Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = freshwater anomaly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9529 KiB  
Article
Geochemistry and Geochronology of the Late Permian Linxi Formation in the Songliao Basin, China: Tectonic Implications for the Paleo-Asian Ocean
by Xin Huang, Haihua Zhang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen, Shuwang Chen and Yuejuan Zheng
Minerals 2025, 15(8), 784; https://doi.org/10.3390/min15080784 - 25 Jul 2025
Viewed by 136
Abstract
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao [...] Read more.
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao Basin, which provides key insights into the tectonic development of this region. Zircon U–Pb dating of tuff samples from the Linxi Formation provides an accurate age of 251.1 ± 1.1 Ma, corresponding to the late Permian. Geochemical analyses show that the clastic rocks are rich in SiO2 (63.5%) and Al2O3 (13.7%), with lower K2O/Na2O ratios (0.01–1.55), suggesting low compositional maturity. Additionally, the trace element data reveal enrichment in light rare earth elements (LREEs) and depletion in Nb, Sr, and Ta, with a negative Eu anomaly, which indicates a felsic volcanic arc origin. The Chemical Index of Alteration (CIA) values (53.2–65.8) reflect weak chemical weathering, consistent with cold and dry paleo-climatic conditions. These findings suggest that the Linxi Formation clastic rocks are derived from felsic volcanic arcs in an active continental margin environment, linked to the subduction of the Paleo-Asian Ocean slab. The sedimentary conditions reflect a gradual transition from brackish to freshwater environments, corresponding with the final stages of subduction or the onset of orogeny. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

18 pages, 3611 KiB  
Article
Using Landsat 8/9 Thermal Bands to Detect Potential Submarine Groundwater Discharge (SGD) Sites in the Mediterranean in North West-Central Morocco
by Youssef Bernichi, Mina Amharref, Abdes-Samed Bernoussi and Pierre-Louis Frison
Hydrology 2025, 12(6), 144; https://doi.org/10.3390/hydrology12060144 - 10 Jun 2025
Viewed by 1049
Abstract
The objective of this study is to detect the locations of submarine groundwater discharge (SGD) in the coastal area of the El Jebha region, located in northwestern Morocco. It is hypothesized that this zone is fed by one of the most rain-rich karstic [...] Read more.
The objective of this study is to detect the locations of submarine groundwater discharge (SGD) in the coastal area of the El Jebha region, located in northwestern Morocco. It is hypothesized that this zone is fed by one of the most rain-rich karstic aquifers in Morocco (the Dorsale Calcaire). The region’s geology is complex, characterized by multiple faults and fractures. Thermal remote sensing is used in this study to locate potential SGD zones, as groundwater emerging from karst systems is typically cooler than surrounding ocean water. Landsat satellite imagery was used to assess temperature variations and detect anomalies associated with the presence of freshwater in the marine environment. El Jebha’s geographical location, with a direct interface between limestone and sea, makes it an ideal site for the appearance of submarine groundwater discharges. This study constitutes the first use of Landsat-8/9 thermal-infrared imagery, processed with a multi-temporal fuzzy-overlay method, to detect SGD. Out of 107 Landsat scenes reviewed, 16 cloud-free images were selected. The workflow identified 18 persistent cold anomalies, of which three were classified as high-probability SGD zones based on recurrence and spatial consistency. The results highlight several potential SGD zones, confirming the cost-effectiveness of thermal remote sensing in mapping thermal anomalies and opening up new perspectives for the study of SGD in Morocco, where these phenomena remain rarely documented. Full article
(This article belongs to the Topic Karst Environment and Global Change)
Show Figures

Figure 1

17 pages, 4325 KiB  
Article
Geochemical Characteristics of the Minghuazhen Formation in the Cangdong Sag, Bohai Bay Basin: Implications for Provenance, Paleoclimate, and Hydrocarbon Exploration
by Jianzhou Yang, Yong Li, Jingjing Gong, Zhuang Duan, Shuqi Hu, Liling Tang, Wenli Su, Jianweng Gao, Zhenliang Wang, Lujun Lin, Keqiang Zhao and Shengping Gong
Sustainability 2025, 17(12), 5293; https://doi.org/10.3390/su17125293 - 8 Jun 2025
Viewed by 496
Abstract
The Minghuazhen Formation in the Cangdong Sag of the Bohai Bay Basin is a key sedimentary unit for investigating regional provenance evolution, paleoclimate variations, and hydrocarbon potential in Eastern China. This study integrates mineralogical and geochemical analyses to explore sedimentary characteristics. Techniques include [...] Read more.
The Minghuazhen Formation in the Cangdong Sag of the Bohai Bay Basin is a key sedimentary unit for investigating regional provenance evolution, paleoclimate variations, and hydrocarbon potential in Eastern China. This study integrates mineralogical and geochemical analyses to explore sedimentary characteristics. Techniques include X-ray diffraction (XRD), major/trace element compositions, rare earth element (REE) distributions, and organic carbon content. XRD data and elemental ratios (e.g., Al/Ti, Zr/Sc) suggest a predominant felsic provenance, sourced from acidic magmatic rocks. The enrichment with light rare earth elements (LREE: La–Eu) and notable negative Eu anomalies in the REE patterns support the interpretation of a provenance from the Taihangshan and Yanshan Orogenic Belts. Geochemical proxies, such as the Chemical Index of Alteration (CIA) and trace element ratios (e.g., U/Th, V/Cr, Ni/Co), indicate a warm and humid depositional environment, characterized by predominantly oxic freshwater conditions. Organic geochemical parameters, including total organic carbon (TOC), total nitrogen (TN), and C/N ratios, suggest that organic matter primarily originates from aquatic algae and plankton, with C/N values predominantly below 10 and a strong correlation between TOC and TN. The weak correlation between TOC and total carbon (TC) indicates that the organic carbon is mainly biological in origin rather than carbonate-derived. Although the warm and humid climate promoted the production of organic matter, the prevailing oxic conditions hindered its preservation, resulting in a relatively low hydrocarbon generation potential within the Minghuazhen Formation of the Cangdong Sag. These findings provide new insights into the sedimentary evolution and hydrocarbon potential of the Bohai Bay Basin. Full article
Show Figures

Figure 1

18 pages, 6846 KiB  
Article
Satellite-Observed Arid Vegetation Greening and Terrestrial Water Storage Decline in the Hexi Corridor, Northwest China
by Chunyan Cao, Xiaoyu Zhu, Kedi Liu, Yu Liang and Xuanlong Ma
Remote Sens. 2025, 17(8), 1361; https://doi.org/10.3390/rs17081361 - 11 Apr 2025
Cited by 2 | Viewed by 783
Abstract
The interplay between terrestrial water storage and vegetation dynamics in arid regions is critical for understanding ecohydrological responses to climate change and human activities. This study examines the coupling between total water storage anomaly (TWSA) and vegetation greenness changes in the Hexi Corridor, [...] Read more.
The interplay between terrestrial water storage and vegetation dynamics in arid regions is critical for understanding ecohydrological responses to climate change and human activities. This study examines the coupling between total water storage anomaly (TWSA) and vegetation greenness changes in the Hexi Corridor, an arid region in northwestern China consisting of three inland river basins—Shule, Heihe, and Shiyang—from 2002 to 2022. Utilizing TWSA data from GRACE/GRACE-FO satellites and MODIS Enhanced Vegetation Index (EVI) data, we applied a trend analysis and partial correlation statistical techniques to assess spatiotemporal patterns and their drivers across varying aridity gradients and land cover types. The results reveal a significant decline in TWSA across the Hexi Corridor (−0.10 cm/year, p < 0.01), despite a modest increase in precipitation (1.69 mm/year, p = 0.114). The spatial analysis shows that TWSA deficits are most pronounced in the northern Shiyang Basin (−600 to −300 cm cumulative TWSA), while the southern Qilian Mountain regions exhibit accumulation (0 to 800 cm). Vegetation greening is strongest in irrigated croplands, particularly in arid and hyper-arid regions of the study area. The partial correlation analysis highlights distinct drivers: in the wetter semi-humid and semi-arid regions, precipitation plays a dominant role in driving TWSA trends. Such a rainfall dominance gives way to temperature- and human-dominated vegetation greening in the arid and hyper-arid regions. The decoupling of TWSA and precipitation highlights the importance of human irrigation activities and the warming-induced atmospheric water demand in co-driving the TWSA dynamics in arid regions. These findings suggest that while irrigation expansion cause satellite-observed greening, it exacerbates water stress through increased evapotranspiration and groundwater depletion, particularly in most water-limited arid zones. This study reveals the complex ecohydrological dynamics in drylands, emphasizing the need for a holistic view of dryland greening in the context of global warming, the escalating human demand of freshwater resources, and the efforts in achieving sustainable development. Full article
Show Figures

Figure 1

21 pages, 12314 KiB  
Article
Modeling and Validating Saltwater Intrusion Dynamics by Self-Potential: A Laboratory Perspective
by Meryem Fanidi, Yi-An Cui, Jing Xie, Ahmed Abdelreheem Khalil and Syed Muzyan Shahzad
Water 2025, 17(7), 941; https://doi.org/10.3390/w17070941 - 24 Mar 2025
Viewed by 670
Abstract
Saltwater intrusion (SWI) in coastal aquifers poses a significant threat to freshwater resources, exacerbated by climate change and rising sea levels. This study investigates SWI dynamics using laboratory experiments, geophysical monitoring with the self-potential (SP) method, and numerical simulations to assess the impact [...] Read more.
Saltwater intrusion (SWI) in coastal aquifers poses a significant threat to freshwater resources, exacerbated by climate change and rising sea levels. This study investigates SWI dynamics using laboratory experiments, geophysical monitoring with the self-potential (SP) method, and numerical simulations to assess the impact of varying salt concentrations (7 g/L and 35 g/L) on intrusion rates and electrochemical responses. Laboratory experiments were conducted in a custom-designed sandbox model, with SP data collected in real time using a 192-electrode system. Numerical simulations were performed to replicate experimental conditions and validate the model’s predictions. Results show that salt concentration significantly influences intrusion rates and SP responses. In low-salinity systems (7 g/L), SP values increased gradually from 0 mV to 20 mV, with a slow intrusion rate of 0.034 m/h. In contrast, moderate-salinity systems (35 g/L) exhibited rapid SP changes (0 mV to 5 mV) and a faster intrusion rate of 0.1 m/h. Sharp SP anomalies near the intrusion source, with values dropping from 10 mV to −40 mV, were observed in low-salinity systems, highlighting localized charge imbalances. The model’s performance was evaluated using relative RMSE, showing a good fit in Experiment (1) (RMSE = 5.00%) and acceptable results for Experiment (2) (RMSE = 23.45%). These findings demonstrate the potential of the SP method for real-time monitoring of SWI and provide insights for improving management strategies in coastal aquifers. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

16 pages, 8319 KiB  
Article
Liver Lesions in Estuarine Dolphins in the Indian River Lagoon, Florida: Does Microcystin Play a Role?
by Ami Krasner, Wendy Noke Durden, Megan Stolen, Teresa Jablonski, Agatha Fabry, Annie Page, Wendy Marks, Cecilia Costa, H. C. D. Marley and Spencer Fire
Toxics 2024, 12(12), 858; https://doi.org/10.3390/toxics12120858 - 27 Nov 2024
Cited by 1 | Viewed by 1319
Abstract
Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC [...] Read more.
Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC exposure along the IRL include an increased risk of non-alcoholic liver disease among area residents. Yet, there are limited studies characterizing liver disease, as well as the potential role of MC, in humans and animals in this region. Thus, histopathology reports (n = 133) were reviewed in the stranded common bottlenose dolphin (Tursiops truncatus truncatus) (n = 156, 2005–2024) to describe liver lesions in this important IRL sentinel. Liver and fecal samples (n = 161) from stranded individuals were screened for MC via an enzyme immunoassay (ELISA). These samples were then confirmed via the 2-methyl-3-methoxy-4-phenylbutyric acid technique (MMPB) to evaluate whether liver histopathologic lesions were linked to MC exposure. Minimally invasive MC screening methods were also assessed using respiratory swabs and vapor. Inflammation (24%, n = 32), fibrosis (23%, n = 31), lipidosis/vacuolation (11%, n = 15), and necrosis (11%, n = 14) were the most common liver anomalies observed. These non-specific lesions have been reported to be associated with MC exposure in numerous species in the peer-reviewed literature. Ten bottlenose dolphins tested positive for the toxin via ELISA, including two individuals with hepatic lipidosis, but none were confirmed by MMPB. Thus, this study did not provide evidence for MC-induced liver disease in IRL bottlenose dolphins. Other causes should be considered for the lesions observed (e.g., heavy metals, metabolic disease, and endoparasites). Respiratory swabs require further validation as a pre-mortem MC screening tool in free-ranging wildlife. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

24 pages, 11567 KiB  
Article
Estimation of Freshwater Discharge from the Gulf of Alaska Drainage Basins
by Peng Xin, Muqing Shi, Humio Mitsudera and Takayuki Shiraiwa
Water 2024, 16(18), 2690; https://doi.org/10.3390/w16182690 - 21 Sep 2024
Viewed by 1387
Abstract
The freshwater discharge from catchments along the Gulf of Alaska, termed Alaska discharge, is characterized by significant quantity and variability. Owing to subarctic climate and mountainous topography, the Alaska discharge variations may deliver possible impacts beyond the local hydrology. While short-term and local [...] Read more.
The freshwater discharge from catchments along the Gulf of Alaska, termed Alaska discharge, is characterized by significant quantity and variability. Owing to subarctic climate and mountainous topography, the Alaska discharge variations may deliver possible impacts beyond the local hydrology. While short-term and local discharge estimation has been frequently realized, a longer time span and a discussion on cascading impacts remain unexplored in this area. In this study, the Alaska discharge during 1982–2022 is estimated using the Soil and Water Assessment Tool (SWAT). The adequate balance between the model complexity and the functional efficiency of SWAT suits the objective well, and discharge simulation is successfully conducted after customization in melting calculations and careful calibrations. During 1982−2022, the Alaska discharge is estimated to be 14,396 ± 819 m3⋅s−1⋅yr−1, with meltwater contributing approximately 53%. Regarding variation in the Alaska discharge, the interannual change is found to be negatively correlated with sea surface salinity anomalies in the Alaska Stream, while the decadal change positively correlates with the North Pacific Gyre Oscillation, with reasonable time lags in both cases. These new findings provide insights into the relationship between local hydrology and regional climate in this area. More importantly, we provide rare evidence that variation in freshwater discharge may affect properties beyond the local hydrology. Full article
(This article belongs to the Special Issue Advances in Coastal Hydrological and Geological Processes)
Show Figures

Figure 1

25 pages, 25188 KiB  
Article
Biomonitoring of Heavy Metal Toxicity in Freshwater Canals in Egypt Using Creeping Water Bugs (Ilyocoris cimicoides): Oxidative Stress, Histopathological, and Ultrastructural Investigations
by Lamia M. El-Samad, Esraa A. Arafat, Ola Mohamed Nour, Nessrin Kheirallah, Mohammed E. Gad, Mohamed Hagar, Zeinab A. El-Moaty and Mohamed A. Hassan
Antioxidants 2024, 13(9), 1039; https://doi.org/10.3390/antiox13091039 - 27 Aug 2024
Cited by 5 | Viewed by 2287
Abstract
The abundance of metal pollutants in freshwater habitats poses serious threats to the survival and biodiversity of aquatic organisms and human beings. This study intends for the first time to assess the pernicious influences of heavy metals in Al Marioteya canal freshwater in [...] Read more.
The abundance of metal pollutants in freshwater habitats poses serious threats to the survival and biodiversity of aquatic organisms and human beings. This study intends for the first time to assess the pernicious influences of heavy metals in Al Marioteya canal freshwater in Egypt, compared to Al Mansoureya canal as a reference site utilizing the creeping water bug (Ilyocoris cimicoides) as an ecotoxicological model. The elemental analysis of the water showed a significantly higher incidence of heavy metals, including cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni), and lead (Pb), in addition to the calcium (Ca) element than the World Health Organization’s (WHO) permitted levels. The Ca element was measured in the water samples to determine whether exposure to heavy metals-induced oxidative stress engendered Ca deregulation in the midgut tissues of the creeping water bug. Remarkably, increased levels of these heavy metals were linked to an increase in chemical oxygen demand (COD) at the polluted site. Notably, the accumulation of these heavy metals in the midgut tissues resulted in a substantial reduction in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and ascorbate peroxidase (APOX), along with a marked rise in malondialdehyde (MDA), cytochrome P450, and protein carbonyl levels. These results clearly indicate a noticeable disturbance in the antioxidant defense system due to uncontrollable reactive oxygen species (ROS). Notably, the results demonstrated that oxidative stress caused disturbances in Ca levels in the midgut tissue of I. cimicoides from polluted sites. Furthermore, the comet and flow cytometry analyses showed considerable proliferations of comet cells and apoptotic cells in midgut tissues, respectively, exhibiting prominent correlations, with pathophysiological deregulation. Interestingly, histopathological and ultrastructural examinations exposed noticeable anomalies in the midgut, Malpighian tubules, and ovarioles of I. cimicoides, emphasizing our findings. Overall, our findings emphasize the potential use of I. cimicoides as a bioindicator of heavy metal pollution in freshwater to improve sustainable water management in Egypt. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

20 pages, 12936 KiB  
Article
Dynamic Changes and Influencing Factors Analysis of Groundwater Icings in the Permafrost Region in Central Sakha (Yakutia) Republic under Modern Climatic Conditions
by Miao Yu, Nadezhda Pavlova, Jing Zhao and Changlei Dai
Atmosphere 2024, 15(9), 1022; https://doi.org/10.3390/atmos15091022 - 23 Aug 2024
Viewed by 1117
Abstract
In central Sakha (Yakutia) Republic, groundwater icings, primarily formed by intrapermafrost water, are less prone to contamination and serve as a stable freshwater resource. The periodic growth of icings threatens infrastructure such as roads, railways, and bridges in permafrost areas. Therefore, research in [...] Read more.
In central Sakha (Yakutia) Republic, groundwater icings, primarily formed by intrapermafrost water, are less prone to contamination and serve as a stable freshwater resource. The periodic growth of icings threatens infrastructure such as roads, railways, and bridges in permafrost areas. Therefore, research in this field has become urgently necessary. This study aims to analyze the impacts of various factors on the scale of icing formation using Landsat satellite data, Gravity Recovery and Climate Experiment (GRACE)/GRACE Follow-On (GRACE-FO) data, Global Land Data Assimilation System (GLDAS) data, and field observation results. The results showed that the surface area of icings in the study area showed an overall increasing trend from 2002 to 2022, with an average growth rate of 0.06 km2/year. Suprapermafrost water and intrapermafrost water are the main sources of icings in the study area. The total Groundwater Storage Anomaly (GWSA) values from October to April showed a strong correlation with the maximum icing areas. Icings fed by suprapermafrost water were influenced by precipitation in early autumn, while those fed by intrapermafrost water were more affected by talik size and distribution. Climate warming contributed to the degradation of the continuous permafrost covering an area of 166 km2 to discontinuous permafrost, releasing additional groundwater. This may also be one of the reasons for the observed increasing trend in icing areas. This study can provide valuable insights into water resource management and infrastructure construction in permafrost regions. Full article
Show Figures

Figure 1

22 pages, 3806 KiB  
Article
Effects of Climate Events on the Trophic Status of an Amazonian Estuary
by Marcela Cunha Monteiro, Luci Cajueiro Carneiro Perreira and Rauquírio Marinho da Costa
Limnol. Rev. 2024, 24(3), 313-334; https://doi.org/10.3390/limnolrev24030019 - 14 Aug 2024
Cited by 1 | Viewed by 1284
Abstract
In recent years, climate events such as Drought, El Niño, and La Niña have become increasingly frequent and more intense. Oceanographic monitoring was used to collect hydrological data in the middle and lower sectors of the Caeté estuary in different years. Negative rainfall [...] Read more.
In recent years, climate events such as Drought, El Niño, and La Niña have become increasingly frequent and more intense. Oceanographic monitoring was used to collect hydrological data in the middle and lower sectors of the Caeté estuary in different years. Negative rainfall anomalies of up to 45% were recorded during periods marked by drought and El Niño events, which make the water in the Caeté estuary more saline and alkaline. During these events, the retention of dissolved inorganic nutrients in the middle sector appears to support increased eutrophication and more productive waters, whereas moderate eutrophication and lower productivity were observed in the lower sector. During La Niña events, by contrast, positive rainfall anomalies may reach 60%, resulting in more oxygenated water in the estuary. In addition, the lower sector tends to be more eutrophic during periods of high rainfall and freshwater discharge, as observed in this study during a La Niña event. The paucity of data on the effects of extreme climate events in Amazonian environments means that the findings of the present study may provide a useful model for the assessment of the effects of these events on other natural environments in the Amazon region. Full article
Show Figures

Figure 1

26 pages, 4670 KiB  
Article
Dynamic Real-Time Prediction of Reclaimed Water Volumes Using the Improved Transformer Model and Decomposition Integration Technology
by Xiangyu Sun, Lina Zhang, Chao Wang, Yiyang Yang and Hao Wang
Sustainability 2024, 16(15), 6598; https://doi.org/10.3390/su16156598 - 1 Aug 2024
Cited by 5 | Viewed by 1834
Abstract
In recent years, wastewater reuse has become crucial for addressing global freshwater scarcity and promoting sustainable water resource development. Accurate inflow volume predictions are essential for enhancing operational efficiency in water treatment facilities and effective wastewater utilization. Traditional and decomposition integration models often [...] Read more.
In recent years, wastewater reuse has become crucial for addressing global freshwater scarcity and promoting sustainable water resource development. Accurate inflow volume predictions are essential for enhancing operational efficiency in water treatment facilities and effective wastewater utilization. Traditional and decomposition integration models often struggle with non-stationary time series, particularly in peak and anomaly sensitivity. To address this challenge, a differential decomposition integration model based on real-time rolling forecasts has been developed. This model uses an initial prediction with a machine learning (ML) model, followed by differential decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). A Time-Aware Outlier-Sensitive Transformer (TS-Transformer) is then applied for integrated predictions. The ML-CEEMDAN-TSTF model demonstrated superior accuracy compared to basic ML models, decomposition integration models, and other Transformer-based models. This hybrid model explicitly incorporates time-scale differentiated information as a feature, improving the model’s adaptability to complex environmental data and predictive performance. The TS-Transformer was designed to make the model more sensitive to anomalies and peaks in time series, addressing issues such as anomalous data, uncertainty in water volume data, and suboptimal forecasting accuracy. The results indicated that: (1) the introduction of time-scale differentiated information significantly enhanced model accuracy; (2) ML-CEEMDAN-TSTF demonstrated higher accuracy compared to ML-CEEMDAN-Transformer; (3) the TS-Transformer-based decomposition integration model consistently outperformed those based on LSTM and eXtreme Gradient Boosting (XGBoost). Consequently, this research provides a precise and robust method for predicting reclaimed water volumes, which holds significant implications for research on clean water and water environment management. Full article
Show Figures

Figure 1

16 pages, 6197 KiB  
Article
Lake Surface Temperature Retrieval Study Based on Landsat 8 Satellite Imagery—A Case Study of Poyang Lake
by Xudong Kong, Yajun Li, Lingli Wang and Huijie Liu
Atmosphere 2024, 15(4), 428; https://doi.org/10.3390/atmos15040428 - 29 Mar 2024
Cited by 2 | Viewed by 1687
Abstract
Poyang Lake is the largest freshwater lake in China and forms an essential component of the hydrological, nutrient, and carbon cycles, providing various ecosystem services to the local environment. Since changes in Poyang Lake’s water temperature can significantly affect the surrounding environment and [...] Read more.
Poyang Lake is the largest freshwater lake in China and forms an essential component of the hydrological, nutrient, and carbon cycles, providing various ecosystem services to the local environment. Since changes in Poyang Lake’s water temperature can significantly affect the surrounding environment and social development, continuous monitoring of lake temperature changes is required. Traditional water monitoring methods are resource intensive and cannot simultaneously conduct extensive water monitoring. Remote sensing of temperature inversion has the advantages of all-weather, efficient, and large-scale real-time monitoring. Six Landsat 8 images from August to October in 2020 and 2021 were utilized to extract lake surface temperature (LST), and the variations in LST over the two years were analyzed to determine the impact of global climate anomalies on inland lakes. The results indicate that the LST in August and October 2021 was significantly higher than that in the same periods of the previous year, and the temperature difference in October reached 8 °C. In contrast to the overall normal distribution pattern of the water temperature in 2020, 2021 exhibited a relatively concentrated, unimodal distribution pattern. A trend analysis of the driving factors suggests that the LST of Poyang Lake is influenced by the global climate, and the artificial heat sources around the lake clearly alter the distribution characteristics of the LST simultaneously. Full article
Show Figures

Figure 1

18 pages, 9273 KiB  
Article
Effect of Benthic Flux on the Nutrient Dynamics of Bottom Water during Stratification in an Artificial Brackish Lake
by Yong-Hoon Jeong, Yong-Ho Choi and Dong-Heui Kwak
Water 2024, 16(7), 958; https://doi.org/10.3390/w16070958 - 26 Mar 2024
Viewed by 1477
Abstract
In semi-closed coastal brackish systems, the stratification of the water column due to the interaction between freshwater and seawater can lead to a reduction in the dissolved oxygen (DO) levels in the bottom layers, consequently affecting the benthic nutrient flux and causing the [...] Read more.
In semi-closed coastal brackish systems, the stratification of the water column due to the interaction between freshwater and seawater can lead to a reduction in the dissolved oxygen (DO) levels in the bottom layers, consequently affecting the benthic nutrient flux and causing the degradation in water quality. We performed in situ investigations using a benthic lander to examine changes in the sediment oxygen demand (SOD) and benthic nutrient flux during the development of stratification in the downstream area of an artificially constructed brackish lake. During each measurement period, the temperature and salinity of the water column showed vertically stable stratification. The potential energy anomaly was 88.1–125.7 J/m3, with the stratification intensity strengthening gradually over the measurement period. The concentration of DO in bottom waters gradually decreased as the stratification of the water intensified and the temperature increased, establishing hypoxic conditions. As the stratification intensified, the SOD decreased with the DO concentration in bottom waters, while the benthic fluxes of NH4-N and PO4-P exhibited an opposite effect. When the effect of offshore water (introduced through a sluice gate) was insignificant, the SOD contributed 33% of the net loss of DO below the pycnocline. During this period, the benthic NH4-N and PO4-P fluxes were estimated to contribute 55% and 87% to the net fluxes in NH4-N and PO4-P, respectively, in the water column below the pycnocline. The benthic NH4-N and PO4-P fluxes resulted in excess phosphorus in the bottom water. When the inflow of seawater through the sluice gate was sufficient, the flow in the upstream direction of the bottom layer moved phosphorus-rich bottom water downstream, which is important for algal growth in the middle-upstream region. Full article
(This article belongs to the Special Issue Internal Nutrient Cycling in Lakes and Reservoirs)
Show Figures

Figure 1

22 pages, 15310 KiB  
Article
The Applicability of the Drought Index and Analysis of Spatiotemporal Evolution Mechanisms of Drought in the Poyang Lake Basin
by Zihan Gui, Heshuai Qi, Faliang Gui, Baoxian Zheng, Shiwu Wang and Hua Bai
Water 2024, 16(5), 766; https://doi.org/10.3390/w16050766 - 4 Mar 2024
Cited by 2 | Viewed by 1830
Abstract
Poyang Lake, the largest freshwater lake in China, is an important regional water resource and a landmark ecosystem. In recent years, it has experienced a period of prolonged drought. Using appropriate drought indices to describe the drought characteristics of the Poyang Lake Basin [...] Read more.
Poyang Lake, the largest freshwater lake in China, is an important regional water resource and a landmark ecosystem. In recent years, it has experienced a period of prolonged drought. Using appropriate drought indices to describe the drought characteristics of the Poyang Lake Basin (PLB) is of great practical significance in the face of severe drought situations. This article explores the applicability of four drought indices (including the precipitation anomaly index (PJP), standardized precipitation index (SPI), China Z-index (CPZI), and standardized precipitation evapotranspiration index (SPEI)) based on historical facts. A systematic study was conducted on the spatiotemporal evolution patterns of meteorological drought in the PLB based on the optimal drought index. The results show that SPI is more suitable for the description of drought characteristics in the PLB. Meteorological droughts occur frequently in the summer and autumn in the PLB, with the frequency of mild drought being 17.29% and 16.88%, respectively. The impact range of severe drought or worse reached 22.19% and 28.33% of the entire basin, respectively. The probability of drought occurrence in the PLB shows an increasing trend in spring, while in most areas, it shows a decreasing trend in other seasons, with only a slight increase in the upper reaches of the Ganjiang River (UGR). One of the important factors influencing drought in the PLB is atmospheric circulation. The abnormal variation of the Western Pacific Subtropical High was one of the key factors contributing to the severe drought in the PLB in 2022. This study is based on a long-term series of meteorological data and selects the drought index for the PLB. It describes the spatiotemporal distribution characteristics and evolution patterns of drought and investigates the developmental path and influencing factors of drought in typical years. This study provides a reliable scientific basis for similar watershed water resource management. Full article
Show Figures

Figure 1

19 pages, 4675 KiB  
Article
Temporal and Spatial Variation Analysis of Groundwater Stocks in Xinjiang Based on GRACE Data
by Li Duan, Xi Chen, Lingjie Bu, Chaoliang Chen and Shiran Song
Remote Sens. 2024, 16(5), 813; https://doi.org/10.3390/rs16050813 - 26 Feb 2024
Cited by 4 | Viewed by 2149
Abstract
Situated in China’s arid and semi-arid zones, the Xinjiang region heavily relies on groundwater for its freshwater supply. This study utilizes data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, covering the years 2003 to 2021, to quantitatively evaluate the temporal [...] Read more.
Situated in China’s arid and semi-arid zones, the Xinjiang region heavily relies on groundwater for its freshwater supply. This study utilizes data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, covering the years 2003 to 2021, to quantitatively evaluate the temporal and spatial changes in groundwater storage anomalies (GWSA) in the Xinjiang region. Furthermore, we incorporate the HydroSHEDS dataset to examine the spatial variations in groundwater storage anomalies across watersheds of varying scales. Based on our findings, the GWSA decreased during the study period at a mean rate of −0.381 mm/month, marked by a consistent trend and notable interannual variability. In addition, significant regional disparities are observed; while groundwater storage in the southeastern watersheds is on an upward trend, a general decline is noted in the northern and central regions. The most pronounced depletion is detected in the northwest, especially in the Ili River basin and along the western slopes of the Tianshan Mountains. These changes are intricately linked to anthropogenic factors, including population growth and escalating water demands. In response, the study advocates for the development and enforcement of more rigorous and scientifically informed groundwater management strategies to promote sustainable water use in Xinjiang. Full article
Show Figures

Graphical abstract

Back to TopTop