Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (881)

Search Parameters:
Keywords = friction welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6969 KB  
Article
Machine Learning for In Situ Quality Assessment and Defect Diagnosis in Refill Friction Stir Spot Welding
by Jordan Andersen, Taylor Smith, Jared Jackson, Jared Millett and Yuri Hovanski
J. Manuf. Mater. Process. 2026, 10(2), 44; https://doi.org/10.3390/jmmp10020044 - 27 Jan 2026
Abstract
Refill Friction Stir Spot Welding (RFSSW) provides significant advantages over competing spot joining technologies, but detecting RFSSW’s often small and subtle defects remains challenging. In this study, kinematic feedback data from a RFSSW machine’s factory-installed sensors was used to successfully predict defect presence [...] Read more.
Refill Friction Stir Spot Welding (RFSSW) provides significant advantages over competing spot joining technologies, but detecting RFSSW’s often small and subtle defects remains challenging. In this study, kinematic feedback data from a RFSSW machine’s factory-installed sensors was used to successfully predict defect presence with 96% accuracy (F1 = 0.92) and preliminary multi-class defect diagnosis with 84% accuracy (F1 = 0.82). Thirty adverse treatments (e.g., contaminated coupons, worn tools, and incorrect material thickness) were carried out to create 300 potentially defective welds, plus control welds, which were then evaluated using profilometry, computed tomography (CT) scanning, cutting and polishing, and tensile testing. Various machine learning (ML) models were trained and compared on statistical features, with support vector machine (SVM) achieving top performance on final quality prediction (binary), random forest outperforming other models in classifying welds into six diagnosis categories (plus a control category) based on the adverse treatments. Key predictors linking process signals to defect formation were identified, such as minimum spindle torque during the plunge phase. In conclusion a framework is proposed to integrate these models into a manufacturing setting for low-cost, full-coverage evaluation of RFSSWs. Full article
Show Figures

Figure 1

8 pages, 3364 KB  
Proceeding Paper
Effect of Stirring Efficiency on Fatigue Behavior of Graphene Nanoplatelets-Reinforced Friction Stir Spot Welded Aluminum Sheets
by Amir Alkhafaji and Daniel Camas
Eng. Proc. 2026, 124(1), 6; https://doi.org/10.3390/engproc2026124006 - 23 Jan 2026
Viewed by 67
Abstract
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot [...] Read more.
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot welding (RSW). The FSSW technique, however, includes some structural defects imbedded within the weld joint, such as keyhole formation, hook crack, and bond line oxidation challenging the joint strength. The unique properties of nanomaterials in the reinforcement of metal matrices motivated researchers to enhance the FSSW joints’ strength. Previous studies successfully fabricated nano-reinforced FSSW joints. At different volumetric ratios of nano-reinforcement, nanoparticles may agglomerate due to inefficient stirring of the welding tool pin, forming stress concentration sites and brittle phases, affecting tensile and fatigue strength under static and cyclic loading conditions, respectively. This work investigated how the welding tool pin affects stirring efficiency by controlling the distribution of a nano-reinforcing material within the joint stir zone (SZ), and thus the tensile and fatigue strength of the FSSW joints. Sheets of AA6061-T6 of 1.8 mm thickness were used as a base material. In addition, graphene nanoplatelets (GNPs) with lateral sizes of 1–10 µm and thicknesses of 3–9 nm were used as nano-reinforcements. GNP-reinforced FSSW specimens were prepared and successfully fabricated. Optical microscope (OM) and field emission scanning electron microscope (FE-SEM) methods were employed to visualize the GNPs’ incorporation into the SZs of the FSSW joints. Micrographs of as-welded specimens showed lower formations of scattered, clustered GNPs achieved by the threaded pin tool compared to continuous agglomerations observed when the cylindrical pin tool was used. Tensile test results revealed a significant improvement of about 30% exhibited by the threaded pin tool compared to the cylindrical pin tool, while fatigue test showed an improvement of 46–24% for the low- and high-cycle fatigue, respectively. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

27 pages, 7548 KB  
Article
Eco-Friendly Illite as a Sustainable Solid Lubricant in Calcium Grease: Evaluating Its Thermal Stability, Tribological Performance, and Energy Efficiency
by Maria Steffy, Shubrajit Bhaumik, Nabajit Dev Choudhury, Viorel Paleu and Vitalie Florea
Materials 2026, 19(3), 464; https://doi.org/10.3390/ma19030464 - 23 Jan 2026
Viewed by 289
Abstract
This study investigates the influence of the additive illite on the thermal, tribological, and energy efficiency characteristics of calcium grease (CG) at different concentrations (0.05 wt.%, 0.1 wt.%, 0.2 wt.%, 0.4 wt.%, 0.6 wt.%, and 0.8 wt.%). Thermo-gravimetric analysis under inert and oxidative [...] Read more.
This study investigates the influence of the additive illite on the thermal, tribological, and energy efficiency characteristics of calcium grease (CG) at different concentrations (0.05 wt.%, 0.1 wt.%, 0.2 wt.%, 0.4 wt.%, 0.6 wt.%, and 0.8 wt.%). Thermo-gravimetric analysis under inert and oxidative atmospheres revealed that illite enhances thermal stability by increasing inorganic residue under N2, but promotes oxidative degradation under O2, limiting practical thermal use to around 400 °C. Grease with 0.1 wt.% illite (CGI2) performed well in tribological tests by reducing the coefficient of friction and wear scar diameter by 53% and 57%, respectively, compared to the base grease. Fleischer’s energy-based wear model showed that all grease samples operated within the mixed friction regime, and CGI2 exhibited a 93% higher apparent frictional energy density and a substantially lower wear intensity that was 47% lower than the base grease, indicating improved energy dissipation and wear resistance. All samples had the same weld load (1568 N), but CGI2 had a 21% higher load–wear index than the base grease in the extreme-pressure test, indicating better load-carrying capacity. In the energy consumption test, a 6% reduction in current consumption was observed in CGI2 in comparison with the base grease. Overall, illite at an optimal concentration significantly enhances lubrication performance, wear protection, and energy efficiency. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

16 pages, 11984 KB  
Article
Research on the Shear Forces and Fracture Behavior of Self-Riveting Friction Stir Lap Welding Joints with Medium-Thick Aluminum/Steel Plates
by Xiongwen Tian, Jianxin Wang, Chang Zhai, Yabin He, Shujin Chen, Yiming Jin, Rui Yu and Sergii Maksymov
Metals 2026, 16(1), 127; https://doi.org/10.3390/met16010127 - 22 Jan 2026
Viewed by 78
Abstract
The self-riveting friction stir lap welding (SRFSLW) method was utilized to improve the bonding strength of lap welding joints with medium-thick aluminum/steel plates and to realize structural lightweighting. The effect of plunge depth on the shear force and the microstructure of the joint [...] Read more.
The self-riveting friction stir lap welding (SRFSLW) method was utilized to improve the bonding strength of lap welding joints with medium-thick aluminum/steel plates and to realize structural lightweighting. The effect of plunge depth on the shear force and the microstructure of the joint was studied, and the influence of groove structure (rectangular groove and dovetail groove) on the failure behavior of the joint under shear load was obtained, simultaneously. The EBSD results indicate that the aluminum alloy grains in the stir zone (SZ) of groove joints have been refined compared to the non-groove joint. Meanwhile, due to the presence of grooves, the proportion of high-angle grain boundaries of the SZ is increased, and more dynamic recrystallization has emerged; thus, the KAM value of the SZ is reduced to a certain extent. The non-groove joint exhibits {111}//ND fiber texture, while the groove joint shows F-plate texture. In self-riveting joints, due to the increased metallurgical bonding area and the weakened effect of external loads, the failure of metallurgical bonding in the joint requires higher external load, and the separation of the self-riveted structure from the groove requires greater bending moment, thereby improving the strength of the joint. Full article
(This article belongs to the Special Issue Properties and Residual Stresses of Welded Alloys)
Show Figures

Figure 1

14 pages, 6748 KB  
Article
Roller Joining of AA1050 and AA6061 Aluminum Foam Immediately After Heating Process
by Yoshihiko Hangai, Shingo Nagatake, Ryosuke Suzuki, Kenji Amagai and Nobuhiro Yoshikawa
Metals 2026, 16(1), 102; https://doi.org/10.3390/met16010102 - 16 Jan 2026
Viewed by 149
Abstract
Aluminum foam is attracting attention as a multifunctional, ultra-lightweight material. To apply this aluminum foam to actual industrial materials, aluminum foam plates are required. In addition, it is expected that a multi-layer aluminum foam composed of dissimilar aluminum alloy foam layers can further [...] Read more.
Aluminum foam is attracting attention as a multifunctional, ultra-lightweight material. To apply this aluminum foam to actual industrial materials, aluminum foam plates are required. In addition, it is expected that a multi-layer aluminum foam composed of dissimilar aluminum alloy foam layers can further enhance its functionality. In this study, we attempted to fabricate a three-layer aluminum foam composed of commercially pure aluminum AA1050 and Al-Mg-Si aluminum alloy AA6061 by heating and foaming a total of three pieces of AA1050 precursor and AA6061 precursor arranged alternately, followed by immediate roller joining. It was found that, by traversing a roller immediately after foaming the AA1050 and AA6061 precursors, the aluminum foam could be joined while forming it into a flat plate. In addition, X-ray CT images of the fabricated samples revealed that material flow induced by roller traversing ruptured the surface skin layer. Numerous pores were observed within the sample, indicating pores were maintained during the roller traversing and no significant differences in porosities were identified between AA1050 aluminum foam and AA6061 aluminum foam. Furthermore, from the four-point bending test and the observation of samples after bending test, although quantitative mechanical properties were not obtained due to the as-joined samples were used for the bending test, pores were observed at the fracture surfaces, confirming that roller joining achieved seamless joining. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

15 pages, 2240 KB  
Article
Research on Friction Welded Connections of B500SP Reinforcement Bars with 1.4301 (AISI 304) and 1.4021 (AISI 420) Stainless Steel Bars
by Jarosław Michałek and Ryszard Krawczyk
Materials 2026, 19(2), 313; https://doi.org/10.3390/ma19020313 - 13 Jan 2026
Viewed by 175
Abstract
Steel and prestressed concrete traction poles can be fixed to reinforced concrete pile foundations using typical bolted connections. The stainless steel fastening screw is connected to the ordinary steel foundation pile reinforcement by friction welding under specific friction welding process parameters. From the [...] Read more.
Steel and prestressed concrete traction poles can be fixed to reinforced concrete pile foundations using typical bolted connections. The stainless steel fastening screw is connected to the ordinary steel foundation pile reinforcement by friction welding under specific friction welding process parameters. From the perspective of the structural strength of the connection between the traction pole and the foundation pile, regarding the transfer of tensile and shear forces through a single anchor bolt, the yield strength of stainless steel bolts should be Re,min ≥ 345 MPa for M30 anchors, Re,min ≥ 310 MPa for M36 anchors and Re,min ≥ 300 MPa for M42 anchors. This requirement is reliably met by martensitic stainless steels, while other stainless steels have yield strengths below the required minimum. What truly determines the foundation pile’s load capacity is not the satisfactory mechanical strength of the stainless steel (here, the parameters are met), but the quality of the friction-welded end connection between the reinforcement and the threaded bars. Incorrect selection of the type of prestressing steel in the analyzed connection can have enormous consequences for foundation pile manufacturers. Annual production of foundation piles amounts to thousands of units, and an incorrect decision made by the pile designer at the design stage can result in significant financial losses and a high risk to human life. This article presents the results of studies on friction-welded connections of M30, M36, and M42 threaded bars made of austenitic 1.4301 (AISI 304) and martensitic 1.4021 (AISI 420) stainless steel with B500SP reinforcement bars. The tests yielded negative results for 1.4021 (AISI 420) steel, despite its yield strength exceeding Re ≥ 360 MPa. Full article
(This article belongs to the Special Issue Road and Rail Construction Materials: Development and Prospects)
Show Figures

Figure 1

14 pages, 3454 KB  
Article
Study on Non-Contact Defect Detection Using the Laser Ultrasonic Method for Friction Stir-Welded Cu–Al Dissimilar Material Joints
by Kazufumi Nomura, Shogo Ishifuro and Satoru Asai
Appl. Sci. 2026, 16(2), 688; https://doi.org/10.3390/app16020688 - 9 Jan 2026
Viewed by 233
Abstract
Ensuring friction stir welding (FSW) joint quality typically relies on ultrasonic testing (UT) and radiographic testing (RT), but achieving complete coverage is challenging, and echo-based defect discrimination becomes difficult in dissimilar joints. Laser ultrasonics is a promising non-contact technique that remotely assesses weld [...] Read more.
Ensuring friction stir welding (FSW) joint quality typically relies on ultrasonic testing (UT) and radiographic testing (RT), but achieving complete coverage is challenging, and echo-based defect discrimination becomes difficult in dissimilar joints. Laser ultrasonics is a promising non-contact technique that remotely assesses weld quality and provides high spatial resolution at the generation and detection points. This study establishes a laser-ultrasonic method for defect detection in dissimilar Cu–Al FSW joints. Slit-like artificial defects (0.1–2.5 mm deep in 5 mm thick plates) were introduced at the Al-side interface of specimens fabricated with an Al-offset tool. Experiments and numerical simulations were used to evaluate wave modes and irradiation configurations, focusing on intensity-attenuation ratios of specific wave types, including longitudinal and Rayleigh waves. On the non-slit surface, attenuation of reflected longitudinal waves enabled detection of defects ≥0.5 mm deep. On the slit surface, Rayleigh-wave attenuation allowed identification of defects as shallow as 0.1 mm, although slit-side irradiation may be less practical during joining. These results demonstrate that defect identification in dissimilar materials can be achieved by evaluating wave-intensity attenuation rather than relying solely on the presence of reflected echoes, suggesting potential for implementing laser ultrasonics in in-process monitoring of FSW joints. Full article
(This article belongs to the Special Issue Industrial Applications of Laser Ultrasonics)
Show Figures

Figure 1

14 pages, 16432 KB  
Article
Interfacial Interlocking Characteristics in Al/Mg Friction Stir Welding and Their Effects on Mechanical Properties
by Xiaowei Lei, Yang Xu, Peng Jiang, Liyang Chen, Shujin Chen, Yifan Lv, Qi Gao and Xiaoru Zhuo
Coatings 2026, 16(1), 78; https://doi.org/10.3390/coatings16010078 - 9 Jan 2026
Viewed by 261
Abstract
Friction stir welding (FSW) was employed to achieve a reliable joining of 2 mm thick dissimilar metals, 6061 aluminum alloy and AZ31B magnesium alloy. This study revealed the evolution of interfacial interlocking features and their impact on the mechanical properties of the joints [...] Read more.
Friction stir welding (FSW) was employed to achieve a reliable joining of 2 mm thick dissimilar metals, 6061 aluminum alloy and AZ31B magnesium alloy. This study revealed the evolution of interfacial interlocking features and their impact on the mechanical properties of the joints under different welding speeds (25–35 mm/min). The results indicate that the Al/Mg FSW joint interface exhibits a strip-like interlaced structure, the morphological characteristics of which are closely related to the welding speed. For quantitative analysis, the ratio of interlocking length to plate thickness (embedding ratio) was used as a quantitative indicator of the structural interlocking feature. As the welding speed increased from 25 mm/min to 35 mm/min, the embedding ratio decreased from 13.2 to 7.9, and the average thickness of the intermetallic compound (IMC) layer decreased from 2.71 μm to 2.19 μm. Transmission Electron Microscopy (TEM) results confirmed that the Al/Mg FSW joint interface consists of a bilayer of IMCs, specifically Al3Mg2 and Al12Mg17, with thicknesses of 220 nm and 470 nm, respectively. Tensile testing of joints with different embedding ratios demonstrated that the tensile strength of the welded joint exhibits a positive correlation with the embedding ratio, reaching a maximum of 178 MPa. Full article
Show Figures

Figure 1

15 pages, 9644 KB  
Article
Microstructure and Texture Evolution of Friction-Stir-Welded AA5052 and AA6061 Aluminum Alloys
by Luqman Hakim Ahmad Shah, Amirali Shamsolhodaei, Scott Walbridge and Adrian Gerlich
Metals 2026, 16(1), 73; https://doi.org/10.3390/met16010073 - 8 Jan 2026
Viewed by 207
Abstract
This study examines the through-thickness microstructure and crystallographic texture evolution in friction-stir-welded (FSWed) AA5052-H32 and AA6061-T651 aluminum alloys using a tri-flats threaded pin tool. Optical microscopy and electron backscatter diffraction (EBSD) were employed to characterize grain morphology, boundary misorientation, and texture components across [...] Read more.
This study examines the through-thickness microstructure and crystallographic texture evolution in friction-stir-welded (FSWed) AA5052-H32 and AA6061-T651 aluminum alloys using a tri-flats threaded pin tool. Optical microscopy and electron backscatter diffraction (EBSD) were employed to characterize grain morphology, boundary misorientation, and texture components across the weld thickness. Both alloys exhibited progressive grain refinement and increased high-angle grain boundary fractions from the top to the bottom of the stir zone due to combined thermal and strain gradients. The FSWed AA5052 displayed dominant {111}<110> and Y + γ fiber components at the upper and mid regions, whereas AA6061 showed more randomized textures. At the bottom region, both alloys developed rotated Goss {011}<01-1> and weak A ({112}<110>) and α fiber components. These results clarify how alloy strengthening mechanisms—solid-solution versus precipitation hardening—govern texture evolution under different strain-path and heat input conditions. The findings contribute to optimizing process parameters and material selection for structural-scale FSW aluminum joints in industrial applications such as bridge decks, transportation panels, and marine structures. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

14 pages, 11501 KB  
Article
The Microstructure and Mechanical Properties of a Dissimilar Rotary Friction Welded TC4 Titanium Alloy to 304SS Stainless Steel with Inconel 718 Alloy Interlayer
by Rui Tang and Chunquan Li
Processes 2026, 14(2), 183; https://doi.org/10.3390/pr14020183 - 6 Jan 2026
Viewed by 204
Abstract
This study investigates the microstructure and mechanical properties of a dissimilar joint formed by rotary friction welding, which joins TC4 titanium alloy to 304 stainless steel using an Inconel 718 interlayer. The welding parameters were as follows: a friction time of 9 s, [...] Read more.
This study investigates the microstructure and mechanical properties of a dissimilar joint formed by rotary friction welding, which joins TC4 titanium alloy to 304 stainless steel using an Inconel 718 interlayer. The welding parameters were as follows: a friction time of 9 s, a friction pressure of 160 MPa, an upset time of 2 s, a forging pressure of 250 MPa, and a rotational speed of 1400 rpm. Microstructural analysis revealed the formation of intermetallic compounds (IMCs), including Fe2Ti, Ni3Ti, NiCrFe, FeNi3, Ti2Ni, and FeNi, at the TC4/Inconel 718 interface, while Ni3Ti and FeNi3 IMCs were identified at the Inconel 718/304SS interface. The tensile tests demonstrated that the joint with the Inconel 718 interlayer (TC4/Inconel 718/304SS) achieved an ultimate tensile strength (UTS) of 717.73 MPa and an elongation of 13.05%. In contrast, the direct joint without the interlayer (TC4/304SS) exhibited a lower UTS of 631.58 MPa and a reduced elongation of 7.39%. Therefore, the introduction of the Inconel 718 interlayer significantly improved joint quality, increasing tensile strength by 13.64% and elongation by 76.59%. More importantly, the interlayer effectively inhibited the formation of brittle Ti-Fe intermetallic compounds, which are typically detrimental to joint performance. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

12 pages, 4985 KB  
Article
Characterization of Ti/Cu Dissimilar Metal Butt-Welded by the Cold Welding Process
by Yunyi Xiao, Fei Liu and Nuo Chen
Materials 2026, 19(1), 197; https://doi.org/10.3390/ma19010197 - 5 Jan 2026
Viewed by 271
Abstract
Titanium alloys and copper have broad applications in aerospace, defense, and industry, but their dissimilar welding faces challenges from significant physicochemical differences and easy formation of brittle Ti-Cu intermetallic compounds, while existing methods like laser welding or friction stir welding have limitations, such [...] Read more.
Titanium alloys and copper have broad applications in aerospace, defense, and industry, but their dissimilar welding faces challenges from significant physicochemical differences and easy formation of brittle Ti-Cu intermetallic compounds, while existing methods like laser welding or friction stir welding have limitations, such as low strength or inability to weld ultra-thin plates. This study adopted cold welding to join Ti-6.5Al-1Mo-1V-2Zr alloy and 99.90% pure copper. The mechanical properties of the joint were tested, the microstructure and fracture of the weld were observed, and the phase composition of the weld was analyzed. The results show that the weld fusion zone mainly consists of Cu-based solid solution and Cu3Ti. Low cold welding heat input reduces the Cu3Ti content, so the joint mechanical properties do not decrease significantly. The tensile strength of the joint reaches 284 MPa, which is 83% of that of copper-based metals, and the elongation rate reaches 6.25%. Diffusion kinetics and solidification thermodynamics analyses confirm that Cu3Ti intermetallic compounds are preferentially generated in the weld seam. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

28 pages, 1849 KB  
Article
A Robot Welding Clamp Force Control Method Based on Dual-Loop Adaptive RBF Neural Network
by Yanhong Wang, Qiu Tang, Xincheng Tian and Yan Liu
Appl. Sci. 2026, 16(1), 478; https://doi.org/10.3390/app16010478 - 2 Jan 2026
Viewed by 293
Abstract
As the core component in intelligent manufacturing systems, the precise control of the welding clamp’s electrode pressure plays a decisive role in ensuring the quality of spot welding. This paper proposes a novel pressure control strategy for robotic welding clamp based on partitioned [...] Read more.
As the core component in intelligent manufacturing systems, the precise control of the welding clamp’s electrode pressure plays a decisive role in ensuring the quality of spot welding. This paper proposes a novel pressure control strategy for robotic welding clamp based on partitioned adaptive RBF neural networks: (1) Deformation of the clamp body can lead to deviations in workpiece positioning. To address this issue, a deflection compensation method for robot welding clamp based on the PSO-RBF neural network is proposed. By leveraging pre-calibrated empirical data, the intrinsic mapping relationships are identified, and the derived deflection compensation value is integrated into the real-time position command of the robot end-effector. (2) During electrode motion, the system is subjected to external disturbances such as friction and gravitational forces. So, a sliding mode control strategy incorporating adaptive RBF disturbance compensation is proposed to achieve robust speed regulation. Furthermore, the electrode’s reference velocity is dynamically adjusted based on the welding force error and improved admittance control algorithm, enabling indirect regulation of the welding force to reach the desired set value. The results demonstrate that the proposed composite control strategy reduces electrode pressure overshoot to less than 5% and enhances steady-state control accuracy to ±1.5%. Full article
Show Figures

Figure 1

12 pages, 4951 KB  
Article
A Novel Approach to Friction Extrusion of Aluminum Alloy 2024
by Alexander Eliseev and Olga Novitskaya
Alloys 2026, 5(1), 2; https://doi.org/10.3390/alloys5010002 - 1 Jan 2026
Viewed by 217
Abstract
Friction extrusion technology was first developed and patented in 1991 at The Welding Institute, but it remained largely unexplored for many years. Over the past decade, this technology has gained popularity due to its ability to recycle chips and produce composite materials. Typically, [...] Read more.
Friction extrusion technology was first developed and patented in 1991 at The Welding Institute, but it remained largely unexplored for many years. Over the past decade, this technology has gained popularity due to its ability to recycle chips and produce composite materials. Typically, in friction extrusion, the applied force and extrusion direction are opposite; this configuration is commonly referred to as reverse extrusion. Additionally, the tool feed rate is often used as a control parameter. However, this approach introduces technological challenges and results in a heterogeneous product structure. This paper proposes a novel friction extrusion method in which the applied force and extrusion direction are co-directional, and no tool is used. Moreover, a constant load is maintained throughout the extrusion process. Experimental results demonstrate that the proposed scheme is feasible and enables wire extrusion without macroscopic defects. Although the current efficiency is low and the maximum sample size achieved is 45 mm, the cross-sectional microhardness of the samples remains stable. The material strength reached approximately 90% of that of the initial 2024 aluminum alloy. Full article
Show Figures

Figure 1

25 pages, 6890 KB  
Article
Development of Oleic Acid-Assisted Nanolubricants from Palm Kernel Oil for Boundary Lubrication Performance Under Extreme Pressure
by Aiman Yahaya, Syahrullail Samion, Zulhanafi Paiman, Nurul Farhanah Azman and Shunpei Kamitani
Lubricants 2026, 14(1), 17; https://doi.org/10.3390/lubricants14010017 - 30 Dec 2025
Viewed by 390
Abstract
The stability of nanolubricants is critical for ensuring effective performance under extreme pressure (EP) conditions, where severe boundary lubrication governs friction and wear behaviour. This study examines palm kernel oil (PKO)-based nanolubricants enhanced with carbon graphene (CG), hexagonal boron nitride (hBN), and molybdenum [...] Read more.
The stability of nanolubricants is critical for ensuring effective performance under extreme pressure (EP) conditions, where severe boundary lubrication governs friction and wear behaviour. This study examines palm kernel oil (PKO)-based nanolubricants enhanced with carbon graphene (CG), hexagonal boron nitride (hBN), and molybdenum disulfide (MoS2), with and without oleic acid (OA) as a surfactant. OA incorporation improved CG dispersion stability, reducing agglomerate size by 30.4% (17.61 μm to 12.23 μm) and increasing the viscosity index from ~176 to 188, compared to 152 for the commercial hydrogen engine oil baseline. Under EP conditions, PKO + CG + OA achieved a 51.7% reduction in the coefficient of friction (0.58 to 0.28) and 18.2% improvement in weld load resistance, while wear scar diameter decreased by 13.4%. Surface and elemental analyses indicated the formation of a composite tribofilm containing oxide species, graphene platelets, and carboxylate-derived compounds from OA, consistent with iron–oleate-like chemistry that enhances load-carrying capacity and wear protection. These findings demonstrate the potential of OA-assisted PKO nanolubricants as sustainable, high-performance formulations for extreme pressure boundary lubrication, contributing to the advancement of green tribology. Full article
(This article belongs to the Special Issue Tribological Impacts of Sustainable Fuels in Mobility Systems)
Show Figures

Figure 1

22 pages, 12895 KB  
Article
The Role of Rotational Tool Speed in the Joint Performance of AA2024-T4 Friction Stir Spot Welds at a Short 3-Second Dwell Time
by Yousef G. Y. Elshaghoul, Mahmoud F. Y. Shalaby, Mohamed M. El-Sayed Seleman, Ahmed Elkelity, Hagar A. Reyad and Sabbah Ataya
Crystals 2025, 15(12), 1054; https://doi.org/10.3390/cryst15121054 - 12 Dec 2025
Viewed by 348
Abstract
This study explores Friction Stir Spot Welding (FSSW), a well-established solid-state joining technique, for high-strength aluminum alloys like AA2024-T4, which present significant challenges for conventional welding techniques. This research focuses on the impact of relatively low rotational speeds, specifically within a range of [...] Read more.
This study explores Friction Stir Spot Welding (FSSW), a well-established solid-state joining technique, for high-strength aluminum alloys like AA2024-T4, which present significant challenges for conventional welding techniques. This research focuses on the impact of relatively low rotational speeds, specifically within a range of 700 to 1300 rpm, on the mechanical and microstructural properties of the welded joints. By employing a short dwell time of 3 s, this study aims to enhance productivity in the automotive and aerospace industries. The experimental work evaluated the joints’ thermal cycles, macrostructure, microstructure, hardness and load-carrying capacity. Results indicated a linear relationship between rotational speed and heat input. Although all welds exhibited a significant grain size reduction in the stir zone (SZ) compared to the base material (29.7 ± 6.1 μm), the SZ grain size increased with rotational speed, ranging from 4.7 ± 1.4 to 8.3 ± 1.3 μm. This study identified 900 rpm as the optimal parameter, achieving the highest load-carrying capacity (7.35 ± 0.4 kN) and a high SZ hardness (99 ± 1.5 HV). These findings confirm that joint strength is a balance between grain refinement and thermal softening. The presence of precipitates and the fractography of the tensile–shear tested specimens were also investigated and discussed. Full article
(This article belongs to the Special Issue Development of Light Alloys and Their Applications)
Show Figures

Figure 1

Back to TopTop