Shaping in the Third Direction: Colloidal Photonic Crystals with Quadratic Surfaces Self-Assembled by Hanging-Drop Method
Abstract
:1. Introduction
- (a)
- Show constant colors at different viewing angles (angular independence).
- (b)
- Both Bragg and grating diffraction contribute to the reflection.
- (c)
- Transmission spectra are not the inverse of the reflection.
- (d)
- Different crystal planes may contribute to the reflection.
2. Materials and Methods
2.1. Materials
- (a)
- Smooth and clean glass fibers: These common glass fibers were 5 cm long and ranged from 0.2 mm to 3 mm in diameter.
- (b)
- Microscope glass slides.
- (c)
- Copper and steel wires: These wires were also 5 cm long and had diameters ranging from 0.2 mm to 3 mm.
- (d)
- Steel spheres: These spheres were 5 mm in diameter.
- (e)
- PET (polyethyleneterephtalate) concavities: We obtained these concavities (with a diameter of 4 mm and a depth of 1.5 mm) from the edge of the packaging of a KD-JECT® III 1 mL syringe, KD Medical GMBH Hospital, Charlottenstrasse 65, 10117 Berlin, Germany.
2.2. Methods
2.2.1. Opal-Like Colloidal Photonic Crystal Self-Assembly
- (a)
- Opal-like colloidal photonic crystal on a fiber: We began by placing a glass or metallic fiber substrate either horizontally or at a 30–60° tilt angle using a small metallic burette clamp. Next, a droplet of 0.264 µm of SiO2 colloidal solution was carefully formed at the tip of a syringe. The droplet was gently transferred to the fiber: For horizontal substrates, it was touched somewhere along the fiber’s length. For tilted substrates, it was touched at the end of the fiber. If a larger drop volume was needed, additional droplets were added to the existing one hanging on the fiber. The droplet was allowed to dry under normal laboratory conditions, typically taking 30–60 min.
- (b)
- Opal-like colloidal photonic crystal on a metallic coil spring: A copper wire (0.3 mm in diameter) was wound around a fiber (2 mm in diameter) to create a coil spring with approximately 10 loops and a 1 mm distance between loops. The detached coil spring was then placed horizontally. A hanging 0.264 µm SiO2 colloidal drop was attached to the metallic coil spring, starting from its inside and gradually increasing the drop volume by adding more droplets. Finally, the drop was allowed to dry.
- (c)
- Opal-like colloidal photonic crystal on tangent metallic spheres: Two touching metallic spheres (each 5 mm in diameter) were fixed in a polystyrene thick film on a microscope glass slide (achieved by melting polystyrene flakes onto the glass slide). The glass slide was inverted and placed horizontally. A hanging 0.264 µm SiO2 colloidal drop was formed and attached to the spheres, hanging between them, and left to dry.
- (d)
- Opal-like colloidal photonic crystal self-assembled on a polymeric concavity: The PET sheet of the KD-JECT® III syringe packaging was placed in a horizontal position, its concavity pointing downwards. A hanging 0.264 µm SiO2 colloidal drop was formed and attached to the concavity and left to dry.
2.2.2. Polystyrene Inverse-Opal Superstructure Fabrication
- (a)
- Ellipsoid inverse-opal superstructure fabrication: A polystyrene (20.00 µm spheres) opal-like colloidal crystal has self-assembled on a horizontal fiber as in 2.2.1 (a). After drying, by keeping it in the same hanging position, a 0.264 µm SiO2 colloidal solution drop was gently transferred to its top. The SiO2 colloidal solution infiltrates and crystallizes between the polystyrene spheres. After polystyrene melting and infiltration (270 °C, 15 min), polystyrene solidification, SiO2 dissolution (25% HF), and water washing, a high-quality polystyrene inverse opal resulted.
- (b)
- Torus onto ellipsoid inverse-opal superstructure fabrication: A polystyrene (20.00 µm spheres) opal-like colloidal photonic crystal has self-assembled on a fiber as in 2.2.1 (a). After drying, by keeping it in the same hanging position, a 0.264 µm SiO2 colloidal solution drop was gently transferred to its top. The SiO2 colloidal solution infiltrates and crystallizes between the polystyrene spheres. After drying, a second 0.264 µm SiO2 or 0.384 µm SiO2 colloidal solution drop was gently transferred to its top. The second drop cannot infiltrate (all former holes between PS spheres are already filled with silica spheres) and forms a toroidal-shaped deposit on the ellipsoid surface. Melting infiltration and casting, followed by HF dissolution, give rise to an inverse-opal polystyrene colloidal photonic crystal of a special architecture.
2.3. Reproducibility
2.4. Investigations
3. Results and Discussion
3.1. Synthesis and Investigation of Quadratic Surface Colloidal Crystals
- (a)
- The tangential component of the weight of colloidal spheres (denoted as GT) confines the spheres within a compact colloidal crystal (Figure 1a).
- (b)
- The normal component of gravity (GN) generates a zero static frictional force (FF) between the spheres and the liquid/air interface. This allows the entire system to continuously reconfigure itself at the microscopic level (until it “freezes”), effectively creating a defect-free substrate (see Figure 1a).
- (a)
- Colloidal drop on a horizontal metallic coil spring (Figure 4f): This setup produces connected hyperboloids (Figure 4g) which exhibit an unexpected reflection of ambient light. The green rectangular spots represent light reflected from an ordinary white light source mounted on the ceiling, positioned three meters above the sample surface.
- (b)
- (c)
- Colloidal drop hanging inside a macroscopic concavity (Figure 4j): Consider the scenario depicted in Figure 4j (left): a colloidal drop deposited and hanging within a macroscopic concavity (a kind of freeform surface). Surprisingly, as we increased the drop volume beyond the concavity’s capacity, the liquid did not spill over the edge as expected. Instead, it descended, forming a massive drop (Figure 4j (right)). The interplay of adhesion, cohesion, and gravity balanced in an unexpected manner, yet meeting the necessary conditions for high-quality colloidal crystal formation: a large colloid volume acting as a reservoir, and the drop’s bottom surface free from contact.
3.2. Optical Phenomena in Quadratic Surface Colloidal Crystals
- (a)
- The reflectance band corresponding to (111) planes increases up to a certain point (at 2.5 mm), followed by a decrease as the distance increases.
- (b)
- At a specific distance between the sample and the probe, the reflection band associated with (200) planes appears for the curved colloidal crystals but not for the flat ones. Its intensity increases with the increasing distance from the probe for all crystal shapes.
- (c)
- The (111) peak position exhibits a small blue shift at greater distances from the probe, with the shift size increasing as the crystal curvature becomes more pronounced
3.3. Synthesis and Investigation of Shaped Super-Structured Inverted Opals
- (a)
- Inside infiltration (Figure 8f–g): In this case, the polystyrene reservoir is uniformly distributed within the silica crystalline structure volume.
- (b)
- Outside infiltration (Figure 9h,i): Here, the melted polystyrene must diffuse over a much longer distance (approximately 100 μm) through the silica crystalline structure. Notably, the tori in this scenario do not contain polystyrene spheres as reservoirs; instead, the polystyrene is provided from the ellipsoid.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pieranski, P. Colloidal crystals. Contemp. Phys. 1983, 24, 25–73. [Google Scholar] [CrossRef]
- Guo, S.; Yu, B.; Gao, F.; Wang, S.; Shen, Y.; Cong, H. Research status and development trend of three- dimensional colloidal crystals. J. Ind. Eng. Chem. 2021, 96, 34–58. [Google Scholar] [CrossRef]
- Cong, H.; Yu, B.; Tang, J.; Lia, Z.; Liu, X. Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 2013, 42, 7774–7800. [Google Scholar] [CrossRef] [PubMed]
- Rituraj, B.; Karthick, R.A.G.; Minja, A.C.; Verbruggen, S.W. A Review on Self-Assembled Colloidal Nanoparticle Clusters, Patterns and Films: Emerging Synthesis Techniques and Applications. Small Methods 2023, 7, 2201536. [Google Scholar] [CrossRef]
- Zheng, H.; Ravaine, S. Bottom-Up Assembly and Applications of Photonic Materials. Crystals 2016, 6, 54. [Google Scholar] [CrossRef]
- von Freymann, G.; Kitaev, V.; Lotsch, B.V.; Ozin, G.A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.; Wilson, B.E.; Rudisill, S.G. Design and functionality of colloidal-crystal-templated materials—Chemical applications of inverse opals. Chem. Soc. Rev. 2013, 42, 2763–2803. [Google Scholar] [CrossRef] [PubMed]
- Francisco, M. Colloidal crystals as photonic crystals. Colloids Surf. A Physicochem. Eng. Asp. 2005, 270, 1–7. [Google Scholar] [CrossRef]
- Colvin, V.L. From Opals to Optics: Colloidal Photonic Crystals. MRS Bull. 2001, 26, 637–641. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Pathak, A.K.; Kumar, S. Recent Progress in Photonic Crystal Devices and Their Applications: A Review. Photonics 2023, 10, 1199. [Google Scholar] [CrossRef]
- Lv, X.; Zhong, B.; Huang, Y.; Xing, Z.; Wang, H.; Guo, W.; Chang, X.; Zhang, Z. Research Progress in and Application of Photonic Crystals. Chin. J. Mech. Eng. 2023, 36, 39. [Google Scholar] [CrossRef]
- Yablonovitch, E. Photonic band-gap structures. J. Opt. Soc. Am. B 1993, 10, 283–295. [Google Scholar] [CrossRef]
- Mei, D.; Liu, H.; Cheng, B.; Li, Z.; Zhang, D. Visible and near-infrared silica colloidal crystals and photonic gaps. Phys. Rev. B 1998, 58, 35–38. [Google Scholar] [CrossRef]
- González-Urbina, L.; Baert, K.; Kolaric, B.; Pérez-Moreno, J.; Clays, K. Linear and Nonlinear Optical Properties of Colloidal Photonic Crystals. Chem. Rev. 2012, 112, 2268–2285. [Google Scholar] [CrossRef]
- Schroden, R.C.; Al-Daous, M.; Blanford, C.F.; Stein, A. Optical Properties of Inverse Opal Photonic Crystals. Chem. Mater. 2002, 14, 3305–3315. [Google Scholar] [CrossRef]
- Asher, S.A.; Weissman, J.M.; Tikhonov, A.; Coalson, R.D.; Kesavamoorthy, R. Diffraction in crystalline colloidal-array photonic crystals. Phys. Rev. E 2004, 69, 066619. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Li, Z.; Ravaine, S.; He, M.; Song, Y.; Yin, Y.; Zheng, H.; Teng, J.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951. [Google Scholar] [CrossRef] [PubMed]
- Furumi, S.; Fudouzi, H.; Sawada, T. Self-organized colloidal crystals for photonics and laser applications. Laser Photonics Rev. 2010, 4, 205–220. [Google Scholar] [CrossRef]
- Li, M.; Lyu, Q.; Peng, B.; Chen, X.; Zhang, L.; Zhu, J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. Adv. Mater. 2022, 34, 2110488. [Google Scholar] [CrossRef]
- Liao, J.; Ye, C.; Agrawal, P.; Gu, Z.; Zhang, Y.S. Colloidal Photonic Crystals for Biomedical Applications. Small Struct. 2021, 2, 2000110. [Google Scholar] [CrossRef]
- Huang, K.; Li, Q.; Xue, Y.; Wang, Q.; Chen, Z.; Gu, Z. Application of colloidal photonic crystals in study of organoids. Adv. Drug Deliv. Rev. 2023, 201, 115075. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Fang, C.; Pu, M.; Song, J.; Wang, D.; Zhou, X. Recent advances in photonic crystal with unique structural colors: A review. J. Mater. Sci. Technol. 2023, 141, 78–99. [Google Scholar] [CrossRef]
- Li, R.; Zhang, S.; Zhang, R. Recent Progress in Artificial Structural Colors and their Applications in Fibers and Textiles. Chem. Methods 2023, 3, e202200081. [Google Scholar] [CrossRef]
- Rezaei, S.D.; Dong, Z.; Chan, J.Y.E.; Trisno, J.; Ng, R.J.H.; Ruan, Q.; Qiu, C.-W.; Mortensen, N.A.; Yang, J.K.W. Nanophotonic Structural Colors. ACS Photonics 2021, 8, 18–33. [Google Scholar] [CrossRef]
- Kyungsik, Y.; Sujin, C.; Jeongyeup, P.; Dajeong, I.; Jinyoung, R.; Jaebum, K.; Hwi, K. Iridescent Specular Structural Colors of Two-Dimensional Periodic Diffraction Gratings. J. Opt. Soc. Korea 2014, 18, 616–622. [Google Scholar] [CrossRef]
- Xu, D.; Owen, J.D.; Papa, J.C.; Reimers, J.; Suleski, T.J.; Troutman, J.R.; Davies, M.A.; Thompson, K.P.; Rolland, J.P. Design, fabrication, and testing of convex reflective diffraction gratings. Opt. Express 2017, 25, 15252–15268. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Bhushan, B.; Tonga, J. Structural coloration in nature. RSC Adv. 2013, 3, 14862–14889. [Google Scholar] [CrossRef]
- Feng, L.; Wang, F.; Luo, H.; Qiu, B. Review of recent advancements in the biomimicry of structural colors. Dye. Pigment. 2023, 210, 111019. [Google Scholar] [CrossRef]
- Matsuo, S.; Fujine, T.; Fukuda, K.; Juodkazis, S.; Misawa, H. Formation of free-standing micropyramidal colloidal crystals grown on silicon substrate. Appl. Phys. Lett. 2003, 82, 4283–4285. [Google Scholar] [CrossRef]
- Sandu, I.; Fleaca, C.T.; Dumitrache, F.; Sava, B.A.; Urzica, I.; Antohe, I.; Brajnicov, S.; Dumitru, M. Shaping in the Third Direction; Synthesis of Patterned Colloidal Crystals by Polyester Fabric-Guided Self-Assembly. Polymers 2021, 13, 4081. [Google Scholar] [CrossRef]
- Brugarolas, T.; Tua, F.; Lee, D. Directed assembly of particles using microfluidic droplets and bubbles. Soft Matter 2013, 9, 9046–9058. [Google Scholar] [CrossRef]
- Guo, W.; Wang, M.; Xia, W.; Dai, L. Evaporation-induced self-assembly of capillary cylindrical colloidal crystal in a face-centered cubic structure with controllable thickness. J. Mater. Res. 2012, 27, 1663–1671. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, S.; Yi, G.-R. Fabrication of Ordered Macroporous Cylinders by Colloidal Templating in Microcapillaries. Langmuir 2004, 20, 2033–2035. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Z.; Liu, J.; Chen, S.; Yu, Z. Spherical Colloidal Photonic Crystals with Selected Lattice Plane Exposure and Enhanced Color Saturation for Dynamic Optical Displays. ACS Appl. Mater. Interfaces 2019, 11, 42629–42634. [Google Scholar] [CrossRef] [PubMed]
- Schyck, S.; Meijer, J.M.; Baldauf, L.; Schall, P.; Petukhov, A.V.; Rossi, L. Self-assembly of colloidal superballs under spherical confinement of a drying droplet. JCIS Open, 2022; 5, 100037ISSN 2666-934X. [Google Scholar] [CrossRef]
- Bing, Y.; Hailin, C.; Hua, Y.; Xuesong, L.; Qiaohong, P.; Xiulan, Z.; Xiaodan, X.; Chao, T.; Ruixia, Y.; Shujing, Y. Preparation of Doughnut-like Nanocomposite Colloidal Crystal Particles with Enhanced Light Diffraction Using Drying Self-assembly Method. Curr. Nanosci. 2015, 11, 161–165. [Google Scholar] [CrossRef]
- Sen, D.; Bahadur, J.; Mazumder, S.; Bhattacharya, S. Formation of hollow spherical and doughnut microcapsules by evaporation induced self-assembly of nanoparticles: Effects of particle size and polydispersity. Soft Matter 2012, 8, 10036–10044. [Google Scholar] [CrossRef]
- Sandu, I.; Fleacă, C.T.; Dumitrache, F.; Sava, B.; Urzică, I.; Dumitru, M. From thin “coffee rings” to thick colloidal crystals, through drop spreading inhibition by the substrate edge. Appl. Phys. A 2021, 127, 325. [Google Scholar] [CrossRef]
- Sandu, I.; Antohe, I.; Fleaca, C.T.; Dumitrache, F.; Urzica, I.; Brajnicov, S.; Iagaru, R.; Sava, B.A.; Dumitru, M. Shaping in the Third Direction: Self-Assembly of Convex Colloidal Photonic Crystals on an Optical Fiber Tip by Hanging Drop Method. Polymers 2024, 16, 33. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Yang, X.; Zhang, X.; Yan, B.; Wu, L.; Feng, P.; Lou, X.; Xia, F.; Song, Y.; et al. A Diverse Micromorphology of Photonic Crystal Chips for Multianalyte Sensing. Small 2021, 17, 2006723. [Google Scholar] [CrossRef]
- Xu, S.; Yan, Z.; Jang, K.-I.; Huang, W.; Fu, H.; Kim, J.; Wei, Z.; Flavin, M.; McCracken, J.; Wang, R.; et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 2015, 347, 154–159. [Google Scholar] [CrossRef]
- Michon, J.; Geiger, S.; Li, L.; Goncalves, C.; Lin, H.; Richardson, K.; Jia, X.; Hu, J. 3D integrated photonics platform with deterministic geometry control. Photon. Res. 2020, 8, 194–201. [Google Scholar] [CrossRef]
- Liao, J.; Zhu, C.; Gao, B.; Zhao, Z.; Liu, X.; Tian, L.; Zeng, Y.; Zhou, X.; Xie, Z.; Gu, Z. Multiresponsive Elastic Colloidal Crystals for Reversible Structural Color Patterns. Adv. Funct. Mater. 2019, 29, 1902954. [Google Scholar] [CrossRef]
- Furumi, S.; Fudouzi, H.; Miyazaki, H.; Sakka, Y. Flexible Polymer Colloidal-Crystal Lasers with a Light-Emitting Planar Defect. Adv. Mater. 2007, 19, 2067–2072. [Google Scholar] [CrossRef]
- Saaem, I.; LaBean, T.H. Overview of DNA origami for molecular self-assembly. WIREs Nanomed. Nanobiotechnol. 2013, 5, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Ye, C.; Guo, J.; Garciamendez-Mijares, C.E.; Agrawal, P.; Kuang, X.; Japo, J.O.; Wang, Z.; Mu, X.; Li, W.; et al. 3D-printable colloidal photonic crystals. Mater. Today 2022, 56, 29–41. [Google Scholar] [CrossRef]
- Yifan, L.; Xiaoyu, H.; Yanlin, S.; Mingzhu, L. Bioinspired reflective display based on photonic crystals. Interdiscip. Mater. 2024, 3, 54–73. [Google Scholar] [CrossRef]
- Vogel, N.; Utech, S.; England, G.T.; Shirman, T.; Phillips, K.R.; Koay, N.; Burgess, I.B.; Kolle, M.; Weitz, D.A.; Aizenberg, J. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies. Proc. Natl. Acad. Sci. USA 2015, 112, 10845–10850. [Google Scholar] [CrossRef]
- Ohnuki, R.; Isoda, S.; Sakai, M.; Takeoka, Y.; Yoshioka, S. Grating Diffraction or Bragg Diffraction? Coloration Mechanisms of the Photonic Ball. Adv. Opt. Mater. 2019, 7, 1900227. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, N.; Shi, L.; Zhang, K.-Q. Structural Coloration of Colloidal Fiber by Photonic Band Gap and Resonant Mie Scattering. ACS Appl. Mater. Interfaces 2015, 7, 14064–14071. [Google Scholar] [CrossRef]
- Zhao, Y.; Shang, L.; Cheng, Y.; Gu, Z. Spherical Colloidal Photonic Crystals. Acc. Chem. Res. 2014, 47, 3632–3642. [Google Scholar] [CrossRef]
- Li, K.; Chen, X.; Bian, Y.; Xing, Y.; Li, X.; Liu, D.; Liu, Y. Design and Optical Analysis of a Refractive Aspheric Intraocular Lens with Extended Depth of Focus. Optics 2023, 4, 146–155. [Google Scholar] [CrossRef]
- Rolland, J.P.; Davies, M.A.; Suleski, T.J.; Evans, C.; Bauer, A.; Lambropoulos, J.C.; Falaggis, K. Freeform optics for imaging. Optica 2021, 8, 161–176. [Google Scholar] [CrossRef]
- Batz, S.; Peschel, U. Linear and nonlinear optics in curved space. Phys. Rev. A 2008, 78, 43821. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, Z. Propagation and transformation of a light beam on a curved surface. Opt. Express 2021, 29, 8626–8634. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, V.H.; Batz, S.; Peschel, U. Light in curved two-dimensional space. Adv. Phys. X 2020, 5, 1759451. [Google Scholar] [CrossRef]
- Sheng, C.; Zhu, S.; Liu, H. Optical simulation of various phenomena in curved space on photonic chips. Adv. Phys. X 2023, 8, 2153626. [Google Scholar] [CrossRef]
- Bekenstein, R.; Kabessa, Y.; Sharabi, Y.; Tal, O.; Engheta, N.; Eisenstein, G.; Agranat, A.J.; Segev, M. Curved space nanophotonics inspired by general relativity. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; IEEE Inc.: New York, NY, USA, 2016. FW1D.2. pp. 1–2. [Google Scholar] [CrossRef]
- Sheng, C.; Liu, H.; Zhu, S. Transformation optics based on metasurfaces. Sci. Bull. 2019, 64, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, X.; Tyc, T.; Sheng, C.; Zhu, S.; Liu, H.; Chen, H. Light rays and waves on geodesic lenses. Photon. Res. 2019, 7, 1266–1272. [Google Scholar] [CrossRef]
- Sandu, I.; Dumitru, M.; Fleaca, C.T.; Dumitrache, F. Hanging colloidal drop: A new photonic crystal synthesis route. Photonics Nanostruct. 2018, 29, 42–48. [Google Scholar] [CrossRef]
- Gupta, A.; Konicek, A.R.; King, M.A.; Iqtidar, A.; Yeganeh, M.S.; Stone, H.A. Effect of gravity on the shape of a droplet on a fiber: Nearly axisymmetric profiles with experimental validation. Phys. Rev. Fluids 2021, 6, 063602. [Google Scholar] [CrossRef]
- Zhou, F.; Zhuang, D.; Lu, T.; Ding, G. Observation and modeling of droplet shape on metal fiber with gravity effect. Int. J. Heat Mass Transfer 2020, 161, 120294. [Google Scholar] [CrossRef]
- Corpart, M.; Restagno, F.; Boulogne, F. Coffee stain effect on a fibre from axisymmetric droplets. J. Fluid Mech. 2023, 957, A24. [Google Scholar] [CrossRef]
- Pham, N.T.; McHale, G.; Newton, M.I.; Carroll, B.J.; Rowan, S.M. Investigation of Deposition of Monodisperse Particles onto Fibers. Langmuir 2002, 18, 4979–4983. [Google Scholar] [CrossRef]
- Schumann, H. A dynamic approach to ‘simple’ algebraic curves. Zentralbl. Didact. Math. 2003, 35, 301–316. [Google Scholar] [CrossRef]
- Tan, A.T.L.; Beroz, J.; Kolle, M.; Hart, A.J. Direct-Write Freeform Colloidal Assembly. Adv. Mater. 2018, 30, 1803620. [Google Scholar] [CrossRef] [PubMed]
- Mondal, R.; Basavaraj, M.G. Patterning of colloids into spirals via confined drying. Soft Matter 2020, 16, 3753–3761. [Google Scholar] [CrossRef] [PubMed]
- Varis, K.; Mattila, M.; Arpiainen, S.; Ahopelto, J.; Jonsson, F.; Sotomayor Torres, C.M.; Egen, M.; Zentel, R. Reflection of focused beams from opal photonic crystals. Opt. Express 2005, 13, 2653–2667. [Google Scholar] [CrossRef]
- Sandu, I.; Fleaca, C.T.; Dumitrache, F.; Sava, B.A.; Urzica, I.; Antohe, I.; Brajnicov, S.; Dumitru, M. Shaping in the Third Direction; Fabrication of Hemispherical Micro-Concavity Array by Using Large Size Polystyrene Spheres as Template for Direct Self-Assembly of Small Size Silica Spheres. Polymers 2022, 14, 2158. [Google Scholar] [CrossRef]
- Huh, J.-H.; Kim, K.; Im, E.; Lee, J.; Cho, Y.D.; Lee, S. Exploiting Colloidal Metamaterials for Achieving Unnatural Optical Refractions. Adv. Mater. 2020, 32, 2001806. [Google Scholar] [CrossRef]
- Nonappa. Seeing the Supracolloidal Assemblies in 3D: Unraveling High-Resolution Structures Using Electron Tomography. ACS Mater. Au 2024, 4, 238–257. [Google Scholar] [CrossRef]
- Liu, D.; Aleisa, R.; Cai, Z.; Li, Y.; Yin, Y. Self-assembly of superstructures at all scales. Matter 2021, 4, 927–941. [Google Scholar] [CrossRef]
- Khokhar, A.; Rahman, F.; Nigel, J. Photonic crystal heterostructures from self-assembled opals. Appl. Phys. A 2010, 102, 281–287. [Google Scholar] [CrossRef]
- Chiappini, A.; Armellini, C.; Bazzanella, N.; Righini, G.C.; Ferrari, M. Opal-Based Photonic Crystal Heterostructures. Opt. Photonics J. 2012, 2, 203–210. [Google Scholar] [CrossRef]
- Xing, Y.; Yu, L.; Wang, X.; Jia, J.; Liu, Y.; He, J.; Jia, Z. Characterization and analysis of Coscinodiscus genus frustule based on FIB-SEM. Prog. Nat. Sci. Mater. Int. 2017, 27, 391–395. [Google Scholar] [CrossRef]
- Sumper, M. A Phase Separation Model for the Nanopatterning of Diatom Biosilica. Science 2002, 295, 2430–2433. [Google Scholar] [CrossRef]
- Losic, D.; Pillar, R.; Dilger, T.; Mitchell, J.; Voelcker, N. Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. J. Porous Mater. 2007, 14, 61–69. [Google Scholar] [CrossRef]
- Fuhrmann, T.; Landwehr, S.; El Rharbi-Kucki, M.; Sumper, M. Diatoms as living photonic crystals. Appl. Phys. B 2004, 78, 257–260. [Google Scholar] [CrossRef]
- De Stefano, L.; Rea, I.; Rendina, I.; De Stefano, M.; Moretti, L. Lensless light focusing with the centric marine diatom Coscinodiscus walesii. Opt. Express 2007, 5, 18082–18088. [Google Scholar] [CrossRef]
- De Stefano, L.; Maddalena, P.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M. Nano-biosilica from marine diatoms: A brand new material for photonic applications. Superlattices Microstruct. 2009, 46, 84–89. [Google Scholar] [CrossRef]
- Goessling, J.W.; Wardley, W.P.; Lopez-Garcia, M. Highly Reproducible, Bio-Based Slab Photonic Crystals Grown by Diatoms. Adv. Sci. 2020, 7, 1903726. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandu, I.; Antohe, I.; Fleaca, C.T.; Dumitrache, F.; Urzica, I.; Dumitru, M. Shaping in the Third Direction: Colloidal Photonic Crystals with Quadratic Surfaces Self-Assembled by Hanging-Drop Method. Polymers 2024, 16, 1931. https://doi.org/10.3390/polym16131931
Sandu I, Antohe I, Fleaca CT, Dumitrache F, Urzica I, Dumitru M. Shaping in the Third Direction: Colloidal Photonic Crystals with Quadratic Surfaces Self-Assembled by Hanging-Drop Method. Polymers. 2024; 16(13):1931. https://doi.org/10.3390/polym16131931
Chicago/Turabian StyleSandu, Ion, Iulia Antohe, Claudiu Teodor Fleaca, Florian Dumitrache, Iuliana Urzica, and Marius Dumitru. 2024. "Shaping in the Third Direction: Colloidal Photonic Crystals with Quadratic Surfaces Self-Assembled by Hanging-Drop Method" Polymers 16, no. 13: 1931. https://doi.org/10.3390/polym16131931
APA StyleSandu, I., Antohe, I., Fleaca, C. T., Dumitrache, F., Urzica, I., & Dumitru, M. (2024). Shaping in the Third Direction: Colloidal Photonic Crystals with Quadratic Surfaces Self-Assembled by Hanging-Drop Method. Polymers, 16(13), 1931. https://doi.org/10.3390/polym16131931