Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = freeform fabrication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2586 KiB  
Communication
Full-Factorial Rheological Investigation of Carbopol ETD2020 for Embedded Printing: Effects of pH and Carbomer Concentration
by Tobias Biermann, Lennart Mesecke, Simon Teves, Ivo Ziesche and Roland Lachmayer
Materials 2025, 18(13), 3164; https://doi.org/10.3390/ma18133164 - 3 Jul 2025
Viewed by 385
Abstract
Embedded printing of soft materials relies on yield-stress support matrices to prevent sagging and enable freeform fabrication. The rheological parameters of the matrix material directly influence critical printing outcomes such as strand positioning, cavity formation, structural stability, and defect suppression in embedded printing. [...] Read more.
Embedded printing of soft materials relies on yield-stress support matrices to prevent sagging and enable freeform fabrication. The rheological parameters of the matrix material directly influence critical printing outcomes such as strand positioning, cavity formation, structural stability, and defect suppression in embedded printing. Despite widespread use of Carbopol® formulations, a systematic rheological characterization of ETD2020 across relevant polymer concentrations and pH levels for embedded printing is lacking. Here, we implement a full-factorial design with polymer concentrations from 0.1wt% to 0.9wt% and triethanolamine dosages of 30–50µL per 100g. Steady-shear (0.001200s1) and oscillatory (1Hz) rheometry yielded Herschel–Bulkley parameters τy, k, n as well as storage and loss modulus G/G. All formulations exhibited pronounced shear-thinning, with τy increasing nonlinearly from <1Pa to 41.1Pa and G reaching 400Pa at 0.9wt%. A five-hour window of invariant rheology was identified, followed by a Δτy10Pa increase after five days, indicating delayed polymerization. The comprehensive material characterization defines a rheological window for ETD2020 and facilitates simulation-based modeling and the targeted tuning of matrix properties. Heatmaps provide an interpolated depiction of combined carbomer and triethanolamine concentrations, enabling tunable support matrices for embedded printing. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

18 pages, 5991 KiB  
Article
The Intraoperative Fabrication of PMMA Patient-Specific Enophthalmos Wedges and Onlays for Post-Traumatic OZC Reconstruction
by Layton Vosloo
Craniomaxillofac. Trauma Reconstr. 2025, 18(2), 29; https://doi.org/10.3390/cmtr18020029 - 29 May 2025
Viewed by 2034
Abstract
Objective: Trauma is a leading cause of enophthalmos, typically resulting from an increase in the volume of the bony orbit. The general consensus is that post-traumatic primary deformity repair should aim to restore the premorbid volume, shape, and cosmesis of the orbitozygomatic complex [...] Read more.
Objective: Trauma is a leading cause of enophthalmos, typically resulting from an increase in the volume of the bony orbit. The general consensus is that post-traumatic primary deformity repair should aim to restore the premorbid volume, shape, and cosmesis of the orbitozygomatic complex (OZC). This study aims to utilise novel three-dimensional (3D) printed patient-specific moulds to intraoperatively fabricate enophthalmos wedges and onlays using polymethylmethacrylate (PMMA) bone cement to reconstruct the OZC. Methods: A total of seven patients underwent digital surgical planning using Freeform software to virtually correct orbitozygomatic complex deformities guided by a design algorithm. Three-dimensionally printed nylon patient-specific moulds were used intraoperatively to fabricate enophthalmos wedges and/or onlays using an industry-standard PMMA bone cement. Clinical examination and application of the proposed design algorithm determined that enophthalmos wedges were indicated for four patients, with one also requiring an onlay; and periorbital onlays were required for the three remaining patients. Results: Hertel exophthalmometry at a mean follow-up of 19.1 months demonstrated good outcomes in the correction of post-traumatic enophthalmos and hypoglobus and with patients reporting good subjective cosmetic results. Patients 5 and 7 had follow-up three-dimensional computed tomography (3D-CT) to confirm correct placement. Conclusion: The use of patient-specific PMMA wedges and onlays, fabricated intraoperatively with the aid of 3D-printed moulds, offers a reliable and effective approach for correcting post-traumatic enophthalmos and hypoglobus. This method allows for the restoration of orbital volume and anatomical contours, addressing both functional and aesthetic concerns. Our results demonstrate that this technique yields favourable outcomes. Full article
Show Figures

Graphical abstract

15 pages, 7802 KiB  
Article
Adaptive Generation Method for Small Volume Easy Fabrication Freeform Unobscured Three-Mirror Systems Based on Machine Learning
by Yiwei Sun, Yangjie Wei and Ji Zhao
Photonics 2025, 12(5), 405; https://doi.org/10.3390/photonics12050405 - 22 Apr 2025
Viewed by 331
Abstract
Freeform unobscured multiple-mirror systems have been widely applied in high-precision optical fields due to their high imaging quality and no chromatic aberration and central obstruction. However, how to design a freeform unobscured multiple-mirror system with small system volume, imaging quality, and low manufacturing [...] Read more.
Freeform unobscured multiple-mirror systems have been widely applied in high-precision optical fields due to their high imaging quality and no chromatic aberration and central obstruction. However, how to design a freeform unobscured multiple-mirror system with small system volume, imaging quality, and low manufacturing difficulty is challenging. This study proposes an adaptive generation method for freeform unobscured three-mirror systems with small volume and ease of fabrication based on machine learning, considering the fabrication constraints, volume limitations, imaging quality, and design efficiency. First, an error function based on volume, fabrication, and imaging quality functions is constructed, and a dataset is generated using this error function. Then, a machine learning model is trained using this dataset, enabling efficient prediction of the parameters for small-volume, easy-to-fabricate freeform unobscured three-mirror systems. Finally, the parameters of the freeform unobscured three-mirror system are predicted using the trained model, and combined with the freeform surface generation method, a freeform unobscured three-mirror imaging system is automatically obtained. Experimental results demonstrate that our method can effectively generate freeform unobscured three-mirror systems that meet the requirements for small volume and easy fabrication, providing a new approach for optical design. Full article
(This article belongs to the Special Issue Emerging Topics in Freeform Optics)
Show Figures

Figure 1

19 pages, 5914 KiB  
Article
A Comparative Analysis of Mechanical Properties in Injection Moulding (IM), Fused Filament Fabrication (FFF), and Arburg Plastic Freeforming (APF) Processes
by Caolan Jameson, Declan M. Devine, Gavin Keane and Noel M. Gately
Polymers 2025, 17(7), 990; https://doi.org/10.3390/polym17070990 - 5 Apr 2025
Viewed by 642
Abstract
This study explores the mechanical performance of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) filaments fabricated using fused filament fabrication (FFF), Arburg plastic freeforming (APF), and injection moulding (IM). A series of controlled experiments, including differential scanning calorimetry (DSC), scanning electron microscopy (SEM), [...] Read more.
This study explores the mechanical performance of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) filaments fabricated using fused filament fabrication (FFF), Arburg plastic freeforming (APF), and injection moulding (IM). A series of controlled experiments, including differential scanning calorimetry (DSC), scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMA), and mechanical tests, were conducted to evaluate the material’s mechanical, thermal, and chemical properties. The results highlight the influence of process parameters and material choice on the mechanical properties of PC/ABS components. The FFF samples exhibited the highest impact strength (up to 28.82 kJ/m²), attributed to porosity acting as a stress absorber under impact load. However, this same porosity led to a 9.14% and 19.27% reduction in flexural and tensile strength, respectively, compared to the APF samples, where stress concentration effects were more pronounced under flexural loads. APF’s mechanical properties were comparable to those of IM, with the process achieving the highest tensile strength, highlighting its potential for producing robust PC/ABS samples. This study aims to provide valuable insight into the selection of additive manufacturing (AM) processes for PC/ABS components. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 10930 KiB  
Article
Development of the E-Portal for the Design of Freeform Varifocal Lenses Using Shiny/R Programming Combined with Additive Manufacturing
by Negin Dianat, Shangkuan Liu, Kai Cheng and Kevin Lu
Machines 2025, 13(4), 298; https://doi.org/10.3390/machines13040298 - 3 Apr 2025
Viewed by 528
Abstract
This paper presents an interactive online e-portal development and application using Shiny/R version 4.4.0 programming for personalised varifocal lens surface design and manufacturing in an agile and responsive manner. Varifocal lenses are specialised lenses that provide clear vision at both far and near [...] Read more.
This paper presents an interactive online e-portal development and application using Shiny/R version 4.4.0 programming for personalised varifocal lens surface design and manufacturing in an agile and responsive manner. Varifocal lenses are specialised lenses that provide clear vision at both far and near distances. The user interface (UI) of the e-portal application creates an environment for customers to input their eye prescription data and geometric parameters to visualise the result of the designed freeform varifocal lens surface, which includes interactive 2D contour plots and 3D-rendered diagrams for both left and right eyes simultaneously. The e-portal provides a unified interactive platform where users can simultaneously access both the specialised Copilot demo web for lenses and the main Shiny/R version 4.4.0 programming app, ensuring seamless integration and an efficient process flow. Additionally, the data points of the 3D-designed surface are automatically saved. In order to check the performance of the designed varifocal lens before production, it is remodelled in the COMSOL Multiphysics 6.2 modelling and analysis environment. Ray tracing is built in the environment for the lens design assessment and is then integrated with the lens additive manufacturing (AM) using a Formlabs 3D printer (Digital Fabrication Center (DFC), London, UK). The results are then analysed to further validate the e-portal-driven personalised design and manufacturing approach. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

19 pages, 5397 KiB  
Article
Novel Processes for the Production of Continuous Carbon Fiber-Reinforced Thermoplastic Polymers via Additive Manufacturing and Comparisons
by Simon Zeidler, Nikolas Matkovic, Florian Kößler, Alexander Puchta and Jürgen Fleischer
Polymers 2025, 17(5), 584; https://doi.org/10.3390/polym17050584 - 22 Feb 2025
Viewed by 1423
Abstract
Continuous fiber-reinforced polymer (CoFRP) parts offer significant potential for reducing future product consumption and CO2 emissions due to their high tensile properties and low density. Additive manufacturing enables the tool-free production of complex geometries with optimal material utilization, making it a promising [...] Read more.
Continuous fiber-reinforced polymer (CoFRP) parts offer significant potential for reducing future product consumption and CO2 emissions due to their high tensile properties and low density. Additive manufacturing enables the tool-free production of complex geometries with optimal material utilization, making it a promising approach for creating load-path-optimized CoFRP parts. Recent advancements have integrated continuous fibers into laser sintering processes, allowing for the support-free production of complex parts with improved material properties. However, additive manufacturing faces challenges such as long production times, small component dimensions, and defects like high void content. New processes, including Arburg Polymer Freeforming (APF), robotic direct extrusion (DES) and the integration of thermoplastic tapes, and laser sintering, have enabled the production of CoFRPs to address these issues. A comparison of these new processes with existing material extrusion methods is necessary to determine the most suitable approach for specific tasks. The fulfillment factor is used to compare composites with different matrix and fiber materials, representing the percentage of experimentally achieved material properties relative to the theoretical maximum according to the Voigt model. The fulfillment factor varies significantly across different processes and materials. For FFF processes, the fulfillment factor ranges from 20% to 77% for stiffness and 14% to 84% for strength, with an average of 52% and 37%, respectively. APF shows a high fulfillment factor for stiffness (94%) but is lower for strength (23%), attributed to poor fiber–matrix bonding and process-induced pores. The new DES process improves the fulfillment factor due to additional consolidation steps, achieving above-average values for strength (67%). The CoFRP produced by the novel LS process also shows a high fulfillment factor for stiffness (85%) and an average fulfillment factor for strength (39%), influenced by suboptimal process parameters and defects. Full article
Show Figures

Figure 1

17 pages, 7097 KiB  
Article
Numerical Prediction and Experimental Validation of Deposited Filaments in Direct Ink Writing: Deposition Status and Profile Dimension
by Yongqiang Tu, Haoran Zhang, Xue Shi, Jianyu Fan, Baohua Bao, Gang Lu, Fuwei Han, Hao Wu and Alaa Hassan
Polymers 2025, 17(5), 573; https://doi.org/10.3390/polym17050573 - 21 Feb 2025
Cited by 1 | Viewed by 611
Abstract
The deposition status and profile dimension of deposited filaments have an impact on the quality of the printed parts fabricated by direct ink writing (DIW). Previous works often failed to realize the full quantitative characterizations of the detailed influence of the process parameters [...] Read more.
The deposition status and profile dimension of deposited filaments have an impact on the quality of the printed parts fabricated by direct ink writing (DIW). Previous works often failed to realize the full quantitative characterizations of the detailed influence of the process parameters on the deposition status and profile dimension. Herein, we predict and analyze the deposition status and profile dimension by proposing an improved three-dimensional (3D) numerical model. The prediction accuracy of the proposed numerical model is verified through filament deposition experiments. The maximum relative errors of width and height between the experimental and simulation results of cross-sections are 10.13% and 7.37%, respectively. The effect of process parameters on the deposition status and profile dimension has been quantified. Critical process parameters are identified as the dimensionless nozzle velocity (V*) and the dimensionless height (H*). Three deposition statuses named over-deposition, pressed deposition and freeform deposition are characterized depending on the combination of V* and H*. The current work demonstrates an effective approach for the prediction of the deposition status and profile dimension of the deposited filaments along with the investigation of the effects of process parameters in DIW based on numerical simulations. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

23 pages, 10547 KiB  
Article
Effect of 3D Printing Orientation on the Accuracy and Surface Roughness of Polycarbonate Samples
by Paweł Turek, Anna Bazan and Marcin Bulicz
Machines 2025, 13(1), 9; https://doi.org/10.3390/machines13010009 - 27 Dec 2024
Viewed by 954
Abstract
The study evaluates models produced using fused deposition modeling (FDM) technology in five orientations, fabricated from polycarbonate (PC) material with a FORTUS 360mc printer. The models included simple shapes (planes and cylinders) and complex free-form surfaces. Accuracy was assessed using a GOM Scan [...] Read more.
The study evaluates models produced using fused deposition modeling (FDM) technology in five orientations, fabricated from polycarbonate (PC) material with a FORTUS 360mc printer. The models included simple shapes (planes and cylinders) and complex free-form surfaces. Accuracy was assessed using a GOM Scan 1 scanner and GOM Inspect 2019 software, focusing on 3D deviations and dimensional and geometric deviations (form, position, and orientation, which have not yet been analyzed in similar studies and may limit the usage of the printed elements). Surface roughness was analyzed using a MarSurf XR profilometer, measuring Ra and Rz parameters. All models were characterized by a predominance of negative 3D deviations. The analysis of variance showed no effect of model orientation on the values of linear dimensional deviations and geometric deviations. The largest deviations were negative and associated with the size of the models. The average value of the absolute deviation of linear dimensions associated with the size of the model was 0.30 mm. The average value of the absolute deviation of other linear dimensions was 0.07 mm. The average value of orientation and position deviations for each model varied in the range of 0.15–0.20 mm, and for form deviation 0.16–0.20 mm. One of the models had a higher surface roughness (Ra = 17.2 µm, Rz = 71.3 µm) than the other four models (Ra in the range of 12.7–13.8 µm, Rz in the range of 57.2–61.2 µm). During the research, three distinct surface types were identified on the models. The research indicated the validity of taking surface type into account when analyzing its microgeometry. Full article
(This article belongs to the Special Issue Coordinate Measurements of Free-Form Surfaces)
Show Figures

Figure 1

24 pages, 19333 KiB  
Article
Development of Thermosensitive Hydrogels with Tailor-Made Geometries to Modulate Cell Harvesting of Non-Flat Cell Cultures
by Rubén García-Sobrino, Enrique Martínez-Campos, Daniel Marcos-Ríos, Zenen Zepeda-Rodríguez, Juan L. Valentín, Raúl Sanz-Horta, Marina León-Calero, Helmut Reinecke, Carlos Elvira, Alberto Gallardo and Juan Rodríguez-Hernández
Gels 2024, 10(12), 802; https://doi.org/10.3390/gels10120802 - 6 Dec 2024
Cited by 1 | Viewed by 1206
Abstract
Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and [...] Read more.
Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and based on N-Vinyl Caprolactam (VCL) with the aim of modulating the adhesion of non-planar cell cultures. The fabrication process is based on the use as a mold of two-layer thick water-soluble polyvinyl alcohol (PVA) previously printed by Extrusion Material (MatEx). From this technology it has been possible to obtain hydrogels with different 3D geometries and different crosslinking percentages (2, 4 and 6 mol%). Studies have shown that networks reduce their thermosensitivity not only when the percentage of crosslinking in the formulation increases, but also when the thickness of the hydrogel obtained increases. Based on this reduction in thermosensitivity, the less crosslinked (2 mol%) hydrogels have been evaluated to carry out a novel direct application in which hydrogels with curved geometry have allowed cell adhesion and proliferation at 37 °C with the endothelial cell line C166-GFP; likewise, non-aggressive cell detachment was observed when the hydrogel temperature was reduced to values of 20 °C. Therefore, the present manuscript shows a novel application for the synthesis of free-form thermosensitive hydrogels that allows modulation of non-planar cell cultures. Full article
(This article belongs to the Special Issue Advances in Hydrogels for 3D Printing)
Show Figures

Graphical abstract

22 pages, 5283 KiB  
Article
Free-Forming of Customised NFRP Profiles for Architecture Using Simplified Adaptive and Stay-In-Place Moulds
by Piotr Baszyński and Hanaa Dahy
Designs 2024, 8(6), 129; https://doi.org/10.3390/designs8060129 - 3 Dec 2024
Viewed by 1296
Abstract
Design and production technology of natural fibre reinforced polymers not only aims to offer products with a lower environmental impact than conventional glass fibre composites but also caters for designers’ needs for the fabrication of lightweight free-formed architectural components. To combine both characteristics, [...] Read more.
Design and production technology of natural fibre reinforced polymers not only aims to offer products with a lower environmental impact than conventional glass fibre composites but also caters for designers’ needs for the fabrication of lightweight free-formed architectural components. To combine both characteristics, the forming process itself, once scaled up, needs to be based on efficient material moulding strategies. Based on case studies of adaptive forming techniques derived from the composite industry and concrete casting, two approaches for the mass production of customised NFRP profiles are proposed. Both processes are based on foam from recycled PET, which is used as either a removable mould or a stay-in-place (SIP) core. Once the textile reinforcement is placed on a mould, either by helical winding of natural fibre prepregs or in the form of mass-produced textile preforms, its elastic properties allow for the free-forming of the composite profile before the resin is fully cured. This paper investigates the range of deformations that it is possible to achieve by each method and describes the realisation of a small structural demonstrator, in the form of a stool, through the helical winding of a flax prepreg on a SIP core. Full article
Show Figures

Figure 1

10 pages, 871 KiB  
Article
Femtosecond Laser Fabrication of Gradient Index Micro-Optics in Chalcogenide Glass
by Thien Le Phu, Mariel Ledesma Molinero, Catherine Boussard-Plédel, David Le Coq and Pascal Masselin
Photonics 2024, 11(11), 1076; https://doi.org/10.3390/photonics11111076 - 15 Nov 2024
Viewed by 1057
Abstract
Gradient refractive index (GRIN) lenses have been widely used for many applications. However, the traditional manufacturing methods of GRIN lenses are very time-consuming and only suitable for macro-scale operations. In addition, those methods do not have the ability to produce other GRIN optical [...] Read more.
Gradient refractive index (GRIN) lenses have been widely used for many applications. However, the traditional manufacturing methods of GRIN lenses are very time-consuming and only suitable for macro-scale operations. In addition, those methods do not have the ability to produce other GRIN optical components with complex refractive index profiles like aspheric or freeform components. We report here an approach to produce GRIN micro-optical components in chalcogenide glass based on a direct laser writing technique. Using this approach, we are able to locally modulate the refractive index of the glass subtrates and create an arbitrary refractive index profile. To prove the flexibility of the method for the production of GRIN micro-optics, we fabricated GRIN micro-lenses and a micro-Fresnel axicon (Fraxicon). The optical properties of micro-lenses can be controlled by varying the writing parameters or the substrate thickness. As a result, the working distance of the micro-lenses can extend from 0 to more than 1000 μm. Also, the micro-Fraxicon exhibits the ability to convert a Gaussian beam to a Bessel-like beam which concentrates the mid-infrared light into an approximately 1200 μm long confinement zone. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

13 pages, 6719 KiB  
Article
Fatigue Crack Growth Behavior of Additively Manufactured Ti Metal Matrix Composite with TiB Particles
by Thevika Balakumar, Afsaneh Edrisy and Reza A. Riahi
Coatings 2024, 14(11), 1447; https://doi.org/10.3390/coatings14111447 - 13 Nov 2024
Viewed by 1167
Abstract
Fatigue crack growth behavior of additively manufactured Ti metal matrix composite with TiB particles at room temperature was studied using a compact tension specimen and at the stress ratio of 0.1 (R = 0.1). The composite studied in this work was manufactured with [...] Read more.
Fatigue crack growth behavior of additively manufactured Ti metal matrix composite with TiB particles at room temperature was studied using a compact tension specimen and at the stress ratio of 0.1 (R = 0.1). The composite studied in this work was manufactured with a unique additive technique called plasma transferred arc solid free-form fabrication, which was designed to manufacture low-cost near-net-shaped components for aerospace and automotive industries. The fatigue crack growth rate experiments were carried perpendicular and parallel to the additive material build, aiming to find any fatigue anisotropies at room temperature. The findings reveal that additively manufactured Ti-TiB composite shows isotropic fatigue properties with respect to fatigue crack growth. Furthermore, the fatigue crack growth mechanisms in this additive composite material were identified as void nucleation/coalescence and the bypassing of particles and matrix, depending on the interparticle distance. Full article
(This article belongs to the Special Issue Latest Insights in Metal Fatigue, Failure, and Fracture)
Show Figures

Figure 1

17 pages, 7988 KiB  
Article
Sustainable Support Material for Overhang Printing in 3D Concrete Printing Technology
by Guan Heng Andrew Ting, Yi Wei Daniel Tay, Tan Kai Noel Quah, Ming Jen Tan and Teck Neng Wong
Appl. Sci. 2024, 14(17), 7800; https://doi.org/10.3390/app14177800 - 3 Sep 2024
Viewed by 1749
Abstract
The advantage of 3DCP technologies is the ability to fabricate free-form structures. However, printing openings in concrete structures are limited by the presence of overhanging sections. While various 3D printing and additive manufacturing technologies have established methods for handling overhangs with temporary supports, [...] Read more.
The advantage of 3DCP technologies is the ability to fabricate free-form structures. However, printing openings in concrete structures are limited by the presence of overhanging sections. While various 3D printing and additive manufacturing technologies have established methods for handling overhangs with temporary supports, many existing techniques for 3D concrete printing still rely on wooden planks and corbelling, which restrict the design flexibility and slope angles. The objective of this study is to develop a removable and sustainable support material with high printability performance. This support material serves as temporary support for overhang sections in 3D-printed structures and can be removed once the primary concrete has hardened sufficiently. This study observed that increasing the recycled glass content in the mixture raises both the dynamic and static yield stresses, with only mixtures containing up to 60% recycled glass remaining pumpable. Optimization of the mixture design aimed to balance high flowability and buildability, and the results indicated that a mixture with 60% recycled glass content is optimal. The effectiveness of the optimized support material was validated through the successful printing of a structure featuring a free-form opening and overhang section. Full article
(This article belongs to the Special Issue Applications of High-Performance Concrete in Construction)
Show Figures

Figure 1

19 pages, 3657 KiB  
Article
Shaping in the Third Direction: Colloidal Photonic Crystals with Quadratic Surfaces Self-Assembled by Hanging-Drop Method
by Ion Sandu, Iulia Antohe, Claudiu Teodor Fleaca, Florian Dumitrache, Iuliana Urzica and Marius Dumitru
Polymers 2024, 16(13), 1931; https://doi.org/10.3390/polym16131931 - 6 Jul 2024
Cited by 1 | Viewed by 3464
Abstract
High-quality, 3D-shaped, SiO2 colloidal photonic crystals (ellipsoids, hyperboloids, and others) were fabricated by self-assembly. They possess a quadratic surface and are wide-angle-independent, direction-dependent, diffractive reflection crystals. Their size varies between 1 and 5 mm and can be achieved as mechanical-resistant, free-standing, thick [...] Read more.
High-quality, 3D-shaped, SiO2 colloidal photonic crystals (ellipsoids, hyperboloids, and others) were fabricated by self-assembly. They possess a quadratic surface and are wide-angle-independent, direction-dependent, diffractive reflection crystals. Their size varies between 1 and 5 mm and can be achieved as mechanical-resistant, free-standing, thick (hundreds of ordered layers) objects. High-quality, 3D-shaped, polystyrene inverse-opal photonic superstructures (highly similar to diatom frustules) were synthesized by using an inside infiltration method as wide-angle-independent, reflective diffraction objects. They possess multiple reflection bands given by their special architecture (a torus on the top of an ellipsoid) and by their different sized holes (384 nm and 264 nm). Our hanging-drop self-assembly approach uses setups which deform the shape of an ordinary spherical drop; thus, the colloidal self-assembly takes place on a non-axisymmetric liquid/air interface. The deformed drop surface is a kind of topological interface which changes its shape in time, remaining as a quality template for the self-assembly process. Three-dimensional-shaped colloidal photonic crystals might be used as devices for future spectrophotometers, aspheric or freeform diffracting mirrors, or metasurfaces for experiments regarding space-time curvature analogy. Full article
(This article belongs to the Special Issue Smart Polymers and Composites: Multifunctionality and Recyclability)
Show Figures

Figure 1

22 pages, 14417 KiB  
Article
Electroforming of Personalized Multi-Level and Free-Form Metal Parts Utilizing Fused Deposition Modeling-Manufactured Molds
by Hazem Hamed, Sayedmohammadali Aghili, Rolf Wüthrich and Jana D. Abou-Ziki
Micromachines 2024, 15(6), 734; https://doi.org/10.3390/mi15060734 - 31 May 2024
Cited by 2 | Viewed by 1614
Abstract
Adapting to the growing demand for personalized, small-batch manufacturing, this study explores the development of additively manufactured molds for electroforming personalized metal parts. The approach integrates novel multi-level mold design and fabrication techniques, along with the experimental procedures for the electroforming process. This [...] Read more.
Adapting to the growing demand for personalized, small-batch manufacturing, this study explores the development of additively manufactured molds for electroforming personalized metal parts. The approach integrates novel multi-level mold design and fabrication techniques, along with the experimental procedures for the electroforming process. This work outlines design considerations and guidelines for effective electroforming in additively manufactured molds, successfully demonstrating the production of composite metal components with multi-level and free-form geometries. By emphasizing cost efficiency and part quality, particularly for limited-thickness metal components, the developed technique offers distinct advantages over existing metal additive manufacturing methods. This approach establishes itself as a flexible and durable method for metal additive manufacturing, expanding the scope of electroforming beyond traditional constraints such as thin-walled hollow structures, 2D components, and nanoscale applications. Full article
Show Figures

Figure 1

Back to TopTop