Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = freeze dried powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Viewed by 23
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 306
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

19 pages, 2402 KiB  
Article
Wound Healing Effects of New Cream Formulations with Herbal Ingredients
by Derya Algül, Ertuğrul Kılıç, Ferda Özkan and Yasemin Yağan Uzuner
Pharmaceutics 2025, 17(7), 941; https://doi.org/10.3390/pharmaceutics17070941 - 21 Jul 2025
Viewed by 512
Abstract
Aim: To prepare two different kinds of wound care creams containing plant extracts and examine their effectiveness in comparison with a placebo cream and a commercial wound care cream, Madecassol®. Methods: The two cream formulations were developed using the [...] Read more.
Aim: To prepare two different kinds of wound care creams containing plant extracts and examine their effectiveness in comparison with a placebo cream and a commercial wound care cream, Madecassol®. Methods: The two cream formulations were developed using the same placebo cream (PC) as base cream. One formulation contained balsam of oriental sweet gum, or Levant storax, named as Levant Storax Cream (LSC); the other contained oil of Calendula, extract of St. John’s Wort, aescin (an extract of horse chestnut), and freeze-dried powder from Aloe vera (L.) Burm. f. leaf juice, designated as Complex Cream (CC). In the characterization of the creams, organoleptic properties, pH, viscosity, size distribution, and zeta potential of oil globules were measured. Furthermore, the stability of the creams was assessed under different environmental conditions. In vitro studies were performed by using an excisional wound model in rats to assess the potential of the creams for stimulating wound healing. The efficacy of LSC and CC was compared with a commercial reference cream, Madecassol® (M), and the placebo control. The study was also designed with a negative control group of rats that were not treated but handled the same way as the other treatment groups. The wound contraction rate, total skin thickness recovery, and results of histopathological parameter examinations were used to compare the effectiveness of the treatments. Results: The stability of formulated creams confirmed that they were stable for the duration of the study. In vivo studies showed that rats treated with LSC achieved the highest wound healing rates when compared with the other groups. A better response was recorded for the CC-treated population when compared to both control and placebo groups, but there was no significant difference seen in healing score between CC and M groups. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

19 pages, 1797 KiB  
Article
From Agricultural Waste to Functional Tea: Optimized Processing Enhances Bioactive Flavonoid Recovery and Antioxidant Capacity with Multifaceted Health Benefits in Loquat (Eriobotrya japonica Lindl.) Flowers
by Mingzheng Duan, Xi Wang, Jinghan Feng, Xu Xiao, Lingying Zhang, Sijiu He, Liya Ma, Xue Wang, Shunqiang Yang and Muhammad Junaid Rao
Horticulturae 2025, 11(7), 766; https://doi.org/10.3390/horticulturae11070766 - 2 Jul 2025
Cited by 1 | Viewed by 322
Abstract
The large-scale disposal of loquat (Eriobotrya japonica Lindl.) flowers during fruit thinning represents a significant waste of bioactive resources. This study systematically evaluated how three processing methods—fresh (FS), heat-dried (HD), and freeze-dried (FD) treatments—affect the flavonoid composition and antioxidant capacity of loquat [...] Read more.
The large-scale disposal of loquat (Eriobotrya japonica Lindl.) flowers during fruit thinning represents a significant waste of bioactive resources. This study systematically evaluated how three processing methods—fresh (FS), heat-dried (HD), and freeze-dried (FD) treatments—affect the flavonoid composition and antioxidant capacity of loquat flower extracts, with the aim of developing value-added, sugar-free functional tea ingredients. Using UPLC-MS/MS and DPPH assays, we analyzed both pre-(FS/HD/FD) and post-extraction samples (FSP/HDP/FDP) to assess processing-specific metabolic signatures and extraction efficiency. The results revealed that heat-dried powder (HDP) exhibited the highest total flavonoid content and DPPH scavenging capacity (615.24 µg Trolox/g), attributed to enhanced release of stable compounds like quercetin. Freeze-dried powder (FDP) better preserved heat-sensitive flavonoids, such as catechin-(4α→8)-gallocatechin and naringenin, but showed lower overall antioxidant activity. Multivariate analysis confirmed distinct clustering patterns, with heat-drying favoring flavonoid extractability while freeze-drying maintained metabolic diversity. These findings demonstrate that processing methods significantly influence bioactive compound retention and functionality, with heat-drying offering optimal balance between yield and practicality for industrial applications. This work provides a scientific foundation for upcycling loquat flowers into standardized nutraceutical ingredients, addressing both agricultural waste reduction and the growing demand for natural functional foods. Full article
Show Figures

Figure 1

28 pages, 7091 KiB  
Article
Dynamic Microbiome Responses to Structurally Diverse Anthocyanin-Rich Foods in a Western Diet Context
by Mohammed F. Almatani, Giovanni Rompato, Eliza C. Stewart, Marcus Hayden, Jeremy Case, Samuel Rice, Korry J. Hintze and Abby D. Benninghoff
Nutrients 2025, 17(13), 2201; https://doi.org/10.3390/nu17132201 - 1 Jul 2025
Cited by 1 | Viewed by 500
Abstract
Background/Objectives: Anthocyanin (ACN)-rich foods are known to influence the gut microbiota composition, but the temporal dynamics and structural specificity of these effects remain poorly understood. This study investigated how distinct ACN-rich fruit supplements impact the gut microbiome over time in the context of [...] Read more.
Background/Objectives: Anthocyanin (ACN)-rich foods are known to influence the gut microbiota composition, but the temporal dynamics and structural specificity of these effects remain poorly understood. This study investigated how distinct ACN-rich fruit supplements impact the gut microbiome over time in the context of a Western-style diet. We hypothesized that ACN-induced microbial shifts would occur rapidly, differ by ACN source, and require continued intake to persist. Methods: C57BL/6J mice were fed the total Western diet (TWD) supplemented with freeze-dried powders from bilberry (BB), tart cherry (TC), chokeberry (CB), elderberry (EB), black currant (BC), or black raspberry (BRB) for 0, 1, 3, or 7 days. Cocoa polyphenols (CPs) were included as a comparator with a distinct polyphenol profile. Fecal microbiota were collected at 0, 1, 3, and 7 days post exposure and analyzed by 16S rRNA sequencing. Results: ACN-rich supplements induced rapid microbial shifts detectable within one day of exposure. However, most changes reverted toward the baseline within days of supplement withdrawal, indicating limited persistence. Among the ACNs, BRB produced the most sustained microbiome alterations. Microbial responses varied by ACN source, suggesting that differences in glycoside and aglycone structures influence the community composition. Conclusions: ACN-rich foods can induce rapid but largely transient alterations in the gut microbiome, with variability linked to the polyphenol structure. These findings highlight the ecological sensitivity of the microbiome to specific dietary components and underscore the importance of sustained intake for maintaining microbial shifts. Full article
(This article belongs to the Special Issue Dietary Patterns and Gut Microbiota)
Show Figures

Figure 1

17 pages, 1603 KiB  
Article
Physicochemical Properties and Antioxidant Activities of Yanggaeng Added with Different Grape Varieties
by Sinyoung Park, Sira Yang and Inyong Kim
Appl. Sci. 2025, 15(13), 7291; https://doi.org/10.3390/app15137291 - 28 Jun 2025
Viewed by 271
Abstract
In this study, we evaluated the antioxidant activity, physicochemical properties, and sensory characteristics of Yanggaeng made with grapes. Freeze-dried powders and juices were prepared from three grape varieties (Campbell Early, Kyoho, and Shine Muscat). Yanggaeng was then prepared at concentrations of 2, 4, [...] Read more.
In this study, we evaluated the antioxidant activity, physicochemical properties, and sensory characteristics of Yanggaeng made with grapes. Freeze-dried powders and juices were prepared from three grape varieties (Campbell Early, Kyoho, and Shine Muscat). Yanggaeng was then prepared at concentrations of 2, 4, and 8%. Antioxidant activity was evaluated by measuring total polyphenols and DPPH and ABTS radical-scavenging activities. The physicochemical properties measured included solid content, Brix, pH, total acidity, moisture content, color, and texture profile analysis (TPA). The results showed that the total polyphenol content increased as the number of grapes increased, with the 8% Shine Muscat juice (JS 8%) sample having the highest polyphenol content and ABTS radical-scavenging activity. The highest moisture content was observed in the control treatment. The L* value decreased, whereas the a* and b* values increased as the grape concentration increased. The 8% Campbell Early (JG 8%) sample exhibited extremely high a* and b* values. When freeze-dried powder was used, the pH decreased and the total acidity increased compared to that using the juice samples. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

20 pages, 1729 KiB  
Article
Development of a Cyclodextrin-Based Drug Delivery System to Improve the Physicochemical Properties of Ceftobiprole as a Model Antibiotic
by Dariusz Boczar, Wojciech Bocian, Jerzy Sitkowski, Karolina Pioruńska and Katarzyna Michalska
Int. J. Mol. Sci. 2025, 26(13), 5953; https://doi.org/10.3390/ijms26135953 - 20 Jun 2025
Viewed by 370
Abstract
This study presents a methodology for developing a cyclodextrin-based delivery system for ceftobiprole, a poorly water-soluble and amphoteric drug, chemically stable in acidic conditions. Ceftobiprole is a broad-spectrum cephalosporin antibiotic administered clinically as its water-soluble prodrug, ceftobiprole medocaril, due to limited aqueous solubility [...] Read more.
This study presents a methodology for developing a cyclodextrin-based delivery system for ceftobiprole, a poorly water-soluble and amphoteric drug, chemically stable in acidic conditions. Ceftobiprole is a broad-spectrum cephalosporin antibiotic administered clinically as its water-soluble prodrug, ceftobiprole medocaril, due to limited aqueous solubility of the parent compound. Solubility enhancement was achieved through complexation with anionic sulfobutylether-β-cyclodextrin (SBE-β-CD). At a pH below 3, ceftobiprole is protonated and cationic, which facilitates electrostatic interactions with the anionic cyclodextrin. An optimised high-performance liquid chromatography (HPLC) method was used to assess solubility, the impurity profile, and long-term chemical stability. X-ray powder diffraction (XRPD) confirmed the amorphous nature of the system and the absence of recrystallization. Nuclear magnetic resonance (NMR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy supported the formation of a host–guest complex. The freeze-dried system prepared from 0.1 M formic acid solution contained negligible residual acid due to nearly complete sublimation. The most promising formulation was a ternary system of ceftobiprole, maleic acid, and SBE-β-CD (1:25:4 molar ratio), showing ~300-fold solubility improvement, low levels of degradation products, and stability after eight months at −20 °C. After pH adjustment to a parenterally acceptable level, the formulation demonstrated solubility and a pH comparable to the marketed drug product. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

15 pages, 2028 KiB  
Article
Physicochemical Properties of Demineralized Bone Matrix and Calcium Hydroxide Composites Used as Bone Graft Material
by Octarina, Florencia Livia Kurniawan, Firda Amalia Larosa, Olivia Nauli Komala and Meircurius Dwi Condro Surboyo
Crystals 2025, 15(6), 564; https://doi.org/10.3390/cryst15060564 - 15 Jun 2025
Viewed by 506
Abstract
Vertical bone defects can result in alveolar bone resorption, which may be addressed using composite grafts. A combination of demineralized bone matrix (DBM) and calcium hydroxide (Ca(OH)2) has potential as a bone substitute due to its biological and structural properties. This [...] Read more.
Vertical bone defects can result in alveolar bone resorption, which may be addressed using composite grafts. A combination of demineralized bone matrix (DBM) and calcium hydroxide (Ca(OH)2) has potential as a bone substitute due to its biological and structural properties. This study aimed to identify the optimal DBM–Ca(OH)2 ratio by evaluating their physicochemical properties relevant to bone regeneration. DBM gel and Ca(OH)2 powder were combined at ratios of 1:1, 2:1, 3:1, and 4:1. The mixtures were freeze-dried, ground, and sieved to create granules. The composites were analyzed in terms of their structural and chemical characteristics, including crystallinity, calcium ion release, functional group composition, particle size, surface morphology, and elemental distribution. Increasing the proportion of DBM reduced crystallinity and calcium ion release while influencing particle size. Among all groups, the 2:1 composite demonstrated the most balanced properties: moderate crystallinity, relatively high calcium release, and favorable particle size. Chemical analyses confirmed the presence and interaction of both organic and inorganic components, while elemental mapping showed a uniform distribution of the key elements essential for bone formation. The DBM–Ca(OH)2 composite at a 2:1 ratio has the most promising physicochemical profile, making it a strong candidate for bone graft applications. However, a limitation of this study is the absence of biological testing. Future research should investigate the in vitro and in vivo performance of this composite in bone regeneration. Full article
Show Figures

Figure 1

19 pages, 1276 KiB  
Article
Design and Production of an Instant Coffee Product Based on Greek Coffee Oil: Study of the Effect of Storage Conditions on Product Aroma and Quality
by Efimia Dermesonlouoglou, Vassiliki Palaioxari-Kampisiouli, Dimitrios Tsimogiannis and Petros Taoukis
Beverages 2025, 11(3), 88; https://doi.org/10.3390/beverages11030088 - 9 Jun 2025
Viewed by 922
Abstract
The objective of this study was to obtain and evaluate a coffee aroma extract/oil with sensorial attributes close to the original brew of Greek coffee for use in an instant Greek coffee powder. The oil was obtained directly from commercial Greek coffee by [...] Read more.
The objective of this study was to obtain and evaluate a coffee aroma extract/oil with sensorial attributes close to the original brew of Greek coffee for use in an instant Greek coffee powder. The oil was obtained directly from commercial Greek coffee by solid-liquid extraction using hexane as a solvent and treated with a series of hexane-ethanol mixtures (0:10, 1:4, 1:9) to remove the intense roasted flavor of the crude coffee oil obtained by hexane; the de-oiled coffee was used for the recovery of water-soluble compounds, and the produced water extract was freeze-dried. The aromatic volatiles of the coffee oil samples were analyzed by using a purge-and-trap device coupled to GC-MS, as well as sensory analysis. The instant Greek coffee powder was produced by mixing the freeze-dried base (74.4%) with the extract derived after treatment of the crude oil with hexane-ethanol mixture 1:4 (18.2%) and foaming agent (7.4%). Two different materials were studied as bases: instant coffee (F3Gr-D) and ground Greek coffee (reference sample, CGr). The shelf-life stability of the produced powders was examined at three storage temperatures (25, 45, 60 °C). Instrumental analysis (purge-and-trap GC-MS) of aroma and sensory analysis (aroma, taste, staling, total sensory quality on a 1–9 hedonic scale) was conducted. Aroma loss (furfuryl alcohol, furfural, dimethyl pyrazines, ethyl methyl pyrazines) and scores for sensory attributes during storage were modeled using 1st and 0-order reaction kinetics, respectively. The storage temperature effect was expressed by the Arrhenius model (activation energy Ea). According to the results, the developed instant coffee powder presented satisfactorily the aroma characteristics of regular Greek coffee. The shelf life for the instant Greek coffee powder was estimated as 80 days (air packed) (based on 20% retention of furfuryl alcohol that was the most abundant aromatic volatile of Greek coffee aroma, ground as well as extract oil). Full article
(This article belongs to the Special Issue New Insights into Artisanal and Traditional Beverages)
Show Figures

Figure 1

17 pages, 3819 KiB  
Article
Valorization of a Residue of the Kombucha Beverage Industry Through the Production of Dehydrated Water Dispersible Cellulose Nanocrystals
by Laura Giselle Alonso, Luciana Di Giorgio, María Laura Foresti and Adriana Noemi Mauri
Polysaccharides 2025, 6(2), 44; https://doi.org/10.3390/polysaccharides6020044 - 29 May 2025
Viewed by 535
Abstract
In this study, cellulose nanocrystals (CNCs) were successfully isolated through the acid hydrolysis of freeze-dried and oven-dried bacterial nanocellulose (BNC) recovered from the floating pellicle generated during Kombucha tea production. The influence of the BNC drying method and its concentration on the yield [...] Read more.
In this study, cellulose nanocrystals (CNCs) were successfully isolated through the acid hydrolysis of freeze-dried and oven-dried bacterial nanocellulose (BNC) recovered from the floating pellicle generated during Kombucha tea production. The influence of the BNC drying method and its concentration on the yield and main characteristics of the CNCs obtained were studied. Additionally, selected CNC suspensions at various pH levels were subjected to freeze-drying and oven-drying, followed by an assessment of their dispersibility in water after undergoing different mechanical treatments. Results demonstrate the potential of utilizing byproducts from the expanding Kombucha industry as an alternative cellulose source for CNC production. Furthermore, the drying method applied to the BNC and its initial concentration in the hydrolysis medium were found to significantly impact the properties of the resulting CNCs, which exhibited diverse size distributions and Z-potential values. Finally, the redispersion studies highlighted the beneficial effect of drying CNCs from neutral and alkaline dispersions, as well as the requirement of ultrasound treatments to achieve the proper dispersion of dehydrated CNC powders. Full article
Show Figures

Graphical abstract

14 pages, 647 KiB  
Article
Using Dried Crickets as a Nutrients and Bioactive Compounds Source in Crispy Vegetable Chips
by Natcharee Jirukkakul and Areeya Phoolklang
Foods 2025, 14(10), 1810; https://doi.org/10.3390/foods14101810 - 20 May 2025
Viewed by 595
Abstract
In general, the acceptance of edible insects by consumers is low. Therefore, the aim of this research was to develop protein supplements from desiccated crickets. The objectives of this research were to study the effects of four different drying methods on the chemical [...] Read more.
In general, the acceptance of edible insects by consumers is low. Therefore, the aim of this research was to develop protein supplements from desiccated crickets. The objectives of this research were to study the effects of four different drying methods on the chemical properties of crickets and the effects of cricket powder fortification in vegetable chips on the chemical and physical qualities and consumer acceptance. Through an analysis of the chemical composition of cricket powder dried using hot air, vacuum, microwave, and freeze-drying methods, it was found that freeze-drying resulted in the highest protein content in the cricket powder, followed by vacuum drying, hot air drying, and microwave drying. However, the antioxidant activity, which was analyzed using DPPH, showed no significant differences across the four drying methods (p > 0.05). The sensory testing of chips by 30 consumers revealed that the chips with a 10:10 ratio of vegetable powder to cricket powder received the highest satisfaction results in all of the test attributes, ranging from “like” to “like very much”. When studying the chemical composition, hardness, and color of the chips, it was found that increasing the amount of cricket powder resulted in a decrease in lightness and yellowness, while redness and hardness increased. The antioxidant activity and phenolic content of the chips increased with the addition of cricket powder, while the flavonoid and potassium contents decreased as vegetable powder was replaced with cricket powder. In the formula most preferred by consumers, the antioxidant activity, phenolic content, flavonoid content, and potassium content were 60.90%, 6.25 ± 0.46 mg GAE/mg sample, 11.16 ± 0.1 mg QE/mg sample, and 0.66 ± 0.01%, respectively. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Graphical abstract

22 pages, 2478 KiB  
Article
Optimized Spirulina Fermentation with Lacticaseibacillus rhamnosus: Bioactive Properties and Pilot-Scale Validation
by Akif Emre Kavak, Didem Balkanlı, Osman Sagdıc, Akın Özdemir and Enes Dertli
Fermentation 2025, 11(5), 248; https://doi.org/10.3390/fermentation11050248 - 1 May 2025
Viewed by 1065
Abstract
Sustainable bio-based products derived from fermentation are gaining increasing interest. The present study was designed to determine the interaction of Lacticaseibacillus rhamnosus 23.2 bacteria with spirulina in a 3 L glass bioreactor and the effect of aeration and agitation speed on the final [...] Read more.
Sustainable bio-based products derived from fermentation are gaining increasing interest. The present study was designed to determine the interaction of Lacticaseibacillus rhamnosus 23.2 bacteria with spirulina in a 3 L glass bioreactor and the effect of aeration and agitation speed on the final product biomass and antioxidant capacity. The fermentation medium contained only glucose, an inorganic salt mixture, and spirulina powder. The estimated biomass and antioxidant activity were found to be 3.74 g/L and 84.72%, respectively, from the results of the optimization model. Scale-up was performed with the obtained optimization data, and three pilot-scale fermentations were carried out in a 30 L stainless steel bioreactor. As a result of pilot production, the obtained bioactive products were freeze-dried, and their antibacterial, antioxidant, total phenolic properties, and cytotoxic activity were investigated. The pilot production results showed that the increase in bacterial cell number was around 3–4 log after 24 h of fermentation. An inhibitory effect against pathogenic bacteria was observed. A strong radical scavenging effect was found in antioxidant analyses. Total phenolic substance content was 26.5 mg gallic acid equivalent (GAE) g−1, which was the highest level in this study. Cytotoxic activity showed that bioactive products had a cytotoxic effect against Caco-2 adenocarcinoma cells. This study emphasizes the potential of Arthrospira platensis biomass as a substrate for the production of lactic acid bacteria (LAB)-based bioproducts. It is thought that the results obtained from this study may position potential innovative strategies in the food, pharmaceutical, agriculture, and cosmetic industries. Full article
Show Figures

Figure 1

19 pages, 2624 KiB  
Article
Production of Myco-Nanomaterial Products from Pleurotus ostreatus (Agaricomycetes) Mushroom via Pyrolysis
by Gréta Törős, Áron Béni, Andrea Kovács Balláné, Dávid Semsey, Aya Ferroudj and József Prokisch
Pharmaceutics 2025, 17(5), 591; https://doi.org/10.3390/pharmaceutics17050591 - 30 Apr 2025
Cited by 2 | Viewed by 606
Abstract
Background: The study aimed to develop a sustainable method for producing myco-nanomaterials, particularly fluorescent carbon nanodots (CNDs), from freeze-dried Pleurotus ostreatus (Agaricomycetes) mushroom powder via pyrolysis. The goal was to investigate how pyrolysis conditions affect CND characteristics and their potential antimicrobial properties. Mushroom [...] Read more.
Background: The study aimed to develop a sustainable method for producing myco-nanomaterials, particularly fluorescent carbon nanodots (CNDs), from freeze-dried Pleurotus ostreatus (Agaricomycetes) mushroom powder via pyrolysis. The goal was to investigate how pyrolysis conditions affect CND characteristics and their potential antimicrobial properties. Mushroom powder was pyrolyzed at temperatures ranging from 150 to 240 °C. The resulting products were analyzed for yield, molecular weight, fluorescence intensity, and estimated CND concentration in relation to the carbon-to-nitrogen (C/N) ratio. Antibacterial activity was tested against Escherichia coli and Staphylococcus epidermidis. Product yield decreased from 13.20% at 150 °C to 0.80% at 240 °C. Molecular weight peaked at 200 °C (623.20 kDa), while maximum fluorescence intensity (739.40 A.U.) was observed at 210 °C. A strong positive correlation (R2 = 0.72) was found between the C/N ratio and estimated CND concentration. Antimicrobial testing revealed notable inhibition of E. coli, associated with higher fluorescence intensity and CND content. Pyrolyzed P. ostreatus mushroom powder offers a promising, eco-friendly platform for producing luminescent, carbonaceous nanomaterials with antibacterial potential. These non-purified, myco-derived nanomaterials may contribute to green nanotechnology development and antimicrobial strategies. Full article
Show Figures

Figure 1

20 pages, 3758 KiB  
Article
Study of Natural Dyes’ Liposomal Encapsulation in Food Dispersion Model Systems via High-Pressure Homogenization
by Lubomír Lapčík, Barbora Lapčíková, Tomáš Valenta, Martin Vašina, Pavlína Dudová and Miroslav Fišera
Molecules 2025, 30(8), 1845; https://doi.org/10.3390/molecules30081845 - 20 Apr 2025
Viewed by 702
Abstract
The aim of this study was to investigate the encapsulation of natural food dyes incorporated into liposomes in terms of particle size, rheological and colour properties, zeta potential, and encapsulation efficiency. The liposomes contained dye substances of anthocyanins from freeze-dried raspberry powder (R), [...] Read more.
The aim of this study was to investigate the encapsulation of natural food dyes incorporated into liposomes in terms of particle size, rheological and colour properties, zeta potential, and encapsulation efficiency. The liposomes contained dye substances of anthocyanins from freeze-dried raspberry powder (R), copper complexes of chlorophyllins (C), or commercial-grade β-carotene (B). The phospholipid envelope was composed of sunflower lecithin and carboxymethylcellulose sodium salt as a surface stabilizer treated by high-pressure homogenization. The median particle diameter of R and C systems fluctuated around 200 nm, while B systems showed a broader range of 165–405 nm. The rheological results demonstrated a specific flow behaviour pattern dependent on the rotational shear applied, indicating a flow-induced structural change in the dispersions. Samples were characterized by a translucent profile with relatively high lightness, accompanied by a hue angle (h*) typical of the dye encapsulated. The zeta potential was approx. −30 mV, showing electrokinetically stabilized dispersions. The encapsulation efficiency (EE) varied significantly, with the highest EE observed for anthocyanins, ranging from 36.17 to 84.61%. The chlorophyll encapsulation was the least effective, determined in the range between 1.82 and 16.03%. Based on the suitability index, optimal liposomal formulations were evaluated by means of the Central Composite Design (CCD). Full article
Show Figures

Graphical abstract

14 pages, 1243 KiB  
Article
Impact of Functional Supplement Based on Cornelian Cherry (Cornus mas L.) Juice in Sourdough Bread Making: Evaluation of Nutritional and Quality Aspects
by Ioanna Mantzourani, Maria Daoutidou and Stavros Plessas
Appl. Sci. 2025, 15(8), 4283; https://doi.org/10.3390/app15084283 - 13 Apr 2025
Cited by 1 | Viewed by 437
Abstract
The production of functional bread has been of great interest lately to the Food Industry. Regarding this, the enrichment of bread with natural raw materials rich in phenolic antioxidants, such as fruits, has become a new trend. Likewise, the aim of the current [...] Read more.
The production of functional bread has been of great interest lately to the Food Industry. Regarding this, the enrichment of bread with natural raw materials rich in phenolic antioxidants, such as fruits, has become a new trend. Likewise, the aim of the current study was to evaluate novel supplements based on freeze-dried Cornelian cherry juice, both unfermented and fermented by probiotic L. plantarum ATCC 14917, in sourdough bread production. The outcome showed that the fermented supplement led to sourdough bread with elevated nutritional features in terms of its total phenolic content (99.5 mg GAE/100 g) and antioxidant activity (213 mg TE/100 g for ABTS and 4.7 μmol TE/g for DPPH), as well as a reduction in phytic acid (93.3%) compared with all the other bread samples. In addition, the same sample contained higher amounts of lactic (2.91 g/Kg bread) and acetic acid (1.23 g/Kg), as well as formic (0.11 g/Kg), n-valeric (0.12 g/Kg) and caproic (0.05 g/Kg) acids compared with all the other samples, leading to a higher preservation time (13 days) regarding rope and mold spoilage. All breads exhibited the same sensorial characteristics, proving that the supplement did not affect bread quality. This outcome is very interesting since powdered supplements have recently been endorsed in the bread industry for enabling nutritional and technological improvements. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

Back to TopTop