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Abstract: Situated in China’s arid and semi-arid zones, the Xinjiang region heavily relies on ground-
water for its freshwater supply. This study utilizes data from the Gravity Recovery and Climate
Experiment (GRACE) satellite mission, covering the years 2003 to 2021, to quantitatively evaluate
the temporal and spatial changes in groundwater storage anomalies (GWSA) in the Xinjiang region.
Furthermore, we incorporate the HydroSHEDS dataset to examine the spatial variations in ground-
water storage anomalies across watersheds of varying scales. Based on our findings, the GWSA
decreased during the study period at a mean rate of −0.381 mm/month, marked by a consistent trend
and notable interannual variability. In addition, significant regional disparities are observed; while
groundwater storage in the southeastern watersheds is on an upward trend, a general decline is noted
in the northern and central regions. The most pronounced depletion is detected in the northwest,
especially in the Ili River basin and along the western slopes of the Tianshan Mountains. These
changes are intricately linked to anthropogenic factors, including population growth and escalating
water demands. In response, the study advocates for the development and enforcement of more
rigorous and scientifically informed groundwater management strategies to promote sustainable
water use in Xinjiang.

Keywords: GWSA; GRACE; basins; multiscale analysis; arid region; Xinjiang

1. Introduction

Groundwater resources, an integral part of the world’s freshwater reserves, play an
essential role not only in the home water supply, agricultural irrigation and industrial
production but also provide fundamental support for the ecological balance of rivers, lakes,
and wetlands [1,2]. Regrettably, the ongoing depletion of global groundwater reserves
has triggered a number of intricate hydrological and ecological consequences [3,4]. These
comprise, among other things, sea level rise, land subsidence, and an impairment in the
efficiency of industrial and agricultural production [5,6]. Research indicates that between
1960 and 2000, the annual global groundwater depletion rate escalated from 126 ± 32 cubic
kilometers to 283 ± 40 cubic kilometers [7]. It is particularly noteworthy that, as a major
developing country, China is experiencing a pronounced pressure on its groundwater
consumption [8,9]. China is among the world’s most populous nations, with a rapidly
growing economy and a huge demand for natural resources [10]. Groundwater plays a
significant role in China’s water resource system, particularly in the country’s northern dry
and semi-arid regions where it provides essential water for sustaining agricultural output
and societal subsistence [11,12]. Because it is an arid and semi-arid region in northwestern
China, the groundwater situation in the Xinjiang region is particularly critical; groundwater
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resources in Xinjiang have become a lifeline, sustaining local livelihoods and agricultural
demands, and are irreplaceable in ensuring regional ecological balance, agricultural stability,
and sustained economic development [13,14]. Given the special climatic conditions of the
region and the scarcity of water resources, managing groundwater resources efficiently and
protecting them is essential to attaining sustainable regional development. However, recent
studies reveal that, under the dual impact of climate change and unregulated extraction,
especially driven by agricultural irrigation needs and urbanization, Xinjiang’s groundwater
reserves are undergoing unprecedented challenges [15,16]. This trend not only poses a
serious threat to the ecosystems and livelihoods of the people living in the arid regions
of Xinjiang but may also lead to more serious ecological imbalances [17,18]. Against this
background, this study aims to answer two key questions through an in-depth study of
groundwater storage (GWS) in the Xinjiang region: first, what are the patterns of spatial
and temporal changes in groundwater storage in Xinjiang? Second, which socio-ecological
factors are the main drivers of these changes? This research will provide a scientific basis for
the precise management and effective protection of groundwater resources in the Xinjiang
region and help to address the challenges posed by groundwater resource depletion.

To accurately monitor and estimate the evolution of groundwater storage, numerous
explorations have been undertaken by researchers across generations. Scholars within
the academic domain have developed land surface hydrological models that capitalize
on the equilibrium of moisture and energy exchanges between the terrestrial surface and
the atmosphere [19]. However, the performance of these models is often limited by the
uncertainty of physical parameters, the influence of meteorological forcing factors (espe-
cially precipitation conditions), and inherent limitations in the models’ structure [20]. On
the other hand, considering the complex terrain and limited observational data, it is hard
to precisely capture the dynamics of groundwater storage solely on field observations,
particularly in the arid regions of northwest China [21]. With the successful launch of
the Gravity Recovery and Climate Experiment (GRACE) satellite in 2002, its capacity to
observe changes in the Earth’s gravitational field has made it a powerful tool for identi-
fying shifts in glaciers, groundwater, and other bodies of water [22–24]. The uniqueness
of the GRACE satellite lies in its real-time, wide-area, and continuous monitoring capa-
bilities, providing a unique perspective on groundwater storage anomalies (GWSA) and
demonstrating its extensive application value in global and regional hydrological cycle
monitoring [7]. The GRACE satellite mission concluded successfully in 2017, and its respon-
sibilities seamlessly transitioned to the GRACE Follow-On (GRACE-FO) satellite, launched
in 2018 [25]. GRACE-FO maintains the high precision characteristics of its predecessor,
continuing to play a pivotal role in the study of global hydrological cycles and climate
change. Researchers have employed GRACE satellite data to conduct in-depth analyses
of changes in China’s groundwater storage. For instance, in 2017, Yin et al. quantified the
GWS dynamics between 2003 and 2012 in six basins in Northern China, finding an average
GWS decline rate of about 0.17 cm/year, with five basins showing a downward trend [26].
In 2018, Feng et al. analyzed the spatial and temporal evolution of groundwater storage in
the North China Plain, Liao-he River Basin, and Tarim Basin of China by combining the
GRACE groundwater storage inversion results with groundwater hydrological modeling
and measured groundwater monitoring well data [27]. However, studies on groundwater
storage anomaly changes have often been limited to single, simplistic basin-scale analyses,
and a systematic understanding of multi-basin groundwater dynamics remains weak.

Employing a cross-scale, tiered-basin approach for spatial insight into GWSA changes
has proven to be forward-looking and insightful. By meticulously segmenting basins, this
method captures subtle spatial differences in GWSA at various levels, thereby revealing
the unique dynamics of water resources across different scales [28]. In this context, the
HydroSHEDS global watershed dataset, introduced by the World Wildlife Fund (WWF),
has provided indispensable data resources for such research [29]. This dataset characterizes
multi-scale features of multi-tiered watersheds using a unified standard and finely divides
sub-basins through the Pfafstetter topological coding system, demonstrating its broad
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applicability in multi-faceted analyses of geographical phenomena [30]. It has been widely
used in analyzing various geographic phenomena across multiple basin levels. In 2019,
Lin et al. quantified variations in groundwater in China’s Yellow River Basin and carried
out a spatiotemporal analysis to quantify the changes in groundwater storage at multiple
scales [31,32]. In 2023, Zhao et al. conducted an analysis of the multi-scale characteristics of
GWS trends across China, encompassing national, as well as second-, third-, and fifth-level
basins. This study revealed hotspots characterized by rapidly decreasing groundwater
storage [33].

This study aims to precisely elucidate and thoroughly explore the spatiotemporal
variability in groundwater storage in the Xinjiang region. To attain this objective, we
initially estimated the groundwater storage anomaly in the Xinjiang region, utilizing data
from GRACE satellite observations and the GLDAS model. Subsequently, we conducted a
time series analysis of GWSA data in this region and spatial variation in the annual average
GWSA data. Furthermore, utilizing the multitier HydroSHEDS watershed dataset, we
calculated the average change rate of GWSA in different level (third to sixth) basins in
Xinjiang from 2003 to 2021, clearly displaying the features of groundwater storage varia-
tions’ spatial distribution at each basin scale. Finally, for areas with significant reductions
in groundwater storage, we investigated the driving forces of various socio-ecological
factors on the sharp decline in groundwater storage anomalies and explored the potential
mechanisms behind the decrease in groundwater storage.

2. Materials and Methods
2.1. Study Area

Xinjiang, situated in northwestern China (as shown in Figure 1), covers an area
of approximately 1.66 million square kilometers and features a distinctive geographical
structure (as shown in Figure 2) often described as “two basins sandwiched between
three mountains”. This unique layout encompasses the Altai Mountains, the Tien Shan
Mountains, and the Kunlun Mountains, along with the expansive Tarim Basin and the
Junggar Basin [34]. The region is characterized by a predominantly arid continental climate.
In climatic terms, northern Xinjiang falls into the arid temperate zone, whereas southern
Xinjiang lies within the arid warm temperate zone [35]. The average annual temperatures
range from 4 to 8 ◦C in the north and 9 to 12 ◦C in the south [36]. Precipitation in Xinjiang is
generally scarce and unevenly distributed in both time and space, with mountainous areas
accounting for 84% of the total annual average precipitation in the whole of Xinjiang [37].
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Xinjiang’s water resource scenario, constrained by its arid climate and scant precipita-
tion, presents unique challenges. Despite a vast river network, the region suffers from a
scarcity of total water resources and a low water yield per unit area [38]. Water resources
are highly unevenly distributed both spatially and temporally, characterized by more in the
north than in the south, more in the west than in the east, and more in mountainous areas
than in plains. Despite the significant difference in their land areas, with northern Xinjiang
making up 28% and southern Xinjiang 72% of the total area, both regions remarkably
contribute an equal share, each accounting for 50% of the area’s annual runoff volume.
Additionally, Xinjiang experiences a significant seasonal variation in river flow, with about
70% of its annual volume occurring in summer [39].

2.2. Data

Four main types of data were used in this study. The first category of groundwater
data consists of GRACE satellite data and GLDAS model data, which are the basis for
estimating and analyzing GWSA changes. The second type of data is groundwater level
data obtained through groundwater level monitoring stations, which are used to validate
the GWSA inferred from GRACE data. The third category is the annual environmental and
socio-economic data used to analyze the drivers of anomalous changes in groundwater
storage anomalies. The final category of data is geographic information, including basin
boundaries and other ancillary data such as state and regional boundaries. These data are
used for study area extraction and ancillary analyses.

2.2.1. GRACE Data

The Gravity Recovery and Climate Experiment project utilizes the variation in distance
between two co-orbiting satellites to detect changes in Earth’s gravitational field. These
changes are influenced by the uneven distribution of mass, such as variations in water
storage. As the satellites orbit over regions with differing amounts of water, the gravi-
tational attraction alters, causing minute adjustments in the distance between them [40].
The processed data from GRACE are invaluable for estimating changes in surface water,
groundwater, glaciers, and snowpacks, offering vital insights into the global hydrological
cycle and climate change studies [2]. The University of Texas Center for Space Research’s
CSR RL06 Mascon dataset, which contains information from the GRACE and GRACE-FO
missions, is used in this study. The dataset encompasses monthly data with a resolution
of 0.25◦ from 2003 to 2021, (available at http://www2.csr.utexas.edu/grace, accessed on
9 September 2023). Utilizing the Mascon method over the traditional spherical harmonic
coefficient (SH) approach notably reduces leakage errors and eliminates north–south strip-
ing, yielding higher spatial resolution and signal efficacy [41]. To mitigate crustal static
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structural changes, the Terrestrial Water Storage Anomaly (TWSA) dataset is referenced
against the baseline average spanning 2004–2009 and is expressed in terms of equivalent
water height (EWH) [42]. Additionally, linear interpolation is employed to compensate
for data gaps due to satellite orbit adjustments or satellite transitions [43]. In particu-
lar, there was an approximate 1-year gap between the GRACE and GRACE-FO missions
(July 2017–May 2018), which was not ideal but did not affect most relevant applications
that focus on seasonal and long-term time scales, and analyses using the GRACE-FO data
have shown accuracy that is generally consistent with pre-launch expectations [23,25]. In
addition to the data corresponding to the missing months, we employed linear interpolation
of the data for the same months in the 5 years prior and after.

2.2.2. GLDAS Model Data

GLDAS (global land data assimilation system) is a collaborative initiative developed
jointly by the National Oceanic and Atmospheric Administration (NOAA) and NASA [44].
This system synergistically merges satellite and terrestrial observations with sophisticated
modeling techniques to furnish comprehensive and precise estimations of terrestrial surface
states and fluxes. In this research, we have chosen the NOAH-2.1 model data from the suite
of GLDAS models (available at: https://disk.gsfc.nasa.gov/datasets/GLDAS_NOAH0
25_M_2.1/, accessed on 9 September 2023), which is distinguished for its minimal bias
and reduced uncertainty [45,46]. The NOAH-2.1 model encapsulates an array of terrestrial
surface data in a gridded format, encompassing parameters such as soil moisture content
and snow water equivalent. Crucially, its spatiotemporal resolution is congruent with that
of the GRACE Mascon dataset, ensuring compatibility and coherence in our analysis.

2.2.3. Groundwater Level Data

The principal method for validating the accuracy of GWSA data deduced from GRACE
data is to compare these findings with actual groundwater level measurements obtained
from monitoring wells [47,48]. However, groundwater observations in the region are very
limited [21]. Although some observations may be available, accessing the data is very
difficult due to the constraints of the associated data strategy. We have made our best
efforts to collect the observations. In this study, we selected 31 monitoring sites across the
12 months of 2021, calculating the Pearson correlation coefficient between the anomalous
groundwater level data and corresponding GWSA data. The map below (Figure 3) displays
the locations of the monitoring stations.
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Prior research suggests that variations in GWS are intricately associated with factors
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discharge, human activities, and the intricate influences of vegetation [49,50]. Owing to the
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complexities involved in precisely measuring regional groundwater discharge, our analysis
included 11 distinct factors. Precipitation (PRE), temperature (TMP), evapotranspiration
(ET), and soil moisture (SM) were employed as indicators to characterize the contribution of
precipitation infiltration and surface water to groundwater replenishment. Total population
(TP), major crop sown area (MCSA), primary industry water use (Primary Industry),
secondary industry water use (Secondary Industry), residential water use (Residential
Life), and total water use were chosen to represent human activities. Additionally, the
normalized difference vegetation index (NDVI) was utilized to signify vegetation change
and analyze the driving factors behind GWS decline.

NDVI and ET data from January 2003 to December 2021 come from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) series of NASA. (https://ladsweb.modaps.
eosdis.nasa.gov/, accessed on 21 October 2023) [14]. Precipitation data are derived from the
Tibetan Plateau Data Center’s monthly precipitation dataset for China at a 1 km resolution
(1901–2021) (http://poles.tpdc.ac.cn/zh-hans/data/, accessed on 21 October 2023) [51].
Temperature data were also obtained from the Tibetan Plateau Data Center, including the
monthly temperature dataset for China at a 1 km resolution (1901–2021) (http://poles.
tpdc.ac.cn/zh-hans/data/, accessed on 21 October 2023) [52]. Additionally, multiple
socio-economic indicators are included, such as total population, major crop sown area,
primary industry water use, secondary industry water use, residential life water use,
and total water use, sourced from statistical yearbooks published by the Xinjiang Uygur
Autonomous Region Government (https://tjj.xinjiang.gov.cn/tjj/zhhvgh/list_nj1.shtml,
accessed on 27 October 2023) and water resource bulletins from the Xinjiang Uygur Au-
tonomous Region Water Resources Department (http://slt.xinjiang.gov.cn/slt/szygb/list.
shtml, accessed on 27 October 2023).

2.2.5. Geospatial Auxiliary Data

To delineate graded watershed boundaries, this study employs the HydroSHEDS
dataset offered by the World Wildlife Fund (WWF) (http://www.Hydrosheds.org, accessed
on 11 November 2023) (as shown in Figure 4). Additional vector data, including national,
provincial, and urban boundaries, are obtained from the National Geomatics Center of
China (http://www.ngcc.cn/ngcc/, accessed on 9 September 2023). Boundary vector file
of Xinjiang from China Standard Map—Revision No. GS(2020)4619.
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Figure 5). The initial stage of data preparation involved gathering and analyzing data
from several sources, including GRACE satellite data, GLDAS Noah-2.1 model data, Water
Resources Bulletin and Statistical Yearbook data, environmental variables data, the Hy-
droBASINS vector dataset, and the boundary vector data of the study region. Then the
GWSA were calculated from GRACE satellite data and GLDAS Noah-2.1 model data and
calibrated using groundwater level data to confirm their accuracy and reliability. In the
process of spatiotemporal analysis, the seasonal trend decomposition technique was used
to further characterize the long-term trend in GWSA, assess the average annual change in
GWSA in Xinjiang, and spatially analyze the change in groundwater storage anomalies in
multi-scale basins. Finally, to explore the potential drivers of GWS changes, we synthesized
socioeconomic and environmental data, calculated the percentage significance of each
variable for changes in groundwater storage to reveal the main influencing factors, and
quantitatively analyzed the effects of these variables using a random forest model. The
integration of these techniques offers a strong scientific basis for the Xinjiang region’s
sustainable water resource.
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2.3.1. GRACE Gravity Satellite and Terrestrial Water Reserves

The GRACE (Gravity Recovery and Climate Experiment) project deduces terrestrial
water storage by detecting subtle changes in Earth’s gravitational field. This approach is
predicated on the understanding that variations in Earth’s water mass lead to shifts in mass
distribution, consequently altering the gravitational field in the vicinity [40,53]. In this
study, we have chosen to utilize the GRACE solution to infer terrestrial total water storage
(TWS). This inference is based on the equivalent water thickness, a parameter derived from
the GRACE data [54]. The equivalent water thickness ∆h(θ,φ) is calculated as follows:

∆h(θ,φ) =
Rρave
3ρw

∑l,m
2l + 1
1 + kl

WlmPlm(cos(θ))[∆Clmcos(mφ) + ∆Slmsin(mφ)] (1)

where l and m represent the degree and order of spherical harmonics, respectively. ρave
is the average density of the Earth and ρw is the density of water. R denotes the Earth’s
radius, θ and φ correspond to the colatitude and longitude. kl refers to the load Love
number, which accounts for the Earth’s deformation in response to the applied load. Wlm
is an expression in spherical harmonics for a Gaussian smoothing filter. Plm stands for the
normalized associated Legendre function, and ∆Clm and ∆Slm are the normalized spherical
harmonics coefficients that have been processed by the decorrelation filter.
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2.3.2. Inversion of Groundwater Storage Anomalies (GWSA)

Terrestrial water storage anomalies (TWSA) refer to the sum of changes in various
hydrological components both at the surface and subsurface within a region [26]. These
include the variations in soil moisture storage anomalies (SMSA), snow water equiva-
lent anomalies (SWEA), canopy water storage anomalies (CWSA), surface water storage
anomalies (SWSA), and groundwater storage anomalies (GWSA). According to previous
studies, in the Xinjiang region, the combined total of canopy water and surface runoff is
relatively insignificant and thus can be disregarded in long-term time series analysis [55,56].
And it is true that groundwater resources in the Xinjiang region are mainly influenced
by precipitation and glacial snowmelt [57]. Consequently, GWSA can be calculated by
subtracting the other components from TWSA, as shown below:

GWSA = TWSA − SMSA − SWEA (2)

where TWSA is sourced from GRACE satellite observations, and SMSA and SWEA are
computed by deducting the 72-month mean for the period 2004–2009, using data for each
component from the GLDAS Noah-2.1 dataset.

2.3.3. Pearson Correlation Coefficient

To ensure the accuracy and reliability of groundwater storage anomalies derived from
GRACE data. For this purpose, the Pearson correlation coefficient was used to validate
the correlation between groundwater storage anomalies derived from GRACE data and
groundwater levels observed on the surface. The Pearson correlation coefficient, also
known as the correlation coefficient, serves as a statistical indicator for gauging the strength
of the linear relationship between two variables. The following is the formula for calculating
the Pearson correlation coefficient:

r =
∑(xi − x)(yi − y)√

∑(xi − x)2 ∑(yi − y)2
(3)

In this formula, xi and yi are the sample values of the two variables, respectively. x
and y are the mean of these sample values, respectively.

2.3.4. Spatial and Temporal Analysis of GWSA
Seasonal Effect Removal in Time Series Analysis

In the realm of time series analysis, the presence of seasonal cycles can obscure the
true trends and patterns within the data [26]. Seasonality, characterized by systematic
variations that recur over fixed intervals, such as annually or monthly, due to seasonal
factors, is a common phenomenon in environmental and socio-economic datasets [58].
Hence, the seasonal-trend decomposition using the Loess (STL) approach is employed for
the decomposition of the GWSA time series [33]. The STL method enables the independent
assessment of long-term trends, seasonal cycles, and random disturbances within the time
series, offering a flexible and robust non-parametric tool for time series analysis. This
instrument is particularly adept at distinctly unraveling the seasonal, trend, and residual
components, making it exceptionally well suited for managing complex environmental
datasets like GWSA. The STL process can be expressed as Equation (4):

Stotal = Slong-term + Sseasonal + Sresidual (4)

Stotal represents the raw GWSA time series.
Slong-term is the long-term trend component derived through data-smoothing tech-

niques. It reflects the overarching ascension or decline in GWSA, devoid of seasonal and
random fluctuations.

Sseasonal is the seasonal segment, capturing the cyclical nature of GWSA. This could
manifest as seasonal variations in groundwater levels due.
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Sresidual is the residual element, encapsulating the random oscillations after the extrac-
tion of long-term trends and seasonal effects.

With the seasonal cycle accounted for, a sharpened focus is placed on GWSA’s long-
term trends and anomalous events. By fitting Slong-term and Sresidual, an interannual vari-
ability trend for GWSA is obtained, offering a clarified view devoid of seasonal influences,
which in turn enables a more precise interpretation of GWSA’s evolution.

Quantifying GWSA Changes from 2003 to 2006

The trend in GWS not only mirrors the dynamic changes within environmental and
hydrological cycles but is also directly linked to the sustainability of regional water re-
sources. To elucidate this trend with depth and accuracy, the present study employs two
renowned non-parametric statistical methods: the Theil–Sen median slope estimator and
the Mann–Kendall test [59].

The Theil–Sen median slope estimator is a technique that calculates the median of
the slopes between all possible data pairs, thereby providing an estimate of the overall
trend [60]. This method boasts significant robustness, offering a sturdy trend estimate,
particularly in the presence of potential outliers or non-linear trends. The rate of change in
the groundwater storage formula for the Theil–Sen estimator is as follows:

βGWSA = median
(

GWSAj − GWSAi

j − i

)
(5)

In this context, βGWSA denotes the rate of change in groundwater storage, where
GWSAi and GWSAj are the groundwater storage anomaly values at the i hand j months
within the time series, respectively.

The Mann–Kendall test is utilized to determine the statistical significance of trends
within a time series. This non-parametric test does not assume a normal distribution
of the data, rendering it an optimal choice for evaluating environmental data that may
exhibit skewness, such as GWSA. The essential formula involved in the computation is as
follows [61]:

Z =


S−1√
Var(S)

(S > 0)

0 (S = 0)
S+1√
Var(S)

(S < 0)
(6)

S =∑n−1
j−1 ∑n

i=j+1 sign(GWSAj − GWSAi) (7)

sign(θ) =


1 (θ > 0)
0 (θ = 0)
−1 (θ < 0)

(8)

Var(S) =
n(n − 1)(2n + 5)

18
(9)

In this formula, GWSAj and GWSAi are the GWSA values for months i and j, respec-
tively; n represents the number of observations in the time series; and Z is the standard
normal test statistic. A trend is considered statistically significant, if |Z| > Z1 − p/2
exceeds. If βGWSA < 0 and p < 0.05, then the GWSA in the region is deemed to exhibit a
declining trend.

Rate of Change in Groundwater Storage Anomaly

Groundwater storage anomaly is defined as the deviation in groundwater storage at a
given moment from its long-term average or baseline value. This metric offers insights into
the short-term dynamic fluctuations in groundwater systems. The instantaneous rate of
change in GWSA is commonly represented by ∆GWS, which is theoretically the derivative
of GWSA concerning time [62]. Specifically, ∆GWS denotes the minute oscillations inf
GWSA over specified intervals, such as monthly or annually. The ∆GWS is instrumental
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in providing essential information about the real-time dynamics of groundwater systems,
aiding in the more accurate assessment of the status and future trends of groundwater
resources. Moreover, it serves as a crucial decision-making reference for the sustainable
management of groundwater resources.

∆GWS(t) ≈ dGWSA
dt

≈ GWSA(t)− GWSA(t − 1)
∆t

(10)

By calculating the annual mean rate of change, we categorize regions experiencing
variations in GWS into six distinct levels: dramatic decrease, rapid decrease, moderate
decrease, moderate increase, increase, and rapid increase (As shown in Table 1). Utilizing
these six classifications, we conducted a spatiotemporal analysis of GWS in the entire
Xinjiang region, focusing on the basins categorized into levels three to six. This analysis
was aimed at delving deeper into the fluctuation characteristics of GWS.

Table 1. Classification of rates of spatial and temporal change in groundwater storage.

Classification Range

Rapid increase >10
Increase 5–10

Moderate increase 0–5
Moderate decrease −10–0

Rapid decrease −20–−10
Dramatic decrease <−20

2.3.5. Analysis of Factors Affecting Changes in Groundwater
Preprocessing of Reanalysis Data

To investigate the factors influencing groundwater storage changes, it is essential
to extract and preprocess data to conform to a uniform spatial and temporal framework.
This involves focusing on the Xinjiang region (73.40◦E–96.18◦E, 34.25◦N–49.10◦N) with
a spatial resolution of 0.25◦ × 0.25◦ grid data and an annual temporal sequence from
2003 to 2021. For missing data points, we employ linear interpolation for data imputation.
For finer grid data (higher resolution), the resolution is upgraded to 0.25◦ using ArcGIS,
employing key functions such as “Extract Values to Points” and “Zonal Statistics”. For
grid data with more detailed temporal sequences (e.g., monthly data), we aggregate the
data to an annual time series by averaging (for soil moisture, SM; temperature, TMP;
normalized difference vegetation index, NDVI) or accumulating (for evapotranspiration,
ET; precipitation, PRE). For the data from statistical yearbooks and water resource bulletins,
certain 2021 data points are missing. To address this, we employ a machine learning
approach using the exponential triple smoothing algorithm, implemented via the Excel
function “FORECAST.ETS” [63]. Additionally, in conjunction with vector data (shapefile),
similar functions in ArcGIS are utilized to convert these into raster format. Through these
preprocessing steps, we have successfully prepared 14 dynamic variables: SM, ET, PRE,
TTMP, NDVI, TP, MCSA, and water usage data for primary industry, secondary industry,
residential life, and total water use.

Methods for Analyzing Factors Affecting Changes in Groundwater

To understand the various socio-ecological factors influencing groundwater storage
anomaly, we applied two distinct analytical approaches. The first approach involves
regression subset selection to sift through multiple socio-ecological variables and pinpoint
the ones with significant predictive power. The second approach utilizes a nonlinear
machine learning strategy, the random forest model, which provides a detailed quantitative
analysis of the relative importance of these factors. Both methods are crucial in identifying
the key drivers of GWSA. By integrating these two methods, our analysis gains both
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breadth and depth, enabling a comprehensive assessment of the socio-ecological factors
affecting GWSA.

To identify the primary predictive factors among the socio-ecological variables, we
employed a regression subset selection method. This technique generates multiple linear
regression models from the 11 socio-ecological factors and measures the predictability of
each factor by its significance percentage: the number of models where the factor is signifi-
cantly divided by the total number of models including that factor. A higher percentage
indicates a stronger capability to predict groundwater variations over time or space [31].
This approach supersedes marginal correlation coefficients as it accounts for variables
that may not individually relate to groundwater storage but show significant correlations
in a multivariate regression model when combined with other variables. Moreover, to
quantify the impact of each socio-ecological factor on GWS, we introduced a nonlinear
machine learning strategy, the random forest model, to conduct a detailed quantitative
analysis of the key factors’ feature importance [64]. As an ensemble of multiple decision
trees, random forests assign accurate relative importance to features in prediction, thereby
clearly reflecting their value and significance within the predictive framework. Through
the collective analysis of numerous decision trees, this method precisely reveals the leading
variables in GWS prediction. A high importance score for a feature further signifies its
critical influence on the overall prediction.

3. Results
3.1. Validation of Groundwater Storage Estimates

In this study, we selected 31 monitoring sites across the 12 months of 2021, calculating
the correlation coefficients between the anomalous groundwater level data and the corre-
sponding GWSA data. This yielded an average correlation coefficient of 0.488 (As shown in
Table 2). Groundwater information can be inverted using GRACE-calculated groundwater
storage anomaly data. Moreover, the results align with previous studies; the identified
hotspots of significant GWS decline in Xinjiang described in this research are consistent
with the findings [27,33,60]. The hotspot area of drastic GWS decline—specifically, the
northern foothills of the Tianshan Mountains—is also identified as a key area for integrated
management of groundwater over-extraction by the Ministry of Water Resources [65].

Table 2. Correlation Coefficient between GWSA and GWLA.

Correlation Coefficient Interval Number of Sites

0.00–0.25 1
0.26–0.50 17
0.52–0.75 10
0.76–1.0 3

Average value 0.488

3.2. Spatial Heterogeneity of Groundwater Storage Anomalies in Xinjiang from 2003 to 2021

To more precisely identify long-term patterns, the decision was made to average
monthly data on an annual basis, yielding annual-scale groundwater storage anomaly data
for the years 2003 to 2021. This approach effectively mitigates the impacts of seasonal factors
such as precipitation and snowmelt, which are characterized by short-term fluctuations. As
shown in Figure 6, the annual data on groundwater storage anomalies in Xinjiang from
2003 to 2021 revealed significant spatial heterogeneity. Specifically, from 2003 to 2007, the
overall regional GWS was stable, with a slight decline in the northwest, suggesting an
increasing stress on groundwater resources in that area. Between 2008 and 2012, the GWS
in the southeast experienced a slight increase, while the central and western regions saw a
declining trend, highlighting the differences in groundwater dynamics across regions. From
2013 to 2016, the positive growth trend in the southeast continued, while the decline in
GWS in the northwest and north became more pronounced, as indicated by the red-colored
areas representing negative groundwater storage values, signaling an expansion of areas



Remote Sens. 2024, 16, 813 12 of 19

experiencing groundwater depletion. Lastly, during the period from 2017 to 2021, the
decline in GWS in the northwest and north was particularly notable, with the low-value
areas not only continuing to decrease in value but also expanding in scope. These changes
underscore the complexity of groundwater resource distribution in Xinjiang, which is
likely influenced by regional climatic fluctuations, changes in land use patterns, and water
resource management policies.
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3.3. Changes in Groundwater Storage in Xinjiang from 2003 to 2021

This study conducted an in-depth analysis of the monthly time series data on ground-
water storage anomalies in the Xinjiang region from 2003 to 2021. After adjusting for
seasonal effects, the data revealed a pronounced downward trend in the region’s ground-
water storage, as shown in Figure 7. Employing the Theil–Sen median slope estimator, it
was determined that the mean annual decrease in GWSA was approximately 0.381 mm/m.
This finding is robustly confirmed by the Mann–Kendall test (p < 0.001), indicating a signif-
icant reduction in groundwater storage relative to its long-term average over the past two
decades. Notably, in addition to this long-term declining trend, there were also significant
annual fluctuations in certain years. This trend can be attributed to various factors, includ-
ing climate change, excessive groundwater extraction, and inadequate recharge, leading to
a consistent decrease in groundwater storage in Xinjiang.
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3.4. Multi-Scale Spatiotemporal Analysis of Groundwater Storage in Xinjiang

From 2003 to 2021, an exhaustive analysis of groundwater storage in the third to sixth
level river basins in the Xinjiang region underscored pronounced spatial variability in its
fluctuations, as shown in Figures 8 and 9. Observations at the third-level river basin scale
revealed that half of the eight basins manifested a moderate decrease, encompassing 71.35%
of the total observational pixels across the region. Particularly in the northern sector, a
uniform trend of decline in GWS was observed across all basins, with the Yili River Basin
exhibiting the most significant reduction, plummeting at a rate of 20 mm per year (mm/y).
In contrast, two basins proximate to the Altun and Kunlun Mountains in the southeast
displayed an upward trajectory in GWS, escalating at rates of 11.52 mm and 2.1 mm
annually, albeit their combined pixel proportion was a scant 5.14%.
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Delving deeper into the fourth-order basin scale analysis within Xinjiang, it emerged
that 15 out of 23 basins were experiencing a moderate decrease, encapsulating 65.28% of the
observation pixels. The GWS in the northern basins continued to show a downward trend,
with the rate of decline in four sub-basins in the northwest exceeding 10 mm/y, accounting
for 18.71% of the total. The Ili River Basin, within this group, marked the highest rate of
decline at 25.08 mm/y. However, the southern region presented a contrasting scenario,
where five basins exhibited an upward GWS trend, indicating new spatial variations.
Beyond the southeastern part and the Kunlun Mountains, basins in western Xinjiang also
showed a slight increase, bringing the pixel percentage of basins with growing GWS across
Xinjiang to 16.46%.

In a meticulous exploration of the fifth-order basin scale across Xinjiang, it was ob-
served that out of 63 basins, 36 were undergoing a moderate decrease, accounting for
52.21% of the region’s pixels. The northern region continued its declining trend, with some
northwestern basins experiencing drastic drops in GWS, the most severe reaching a reduc-
tion of 31.63 mm per year (mm/y), highlighting the substantial depletion of groundwater
resources in this area. However, the annual rate of change in groundwater storage in the
southern basins displays a more intricate spatial pattern, predominantly characterized by a
moderate increase, representing 22.30% of the pixels in these basins. Notably, basins near
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the Altun Mountains maintain a rapid increase, with pixels in growing basins constituting
26.55% of Xinjiang’s total.

At the sixth-order basin scale, a more nuanced perspective emerged, revealing new
spatial trends. In the Xinjiang region, out of 189 river basins assessed, 97 basins, or 54.63%
of the area, exhibit a moderate decrease in Groundwater Storage (GWS). Despite some
areas in northern Xinjiang experiencing GWS growth, the overall situation of groundwater
resources remained grave. In the western part of the Tianshan Mountains and the Ili River
Valley, 13 basins experienced a dramatic decrease in GWS. Additionally, 24 basins saw a
rapid decrease, totaling 11.05% of Xinjiang’s pixels. The spatial pattern in southern Xinjiang
continued to show a mix of growth and decline, with 42 basins in a state of moderate
increase, accounting for 23.45% of the pixels. Especially in the Altun Mountains area, four
basins exhibited the highest GWS growth rates, reaching up to 24.98 mm/year, with the
pixel percentage of growing basins in Xinjiang at 28.44%.

In the study of the Xinjiang region from 2003 to 2021, a transition from third to sixth-
order basin scales revealed significant regional variations in the annual average rate of
change in groundwater storage, both in terms of pixel representation and spatial layout.
Across these basin scales, a dramatic decrease was the most prevalent phenomenon, with
this trend’s pixel share remaining above 50% even after detailed basin-level segmentation.
Specifically, in the northern and northwestern regions, there was a widespread distribution
of rapid to severe declines, with the Ili River Basin and western Tianshan facing the most
critical groundwater resource depletion. This is likely linked to local climatic conditions,
over-exploitation of water resources, and increasing agricultural irrigation demands. In
contrast, the subdivision of basins in the south revealed large areas of GWS growth, display-
ing a spatial layout of concurrent growth and decline, with the region’s changes primarily
characterized by slight increases and decreases. Particularly, basins near the Kunlun and
Altyn-Tagh mountains consistently demonstrated positive growth in groundwater stor-
age. These variations reflect the differences in hydrological conditions, impacts of climate
change, and human activities across different regions.

Water resource management in the Xinjiang region must take into account these spatial
and scale differences, as well as the necessary strategic adjustments they entail. For areas
where groundwater storage is most critically reduced, such as the Ili River Basin and
western Tianshan, priority should be given to urgent measures to prevent further water
resource depletion. In regions where groundwater resources are increasing, continued
and strengthened effective water resource management practices are needed to ensure the
sustainability and persistence of these positive changes.

4. Discussion
4.1. Determinants of Critical Decline in Groundwater Storage in Xinjiang’s Hotspot Areas

In Section 3, we reveal significant spatial and temporal heterogeneity in groundwater
storage dynamics in Xinjiang. Against the backdrop of the alarming status of groundwater
in Xinjiang, Section 4 aims to shed light on the key factors driving changes in groundwater
storage. Previous studies in this paper have found that northwestern Xinjiang, especially the
area around the Yili River and the western Tianshan Mountains, is the region with the most
severe groundwater decline. For this reason, we focused our analysis on the most severely
impacted areas of dramatic decline in the Class VI basins, where groundwater reductions
are most pronounced. By concentrating on these severely affected areas, we attempt to gain
a deeper understanding of the main causes affecting groundwater storage decline.

Combining these two experimental approaches, we gained a more accurate and
quantified understanding of the socio-ecological factors’ impact on GWS. As shown in
Figure 10, in the multiple linear regression analysis, TP (total population) achieved a
significant percentage of 41.77%, while residential water use reached 50.02%, indicating
their closest statistical correlation with GWS changes, followed by major crop sown area
and total water use. In contrast, NDVI and TMP exhibited a relatively lower significance,
at 2.30% and 0.05%, respectively. In the random forest model, the feature importance
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of residential water use was 31.51%, closely followed by total water use, MCSA, and
TP, accounting for 28.13%, 16.79%, and 8.93%, respectively. These results underscore the
significant roles of residential water use and total water demand in groundwater dynamics,
while also highlighting the substantial impact of agricultural activities on groundwater
resources. In conclusion, human activities are the primary cause of the reduction in
groundwater storage. As the population grows, the region’s water demand continues
to rise. Additionally, with economic development and lifestyle changes, the demand for
water resources also increases. Therefore, to ensure the sustainability and stability of water
resources in the Ili River and western Tianshan region, future resource management and
policy decisions must meticulously consider these key variables and their interplay, giving
due attention to the profound impact of human activities on groundwater resources.
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4.2. Policy Suggestions

In this study, the changes in groundwater storage (GWS) in Xinjiang between 2003 and
2021 were carefully explored. The findings indicate a general downward trend in GWS in
Xinjiang during this period, which is especially pronounced in the Yili River Basin and the
region around the Tien Shan Mountains. The main drivers of this phenomenon seem to be
closely related to the expansion of irrigated agriculture and population growth in the region.
To gain a deeper understanding of the context of these changes, we analyzed the situation
in Xinjiang in comparison with studies in other arid regions around the globe. California,
for example, is also under pressure from declining groundwater reserves, largely attributed
to prolonged drought and increased agricultural water demand. However, compared to
Xinjiang, California’s groundwater management policies and response strategies exhibit
unique characteristics and varying degrees of effectiveness, reflecting the state’s diverse
efforts to address groundwater resource overexploitation, climate change impacts, and
related policy implementation challenges [66]. In addition, groundwater changes in the
Middle East reflect the dual impacts of climate change and anthropogenic pumping activi-
ties on groundwater resources [67]. These comparisons not only highlight the specificity
of groundwater resource changes in the Xinjiang, but also reveal the common challenges
faced by arid regions around the globe.

Given the current situation of groundwater resources in the Xinjiang region, we pro-
pose the following policy recommendations. First, integrated management of agricultural
water resources is particularly important in the context of the arid climate of Xinjiang.
Improving irrigation techniques, adjusting crop cultivation patterns, and increasing the
proportion of water-saving crops are key measures to ensure the effective utilization of
water resources. Second, it is crucial to strengthen the monitoring and management of
groundwater resources in the Xinjiang region. It is recommended that a comprehensive
groundwater monitoring network be established to monitor changes in water levels and
water quality in real time through observation wells and remote sensing technology. In
addition, strict norms for groundwater abstraction and use should be established, with
use quotas and restrictions set for different purposes, while legal protection should be
strengthened to prevent over-exploitation and pollution of groundwater resources.
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4.3. Shortcomings and Prospects

The study presented in this paper provides insights into the sustainable development
of groundwater resources in the Xinjiang region. However, this study is not without limi-
tations. First, the coarser resolution of the GRACE satellite data and GLDAS model data
limits the accuracy, resulting in a possible bias in groundwater storage anomaly) estimation.
Second, groundwater recharge and discharge processes are complex and difficult to quan-
tify accurately, so the effects of groundwater discharge are ignored when analyzing the
determinants of groundwater storage anomaly. Incorporating GRACE satellite data into the
hydrologic model could refine the parameters or states of the model. Future research efforts
could enhance the modeling of interactions between surface runoff, groundwater, and
anthropogenic activities to more accurately reflect hydrologic processes [33]. In addition,
data assimilation or machine learning techniques by combining GRACE satellites with
multisource data can be considered to improve the spatial resolution and accuracy of GWS
monitoring results [68]. This advancement will help to further dissect the factors that
influence groundwater storage dynamics.

5. Conclusions

From 2003 to 2021, groundwater storage (GWSA) in the Xinjiang region showed an
overall decreasing trend. An in-depth analysis of the hierarchical basins reveals that the
basins in Xinjiang exhibit their own unique spatial distribution characteristics in terms of
groundwater changes: 1, Groundwater reserves in Xinjiang are generally on a downward
trend, with more than half of the region on a slight downward trend. In addition to the
continuing downward trend, inter-annual fluctuations are also large. 2, Regional differences
are evident, with groundwater reserves in the basins near the Kunlun Mountains and the
Altun Mountains showing an upward trend. In contrast, the decline in groundwater
reserves is particularly severe in the northwestern part of the country near the Ili River and
the western part of the Tianshan Mountains. 3, The areas with the most severe decline in
groundwater reserves are significantly correlated with the local population growth and its
increased demand for irrigated agriculture.
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