munk, Tom Marsik, Dana Truffer-Moudra, Vanessa Stevens, Conor Dennehy, Jon Winkler and Robby Strunk
Energies 2026, 19(3), 733; https://doi.org/10.3390/en19030733 - 30 Jan 2026
Viewed by 107
Abstract
Residential heat pumps have advanced over the past decade to allow for operation at colder temperatures. However, the challenges of frost accumulation and defrosting the outdoor coil remain. The goal of this study was to evaluate the impact of the control algorithms that [...] Read more.
Residential heat pumps have advanced over the past decade to allow for operation at colder temperatures. However, the challenges of frost accumulation and defrosting the outdoor coil remain. The goal of this study was to evaluate the impact of the control algorithms that determine when a heat pump needs to defrost and when the base pan heater runs on the overall heating efficiency of the heat pump. In this study, which occurred during the 2023–2024 heating season, we measured the performance of a ductless air-source heat pump installed in Fairbanks, Alaska, USA. The heat pump was instrumented to measure the electrical input and the thermal output, as well as selected internal variables and indoor and outdoor environmental conditions. The heat pump was first operated with factory default control algorithms associated with the initiation of defrost and control of the base pan heater. These factory default algorithms focused on aggressively defrosting the outdoor coil and keeping the base pan ice-free. In the middle of the winter, these algorithms were changed to focus on reducing defrost cycles and increasing efficiency, while the heat pump continued to be operated and monitored. The results showed that significant increases in efficiency are possible by improving the defrost and base pan heater control algorithms. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

17 pages, 6065 KB  
Article
A Core–Shell Elastic Flame Retardant with Superior Migration Resistance for Fire-Safe and Toughened Polyamide 66
by Jingfan Zhang, Xiao-Jie Li, Guowen Ran, Xiaoting Fu, Haisheng Xie, Xiangtian Yu and Chaofeng Chen
Polymers 2026, 18(3), 363; https://doi.org/10.3390/polym18030363 - 29 Jan 2026
Viewed by 173
Abstract
A major challenge for halogen-free flame retardants is their tendency to migrate under high-temperature and high-humidity environments. For instance, the combination of aluminum diethylphosphinate (ADP) and melamine polyphosphate (MPP) used in polyamide 66 (PA66) easily migrated to the surface, leading to a white [...] Read more.
A major challenge for halogen-free flame retardants is their tendency to migrate under high-temperature and high-humidity environments. For instance, the combination of aluminum diethylphosphinate (ADP) and melamine polyphosphate (MPP) used in polyamide 66 (PA66) easily migrated to the surface, leading to a white and frost-like appearance. To address this issue, a core–shell elastic flame retardant (SiR@FR) was prepared via a solution deposition method, wherein a polymethylsiloxane (SiR) layer was encapsulated on the surface of ADP and MPP. This shell not only improved the hydrophobicity of the FR but also the toughness of PA66. Experimental results demonstrated that PA66 with 9-SiR@FR (PA66-5) exhibited excellent migration resistance, with no visible surface whitening after 480 h of aging at 85 °C and 85% relative humidity. Meanwhile, PA66-5 displayed outstanding flame retardancy, achieving a UL-94 V-0 rating with an approximate 65% decrease in peak heat release rate compared with control PA66. Furthermore, SiR@FR enhanced the toughness of PA66 by alleviating stress concentration, resulting in a 21% increase in impact strength. This study presents a simple but reliable encapsulation strategy for fabricating flame-retardant PA66 composites that combine superior migration resistance and satisfactory mechanical properties, showing promising potential for demanding applications requiring long-term usability and stability. Full article
(This article belongs to the Special Issue Challenges and Innovations in Fire Safety Polymeric Materials)
Show Figures

Graphical abstract

27 pages, 14018 KB  
Article
Multi-Crop Yield Estimation and Spatial Analysis of Agro-Climatic Indices Based on High-Resolution Climate Simulations in Türkiye’s Lakes Region, a Typical Mediterranean Biogeography
by Fuat Kaya, Sinan Demir, Mert Dedeoğlu, Levent Başayiğit, Yurdanur Ünal, Cemre Yürük Sonuç, Tuğba Doğan Güzel and Ece Gizem Çakmak
Agronomy 2026, 16(3), 321; https://doi.org/10.3390/agronomy16030321 - 27 Jan 2026
Viewed by 251
Abstract
Mediterranean biogeography is characterized as a global “hotspot” for climate change; understanding the impacts of these changes on local agricultural systems through high-resolution analyses has thus become a critical need. This study addresses this gap by evaluating the holistic effects of climate change [...] Read more.
Mediterranean biogeography is characterized as a global “hotspot” for climate change; understanding the impacts of these changes on local agricultural systems through high-resolution analyses has thus become a critical need. This study addresses this gap by evaluating the holistic effects of climate change on site-specific agriculture systems, focusing on the Eğirdir–Karacaören (EKB) and Beyşehir (BB) lake basins in the Lakes Region of Türkiye. This study employed machine learning modeling techniques to forecast changes in the yields of key crops, such as wheat, maize, apple, alfalfa, and sugar beet. Detailed spatial analyses of changes in agro-climatic conditions (heat stress, chilling requirement, frost days, and growing degree days for key crops) between the reference period (1995–2014) and two decadal periods projected for 2040–2049 and 2070–2079 were conducted under the Shared Socioeconomic Pathways (SSP3-7.0). Daily temperature, precipitation, relative humidity, and solar radiation data, derived from high-resolution climate simulations, were aggregated into annual summaries. These datasets were then spatially matched with district-level yield statistics obtained from the official data providers to construct crop-specific data matrices. For each crop, Random Forest (RF) regression models were fitted, and a Leave-One-Site-Out (LOSOCV) cross-validation method was used to evaluate model performance during the reference period. Yield prediction models were evaluated using the mean absolute error (MAE). The models achieved low MAE values for wheat (33.95 kg da−1 in EKB and 75.04 kg da−1 in BB), whereas the MAE values for maize and alfalfa were considerably higher, ranging from 658 to 986 kg da−1. Projections for future periods indicate declines in relative yield across both basins. For 2070–2079, wheat and maize yields are projected to decrease by 10–20%, accompanied by wide uncertainty intervals. Both basins are expected to experience a substantial increase in heat stress days (>35 °C), a reduction in frost days, and an overall acceleration of plant phenology. Results provided insights to inform region-specific, evidence-based adaptation options, such as selecting heat-tolerant varieties, optimizing planting calendars, and integrating precision agriculture practices to improve resource efficiency under changing climatic conditions. Overall, this study establishes a scientific basis for enhancing the resilience of agricultural systems to climate change in two lake basins within the Mediterranean biogeography. Full article
(This article belongs to the Special Issue Agroclimatology and Crop Production: Adapting to Climate Change)
Show Figures

Figure 1

22 pages, 5388 KB  
Article
Mass Deposition Rates of Carbon Dioxide onto a Cryogenically Cooled Surface
by Martin Jan Tuinier, Wout Jacob René Ververs, Danica Tešić, Ivo Roghair and Martin van Sint Annaland
Processes 2026, 14(2), 271; https://doi.org/10.3390/pr14020271 - 12 Jan 2026
Viewed by 230
Abstract
The rates of CO2 mass deposition onto cryogenically cooled surfaces are crucial for CO2 removal processes that rely on cryogenics. A dedicated experimental setup was constructed to measure CO2 mass deposition rates under controlled conditions. Experiments were carried out with [...] Read more.
The rates of CO2 mass deposition onto cryogenically cooled surfaces are crucial for CO2 removal processes that rely on cryogenics. A dedicated experimental setup was constructed to measure CO2 mass deposition rates under controlled conditions. Experiments were carried out with both pure CO2 and CO2/N2 mixtures, growing frost layers up to 8 mm thick. Results demonstrated that heat transfer through the frost layer significantly slows down the mass deposition process. Furthermore, it was found that the addition of N2 to the gas phase has a considerable influence on mass deposition rates, because it introduces an additional mass transfer resistance toward the frost surface. To describe the experimentally observed behavior, a frost growth model based on mass and energy balances was developed. Expressions for the frost density as a function of the frost temperature and for the effective frost conductivity as a function of the frost density were derived and implemented in the model. When accounting for drift fluxes, the model accurately captures the behavior observed in experiments. The findings of this work highlight the significant impact of heat transfer limitations on processes that accumulate a thick solid CO2 layer, such as continuously cooled heat exchangers. Conversely, technologies like cryogenically refrigerated packed beds do not develop a thick solid CO2 layer; calculations showed that a frost layer of 3.24·10−5 m is formed, resulting in a Biot number well below 0.01, indicating that heat transfer in the frost layer is not limiting. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 9728 KB  
Article
Frost Suppression and Enhancement of an Air-Source Heat Pump via an Electrostatically Sprayed Superhydrophobic Heat Exchanger
by Sicheng Fan, Zhengyu Duan, Zhaoqing Ke, Donghua Zou and Zhiping Yuan
Energies 2026, 19(2), 342; https://doi.org/10.3390/en19020342 - 10 Jan 2026
Viewed by 162
Abstract
Frost accumulation on heat exchangers severely limits the efficiency and reliability of air-source heat pumps (ASHPs) in cold, humid environments. Superhydrophobic coatings fabricated via electrostatic spraying offer a promising energy-free strategy for frost suppression. In this study, a robust superhydrophobic coating was deposited [...] Read more.
Frost accumulation on heat exchangers severely limits the efficiency and reliability of air-source heat pumps (ASHPs) in cold, humid environments. Superhydrophobic coatings fabricated via electrostatic spraying offer a promising energy-free strategy for frost suppression. In this study, a robust superhydrophobic coating was deposited on the heat exchanger of a residential ASHP using this scalable technique. Under low-temperature heating conditions (2/1 °C), the coated exchanger delayed frost completion by a factor of 2.83 and shortened defrosting time by 33.3% compared to a conventional hydrophilic counterpart. These improvements translated to a 6.24% increase in average heating capacity and a 2.83% gain in the coefficient of performance (COP). Although the thicker superhydrophobic coating resulted in a marginal 3.1% reduction in cooling capacity during free-cooling operation, the significant enhancements in frost resistance and heating performance underscore its practical value. This work demonstrates that electrostatic spraying is a viable and effective method for fabricating high-performance superhydrophobic heat exchangers, paving the way for more efficient and frost-resistant ASHPs. Full article
(This article belongs to the Special Issue Novel Technologies and Sustained Advances of Heat Pump System)
Show Figures

Figure 1

18 pages, 3247 KB  
Article
Effects of Photovoltaic-Integrated Tea Plantation on Tea Field Productivity and Tea Leaf Quality
by Xin-Qiang Zheng, Xue-Han Zhang, Jian-Gao Zhang, Rong-Jin Zheng, Jian-Liang Lu, Jian-Hui Ye and Yue-Rong Liang
Agriculture 2026, 16(1), 125; https://doi.org/10.3390/agriculture16010125 - 3 Jan 2026
Viewed by 492
Abstract
Agrivoltaics integrates photovoltaic (PV) power generation with agricultural practices, enabling dual land-use and mitigating land-use competition between agriculture and energy production. China has 3.43 million hectares of tea fields, offering significant potential for PV-integrated tea plantations (PVtea) to address land scarcity in clean [...] Read more.
Agrivoltaics integrates photovoltaic (PV) power generation with agricultural practices, enabling dual land-use and mitigating land-use competition between agriculture and energy production. China has 3.43 million hectares of tea fields, offering significant potential for PV-integrated tea plantations (PVtea) to address land scarcity in clean energy development. This study aimed to investigate the impact of PV modules above tea bushes in PVtea on the yield and quality of tea, as well as tea plant resistance to environmental stresses. The PV system uses a single-axis tracking system with a horizontal north–south axis and ±45° tilt. It includes 70 UL-270P-60 polycrystalline solar panels (270 Wp each), arranged in 5 columns of 14 panels, spaced 4500 mm apart, covering 280 m2. The panels are mounted 2400 mm above the ground, with a total capacity of 18.90 kWp (656 kWp/ha). Tea yield, quality-related components, leaf photosystem II (PSII) activity, and plant resistance to environmental stresses were investigated in comparison to an adjacent open-field tea plantation (control). The mean photosynthetic active radiation (PAR) reaching the plucking table of PVtea was 52.9% of the control, with 32.0% of the control on a sunny day and 49.0% on a cloudy day, accompanied by an increase in ambient relative humidity. These changes alleviated the midday depression of leaf PSII activity caused by high light, resulting in a 9.3–15.3% increase in leaf yield. Moreover, PVtea summer tea exhibited higher levels of amino acids and total catechins, resulting in tea quality improvement. Additionally, PVtea enhanced the resistance of tea plants to frost damage in spring and heat stress in summer. PVtea integrates photovoltaic power generation with tea cultivation practices, which not only facilitates clean energy production—an average annual generation of 697,878.5 kWh per hectare—but also increases tea productivity by 9.3–15.3% and the land-use equivalence ratio (LER) by 70%. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Graphical abstract

22 pages, 4731 KB  
Article
Projected Shifts in the Growing Season for Plum Orchards in Romania Under Future Climate Change
by Vasile Jitariu, Adrian Ursu, Lilian Niacsu and Pavel Ichim
Horticulturae 2025, 11(12), 1479; https://doi.org/10.3390/horticulturae11121479 - 7 Dec 2025
Viewed by 555
Abstract
Climate change strongly influences the phenology of temperate fruit species, yet its long-term effects on Romanian plum orchards (Prunus domestica L.) remain insufficiently quantified. This study analyzes projected changes in the start (SGS), end (EGS), and duration (GSL) of the growing season [...] Read more.
Climate change strongly influences the phenology of temperate fruit species, yet its long-term effects on Romanian plum orchards (Prunus domestica L.) remain insufficiently quantified. This study analyzes projected changes in the start (SGS), end (EGS), and duration (GSL) of the growing season under two emission scenarios (RCP 4.5 and RCP 8.5) throughout the 21st century. Using temperature-based phenological thresholds, SGS and EGS were modeled for six orchard clusters representing distinct regional and altitudinal conditions across Romania. Results reveal a consistent advancement of SGS and a marked extension of GSL, particularly under RCP 8.5, where the growing season may lengthen by up to 60 days compared with early-century conditions. Under RCP 4.5, changes are more moderate but directionally similar, indicating a robust climatic signal across all clusters. These findings highlight that earlier and longer vegetation periods may enhance fruit development potential but also increase risks associated with late spring frosts, heat stress, and pollination mismatches. Despite inherent model uncertainties, the convergence of trends suggests reliable projections that can support adaptive orchard management and long-term strategies for sustainable fruit production under a changing climate. Full article
(This article belongs to the Special Issue Orchard Management Under Climate Change: 2nd Edition)
Show Figures

Figure 1

18 pages, 5360 KB  
Article
Anti-Icing and Frost Property of Superhydrophobic Micro-Nano Structures with Embossed Micro-Array Channels
by Han Luo, Xiaoliang Wang, Qiwei Li, Honglei Liu, Lei Chen, Debin Shan, Bin Guo and Jie Xu
Materials 2025, 18(20), 4813; https://doi.org/10.3390/ma18204813 - 21 Oct 2025
Viewed by 855
Abstract
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed [...] Read more.
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed to generate nanoscale cluster structures on hundreds of microns array channels to construct a superhydrophobic micro-nano composite structure. The droplet freezing and frosting behavior of the hydrophobic microstructures was analyzed, and it was found that the anti-icing and anti-frost properties of the microstructure surface improved with an increase in the microstructure period size (T). Compared with the original surface, the freezing time of the microstructure at T = 500 μm was delayed by 214.3% (7 s → 22 s), and the frost layer coverage time was delayed by 75.7% (70 s → 123 s). The maximum water contact angle of the superhydrophobic micro-nano composite structure was 153.3°, and the droplet freezing time was delayed to 95 s, which is a 1166.67% difference, indicating that the multi-stage micro-nano composite structure can significantly improve surface anti-icing performance. The main reason for this result is that the bottom of the microstructure can store air pockets, preventing droplet wetting and heat exchange. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

22 pages, 6803 KB  
Article
An Investigation of Water–Heat–Force Coupling During the Early Stage of Shaft Wall Pouring in Thick Topsoil Utilizing the Freezing Method
by Yue Yuan, Jianyong Pang, Jiuqun Zou and Chi Zhang
Processes 2025, 13(10), 3319; https://doi.org/10.3390/pr13103319 - 16 Oct 2025
Cited by 1 | Viewed by 550
Abstract
The freezing method is widely employed in the construction of a vertical shaft in soft soil and water-rich strata. As the construction depth increases, investigating the water–heat–force coupling effects induced by the hydration heat (internal heat source) of concrete is crucial for the [...] Read more.
The freezing method is widely employed in the construction of a vertical shaft in soft soil and water-rich strata. As the construction depth increases, investigating the water–heat–force coupling effects induced by the hydration heat (internal heat source) of concrete is crucial for the safety of the lining structure and its resistance to cracking and seepage. A three-dimensional coupled thermal–hydraulic–mechanical analysis model was developed, incorporating temperature and soil relative saturation as unknown variables based on heat transfer in porous media, unsaturated soil seepage, and frost heave theory. The coefficient type PDE module in COMSOL was used for secondary development to solve the coupling equation, and the on-site temperature and pressure monitoring data of the frozen construction process were compared. This study obtained the model-related parameters and elucidated the evolution mechanism of freeze–thaw and freeze–swelling pressures of a frozen wall under the influence of hydration heat. The resulting model shows that the maximum thaw depth of the frozen wall reaches 0.3576 m after 160 h of pouring, with an error rate of 4.64% compared to actual measurements. The peak temperature of the shaft wall is 73.62 °C, with an error rate of 3.76%. The maximum influence range of hydration heat on the frozen temperature field is 1.763 m. The peak freezing pressure is 4.72 MPa, which exhibits a 5.03% deviation from the actual measurements, thereby confirming the reliability of the resulting model. According to the strength growth pattern of concrete and the freezing pressure bearing requirements, it can provide a theoretical basis for quality control of the lining structure and a safety assessment of the freezing wall. Full article
Show Figures

Figure 1

13 pages, 3912 KB  
Article
Thermal Regulation and Moisture Accumulation in Embankments with Insulation–Waterproof Geotextile in Seasonal Frost Regions
by Kun Zhang, Doudou Jin, Ze Zhang, Yuncheng Mao and Guoyu Li
Appl. Sci. 2025, 15(19), 10681; https://doi.org/10.3390/app151910681 - 2 Oct 2025
Cited by 1 | Viewed by 619
Abstract
As an effective engineering countermeasure against frost heave damage in seasonally frozen regions, thermal insulation boards (TIBs) were employed in embankments. This study established a test section featuring a thermal insulation–waterproof geotextile embankment in Dingxi, Gansu Province. Temperature and water content at various [...] Read more.
As an effective engineering countermeasure against frost heave damage in seasonally frozen regions, thermal insulation boards (TIBs) were employed in embankments. This study established a test section featuring a thermal insulation–waterproof geotextile embankment in Dingxi, Gansu Province. Temperature and water content at various positions and depths within both the thermal insulation embankment (TIE) and an ordinary embankment (OE) were monitored and compared to analyze the effectiveness of the TIB. Following the installation of the insulation layer, the temperature distribution within the embankment became more uniform. The TIB effectively impeded downward heat transfer (cold energy influx) during the winter and upward heat transfer (heat energy flux) during the warm season. However, the water content within the TIE was observed to be higher than that in the OE, with water accumulation notably occurring at the embankment toe. While the TIB successfully mitigated slope damage and superficial soil frost heave, the waterproof geotextile concurrently induced moisture accumulation at the embankment toe. Consequently, implementing complementary drainage measures is essential. In seasonally frozen areas characterized by dry weather and relatively high winter temperatures, the potential damage caused by concentrated rainfall events to embankments requires particular attention. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 3124 KB  
Article
Research and Application of Assembled SC Coal Gangue External Wallboard
by Yajie Yan, Jisen Yang, Jinhui Wu, Le Yang, Qiang Zhao and Peipeng Wang
Buildings 2025, 15(19), 3545; https://doi.org/10.3390/buildings15193545 - 2 Oct 2025
Viewed by 536
Abstract
Given that the stock of coal gangue is increasing annually, and especially considering the problem of resource utilization after the spontaneous combustion of coal gangue accumulations with large thickness, the post-spontaneous combustion of coal gangue (SC coal gangue) from Yangquan, Shanxi, was selected [...] Read more.
Given that the stock of coal gangue is increasing annually, and especially considering the problem of resource utilization after the spontaneous combustion of coal gangue accumulations with large thickness, the post-spontaneous combustion of coal gangue (SC coal gangue) from Yangquan, Shanxi, was selected as a research object. After crushing and screening, SC coal gangue was used as a coarse and fine aggregate, and through concrete mix design and a trial mix of concrete and mix ratio adjustment, concrete of strength grade C20 was obtained. Through experiments, the strength, elastic modulus, frost resistance, carbonation depth and other performance indicators of the concrete were measured. Using the SC coal gangue concrete, a 20 mm thick SC coal gangue panel was designed and manufactured. Through experimental tests, the bearing capacity, hanging force, impact resistance, impermeability and other properties of the board met the requirements of the relevant standards for building wallboard. For the SC coal gangue panel composite rock wool, its heat transfer coefficient decreased by 34.0%, air sound insulation was 45 dB, and the self-weight of the external wallboard was reduced by 37.5%, so the related performance was better than the requirements of the current standard. The research results have been successfully applied to an office building project in Shanxi, China. Using SC coal gangue to make the external wallboard of the building, the reduction and recycling of solid waste are realized. In addition, the production of wall panels has been industrialized, thereby improving the construction efficiency. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 22609 KB  
Article
Terrain-Based High-Resolution Microclimate Modeling for Cold-Air-Pool-Induced Frost Risk Assessment in Karst Depressions
by András Dobos, Réka Farkas and Endre Dobos
Climate 2025, 13(10), 205; https://doi.org/10.3390/cli13100205 - 30 Sep 2025
Cited by 1 | Viewed by 2014
Abstract
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the [...] Read more.
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the formation, structure, and persistence of CAPs in a Central European karst depression. High-resolution terrain-based modeling was conducted using UAV-derived digital surface models combined with multiple GIS tools (Sky-View Factor, Wind Exposition Index, Cold Air Flow, and Diurnal Anisotropic Heat). These models were validated and enriched by multi-level temperature measurements and thermal imaging under various synoptic conditions. Results reveal that temperature inversions frequently form during clear, calm nights, leading to extreme near-surface cold accumulation within the sinkhole. Inversions may persist into the day due to topographic shading and density stratification. Vegetation and basin geometry influence radiative and turbulent fluxes, shaping the spatial extent and intensity of cold-air layers. The CAP is interpreted as part of a broader interconnected multi-sinkhole system. This integrated approach offers a transferable, cost-effective framework for terrain-driven frost hazard assessment, with direct relevance to precision agriculture, mesoscale model refinement, and site-specific climate adaptation in mountainous or frost-sensitive regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

22 pages, 4583 KB  
Article
MemGanomaly: Memory-Augmented Ganomaly for Frost- and Heat-Damaged Crop Detection
by Jun Park, Sung-Wook Park, Yong-Seok Kim, Se-Hoon Jung and Chun-Bo Sim
Appl. Sci. 2025, 15(19), 10503; https://doi.org/10.3390/app151910503 - 28 Sep 2025
Viewed by 515
Abstract
Climate change poses significant challenges to agriculture, leading to increased crop damage owing to extreme weather conditions. Detecting and analyzing such damage is crucial for mitigating its effects on crop yield. This study proposes a novel autoencoder (AE)-based model, termed “Memory Ganomaly,” designed [...] Read more.
Climate change poses significant challenges to agriculture, leading to increased crop damage owing to extreme weather conditions. Detecting and analyzing such damage is crucial for mitigating its effects on crop yield. This study proposes a novel autoencoder (AE)-based model, termed “Memory Ganomaly,” designed to detect and analyze weather-induced crop damage under conditions of significant class imbalance. The model integrates memory modules into the Ganomaly architecture, thereby enhancing its ability to identify anomalies by focusing on normal (undamaged) states. The proposed model was evaluated using apple and peach datasets, which included both damaged and undamaged images, and was compared with existing robust Convolutional neural network (CNN) models (ResNet-50, EfficientNet-B3, and ResNeXt-50) and AE models (Ganomaly and MemAE). Although these CNN models are not the latest technologies, they are still highly effective for image classification tasks and are deemed suitable for comparative analyses. The results showed that CNN and Transformer baselines achieved very high overall accuracy (94–98%) but completely failed to identify damaged samples, with precision and recall equal to zero under severe class imbalance. Few-shot learning partially alleviated this issue (up to 75.1% recall in the 20-shot setting for the apple dataset) but still lagged behind AE-based approaches in terms of accuracy and precision. In contrast, the proposed Memory Ganomaly delivered a more balanced performance across accuracy, precision, and recall (Apple: 80.32% accuracy, 79.4% precision, 79.1% recall; Peach: 81.06% accuracy, 83.23% precision, 80.3% recall), outperforming AE baselines in precision and recall while maintaining comparable accuracy. This study concludes that the Memory Ganomaly model offers a robust solution for detecting anomalies in agricultural datasets, where data imbalance is prevalent, and suggests its potential for broader applications in agricultural monitoring and beyond. While both Ganomaly and MemAE have shown promise in anomaly detection, they suffer from limitations—Ganomaly often lacks long-term pattern recall, and MemAE may miss contextual cues. Our proposed Memory Ganomaly integrates the strengths of both, leveraging contextual reconstruction with pattern recall to enhance detection of subtle weather-related anomalies under class imbalance. Full article
Show Figures

Figure 1

84 pages, 64140 KB  
Article
Assessing the Influence of Temperature and Precipitation on the Yield and Losses of Key Highland Crops in Ecuador
by Luis Fernando Guerrero-Vásquez, María del Cisne Ortega-Cabrera, Nathalia Alexandra Chacón-Reino, Graciela del Rocío Sanmartín-Mesías, Paul Andrés Chasi-Pesántez and Jorge Osmani Ordoñez-Ordoñez
Agriculture 2025, 15(18), 1980; https://doi.org/10.3390/agriculture15181980 - 19 Sep 2025
Cited by 1 | Viewed by 1119
Abstract
Food production systems in Ecuador’s high Andean region are pivotal for food security, rural livelihoods, and agrobiodiversity, yet they are increasingly exposed to climate stress. We assessed four representative crops (tree tomato, quinoa, potato, and maize) across three Andean zones (North, Center, South) [...] Read more.
Food production systems in Ecuador’s high Andean region are pivotal for food security, rural livelihoods, and agrobiodiversity, yet they are increasingly exposed to climate stress. We assessed four representative crops (tree tomato, quinoa, potato, and maize) across three Andean zones (North, Center, South) in 2015–2022 using monthly NASA POWER (MERRA-2) climate fields. After confirming non-normality, Spearman correlations and multiple linear regressions with leave-one-year-out validation were applied to quantify the influence of maximum/minimum temperature and precipitation on cultivated and harvested area, production, sales, and loss categories. To place monthly signals in a process context, daily extreme-event diagnostics (ETCCDI-style) were also computed: heat days (TX90), ≥5-day dry spells, and the annual maximum consecutive dry days (CDDmax). Models explained a wide range of variability across crops and zones (approx. R20.55–0.99), with quinoa showing the most consistent fits (several outcomes R2>0.90). Extremes provide an eye-catching, actionable picture: the Southern zone concentrated dryness hazards, with 1–5 dry spells 5 days per year and CDDmax up to ∼8 days, while heat-day frequency showed non-significant declines across zones in 2015–2022. Reanalysis frost days were virtually zero—consistent with under-detection of local valley frosts at coarse resolution—so frost risk was interpreted via monthly signals and reported losses. Overall, the results show precipitation-driven vulnerabilities in the South and support quinoa’s role as a resilient option under increasing climate stress, offering concrete guidance for water management and climate-smart planning in mountain agroecosystems. Full article
Show Figures

Figure 1

24 pages, 4924 KB  
Article
Performance and Durability of Chalcedonite Reactive Powder Concrete
by Joanna Julia Sokołowska, Piotr Woyciechowski and Szymon Żerek
Materials 2025, 18(18), 4258; https://doi.org/10.3390/ma18184258 - 11 Sep 2025
Viewed by 818
Abstract
The objective of this study was to evaluate the technical properties and assess the durability of a novel high-performance concrete with aggregates composed entirely of reactive powders derived from chalcedonite—a mineral previously not utilized in HPC technology. Since there is insufficient information on [...] Read more.
The objective of this study was to evaluate the technical properties and assess the durability of a novel high-performance concrete with aggregates composed entirely of reactive powders derived from chalcedonite—a mineral previously not utilized in HPC technology. Since there is insufficient information on chalcedonite-based concretes in the scientific literature, the presented research aims to address these knowledge gaps. The characterization of the chalcedonite powder involved the determination of specific gravity, particle size distribution, specific surface area, and particle morphology through microscopic analysis. The hardened chalcedonite-based and reference quartz-based high-performance concretes were subjected to a comprehensive suite of tests to determine their physical properties (bulk density, water absorption, and capillary absorption) and mechanical properties (flexural and compressive strength). Durability was further assessed based on compressive strength criteria, including frost resistance and carbonation resistance. To simulate long-term performance and better evaluate the durability of the high-performance concretes, specimens were tested following standard water curing and after additional maturation processes, including thermal treatment, which in the extreme case resulted in a seven-day compressive strength of 176.9 MPa, a value higher by 56.7 MPa (corresponding to an increase of 47.1%) compared to the strength of the identical concrete not subjected to thermal treatment. To explore the potential for architectural applications, particularly in outdoor environments, capillary absorption testing was of particular importance, as it provided insight into the material’s resistance to eventual pigment leaching from the mineral matrix. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Figure 1

Back to TopTop