Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Keywords = free sterols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1607 KiB  
Article
Characterization and Expression Analysis of the Sterol C-5 Desaturase Gene PcERG3 in the Mycobiont of the Lichen Peltigera canina Under Abiotic Stresses
by Moatasem A. Swid, Milana V. Koulintchenko, Alfred O. Onele, Ilya Y. Leksin, Daniya F. Rakhmatullina, Ekaterina I. Galeeva, Julia N. Valitova, Farida V. Minibayeva and Richard P. Beckett
Microbiol. Res. 2025, 16(7), 139; https://doi.org/10.3390/microbiolres16070139 - 1 Jul 2025
Viewed by 295
Abstract
Lichens, symbiotic organisms with a high tolerance to harsh environments, possess a greater diversity of sterols than other organisms. Sterols are involved in maintaining membrane integrity, hormone biosynthesis, and signal transduction. (1) Background: A characteristic feature of lichen sterols is a high degree [...] Read more.
Lichens, symbiotic organisms with a high tolerance to harsh environments, possess a greater diversity of sterols than other organisms. Sterols are involved in maintaining membrane integrity, hormone biosynthesis, and signal transduction. (1) Background: A characteristic feature of lichen sterols is a high degree of unsaturation, which influences membrane properties. Desaturases play an important role in the synthesis of unsaturated sterols, in particular, sterol C-5 desaturase (ERG3), which controls the conversion of episterol to ergosterol. Earlier, we demonstrated that the treatment of the lichen Peltigera canina with low and elevated temperatures results in changes in the levels of episterol and ergosterol. (2) Methods: Here, for the first time, we identified ERG3 in P. canina and, using an in silico analysis, we showed that PcERG3 belongs to the superfamily of fatty acid hydrolyases. A phylogenetic analysis was conducted to determine the evolutionary relationships of PcERG3. (3) Results: A phylogenetic analysis showed that PcERG3 clusters with ERG3 from other Peltigeralian and non-Peltigeralian lichens and also with ERG3 from free-living fungi. This suggests that PcERG3 has an ancient evolutionary origin and is related to fungi with lichenized ancestors, e.g., Penicillium. The differential expression of PcERG3 in response to temperature stress, a dehydration/rehydration cycle, and heavy metal exposure suggests that it plays a crucial role in maintaining the balance between more and less saturated sterols and, more generally, in membrane functioning. The multifaceted response of P. canina to abiotic stresses was documented by simultaneously measuring changes in the expression of PcERG3, as well as the genes encoding the heat shock proteins, PcHSP20 and PcHSP98, and PcSOD1, which encodes the antioxidant enzyme superoxide dismutase. (4) Conclusions: These findings suggest that PcERG3 is similar to the sterol C-5 desaturases from related and free-living fungi and plays important roles in the molecular mechanisms underlying the tolerance of lichens to environmental stress. Full article
Show Figures

Figure 1

18 pages, 995 KiB  
Article
Nano-Encapsulated Phytosterols Ameliorate Hypercholesterolemia in Mice via Dual Modulation of Cholesterol Metabolism Pathways
by Aixia Zhu, Wenjing Pan, Wenjia Jiao, Kai Peng, Chunwei Wang, Chi Zhang and Jiaqi Zhang
Nutrients 2025, 17(13), 2086; https://doi.org/10.3390/nu17132086 - 23 Jun 2025
Viewed by 1690
Abstract
Background: The limited bioavailability of free phytosterols restricts their clinical application in managing hypercholesterolemia. This study aimed to develop phytosterol nanoparticles (PNs) to enhance bioactivity and investigate their cholesterol-lowering efficacy and underlying mechanisms in vivo. Methods: Phytosterol nanoparticles (PNs) (93.35 nm) were engineered [...] Read more.
Background: The limited bioavailability of free phytosterols restricts their clinical application in managing hypercholesterolemia. This study aimed to develop phytosterol nanoparticles (PNs) to enhance bioactivity and investigate their cholesterol-lowering efficacy and underlying mechanisms in vivo. Methods: Phytosterol nanoparticles (PNs) (93.35 nm) were engineered using soy protein isolate and administered orally at concentrations of 4.00–12.50 mg/mL to high-fat-diet-induced hypercholesterolemic mice (n = 60) over a 4-week period. Serum and hepatic lipid profiles, histopathology, gene/protein expression related to cholesterol metabolism, and fecal sterol content were evaluated. Results: PNs dose-dependently reduced serum total cholesterol (TC: 28.6–36.8%), triglycerides (TG: 22.4–30.1%), and LDL-C (31.2–39.5%), while increasing HDL-C by 18.7–23.4% compared to hyperlipidemic controls (p < 0.01). Hepatic TC and TG accumulation decreased by 34.2% and 41.7%, respectively, at the highest dose, with histopathology confirming attenuated fatty degeneration. Mechanistically, PNs simultaneously suppressed cholesterol synthesis through downregulating HMGCR (3.2-fold) and SREBP2 (2.8-fold), while enhancing cholesterol catabolism via CYP7A1 upregulation (2.1-fold) at protein level. Although less potent than simvastatin (p < 0.05), the nanoparticles exhibited unique dual-pathway modulation absent in conventional phytosterol formulations. Fecal analysis revealed dose-responsive cholesterol excretion (36.01 vs. 11.79 mg/g in controls), indicating enhanced enteric elimination. While slightly less potent than simvastatin (p < 0.05), PNs offered unique dual-pathway modulation absent in conventional phytosterol formulations. Conclusions: Nano-encapsulation significantly improves the bioavailability and hypocholesterolemic efficacy of phytosterols. PNs represent a promising nutraceutical strategy for cholesterol management by concurrently regulating cholesterol synthesis and catabolism, with potential application in both preventive and therapeutic contexts. Full article
Show Figures

Figure 1

39 pages, 4164 KiB  
Review
Exploring Formation and Control of Hazards in Thermal Processing for Food Safety
by Zeyan Liu, Shujie Gao, Zhecong Yuan, Renqing Yang, Xinai Zhang, Hany S. El-Mesery, Xiaoli Dai, Wenjie Lu and Rongjin Xu
Foods 2025, 14(13), 2168; https://doi.org/10.3390/foods14132168 - 21 Jun 2025
Cited by 1 | Viewed by 995
Abstract
Thermal-processed foods like baked, smoked, and fried products are popular for their unique aroma, taste, and color. However, thermal processing can generate various contaminants via Maillard reaction, lipid oxidation, and thermal degradation, negatively impacting human health. This review summarizes the formation pathways, influencing [...] Read more.
Thermal-processed foods like baked, smoked, and fried products are popular for their unique aroma, taste, and color. However, thermal processing can generate various contaminants via Maillard reaction, lipid oxidation, and thermal degradation, negatively impacting human health. This review summarizes the formation pathways, influencing factors, and tracing approaches of potential hazards in thermally processed foods, such as polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines (HAAs), furan, acrylamide (AA), trans fatty acids (TFAs), advanced glycation end-products (AGEs), sterol oxide. The formation pathways are explored through understanding high free radical activity and multiple active intermediates. Control patterns are uncovered by adjusting processing conditions and food composition and adding antioxidants, aiming to inhibit hazards and enhance the safety of thermal-processed foods. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

24 pages, 675 KiB  
Article
Nano-Liposomal Carrier as Promising Dermal Delivery Platform for Fumaria officinalis L. Bioactives
by Rabiea Ashowen Ahmoda, Milena Milošević, Aleksandar Marinković and Aleksandra A. Jovanović
Pharmaceutics 2025, 17(6), 782; https://doi.org/10.3390/pharmaceutics17060782 - 14 Jun 2025
Viewed by 1345
Abstract
Background/Objectives: This study investigates the physical, rheological, and antioxidant properties of nano-liposomal formulations encapsulating Fumaria officinalis L. (fumitory) extract, focusing on their stability and performance under ultraviolet (UV) exposure, as well as polyphenol release within simulated skin conditions in a Franz diffusion cell. [...] Read more.
Background/Objectives: This study investigates the physical, rheological, and antioxidant properties of nano-liposomal formulations encapsulating Fumaria officinalis L. (fumitory) extract, focusing on their stability and performance under ultraviolet (UV) exposure, as well as polyphenol release within simulated skin conditions in a Franz diffusion cell. Methods: Liposomal formulations, composed of phospholipids with or without β-sitosterol or ergosterol, were evaluated for their encapsulation efficiency, liposome size, size distribution, zeta potential, viscosity, surface tension, density, oxidative stability, antioxidant capacity, and polyphenol recovery. Results: Encapsulation efficiency was the highest in phospholipid liposomes (72.2%) and decreased with the incorporation of sterols: 66.7% for β-sitosterol and 62.9% for ergosterol liposomes. Encapsulation significantly increased viscosity and reduced surface tension compared to the plain liposomes, suggesting modified interfacial behavior. The inclusion of fumitory extract significantly increased the viscosity of liposomes (from ~2.5 to 6.09–6.78 mPa × s), consistent with the observed reduction in particle size and zeta potential. Antioxidant assays (thiobarbituric acid reactive substances—TBARS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid—ABTS, and 2,2-diphenyl-1-picrylhydrazyl—DPPH) confirmed enhanced lipid peroxidation inhibition and radical scavenging upon encapsulation, with ABTS activity reaching up to 95.05% in sterol-containing liposomes. Release studies showed that the free extract exhibited the fastest polyphenol diffusion (5.09 × 10−9 m2/s), while liposomes demonstrated slower/controlled release due to bilayer barriers. UV-irradiated liposomes released more polyphenols than untreated ones, particularly in the sterol-containing formulations, due to oxidative destabilization and pore formation. Conclusions: These findings highlight the potential of fumitory extract-loaded liposomes as stable, bioactive carriers with tunable polyphenol antioxidant release properties for dermal applications. Overall, liposomal formulations of fumitory extract exhibit significant potential for further development as a pharmaceutical, cosmetic, or dermo-cosmetic ingredient for use in the prevention and treatment of various skin disorders. Full article
(This article belongs to the Special Issue Emerging Trends in Skin Delivery Systems)
Show Figures

Graphical abstract

16 pages, 3289 KiB  
Article
Unique Structural Features Relate to Evolutionary Adaptation of Cytochrome P450 in the Abyssal Zone
by Tatiana Y. Hargrove, David C. Lamb, Zdzislaw Wawrzak, George Minasov, Jared V. Goldstone, Steven L. Kelly, John J. Stegeman and Galina I. Lepesheva
Int. J. Mol. Sci. 2025, 26(12), 5689; https://doi.org/10.3390/ijms26125689 - 13 Jun 2025
Viewed by 542
Abstract
Cytochromes P450 (CYPs) form one of the largest enzyme superfamilies, with similar structural folds yet biological functions varying from synthesis of physiologically essential compounds to metabolism of myriad xenobiotics. Sterol 14α-demethylases (CYP51s) represent a very special P450 family, regarded as a possible evolutionary [...] Read more.
Cytochromes P450 (CYPs) form one of the largest enzyme superfamilies, with similar structural folds yet biological functions varying from synthesis of physiologically essential compounds to metabolism of myriad xenobiotics. Sterol 14α-demethylases (CYP51s) represent a very special P450 family, regarded as a possible evolutionary progenitor for all currently existing P450s. In metazoans CYP51 is critical for the biosynthesis of sterols including cholesterol. Here we determined the crystal structures of ligand-free CYP51s from the abyssal fish Coryphaenoides armatus and human-. Comparative sequence–structure–function analysis revealed specific structural elements that imply elevated conformational flexibility, uncovering a molecular basis for faster catalytic rates, lower substrate selectivity, and intrinsic resistance to inhibition. In addition, the C. armatus structure displayed a large-scale repositioning of structural segments that, in vivo, are immersed in the endoplasmic reticulum membrane and border the substrate entrance (the FG arm, >20 Å, and the β4 hairpin, >15 Å). The structural distinction of C. armatus CYP51, which is the first structurally characterized deep sea P450, suggests stronger involvement of the membrane environment in regulation of the enzyme function. We interpret this as a co-adaptation of the membrane protein structure with membrane lipid composition during evolutionary incursion to life in the deep sea. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 1508 KiB  
Article
Phytochemical Composition, Antioxidant, Anti-Inflammatory Activity, and DNA Protective Capacity of Moss Hypnum cupressiforme Hedw. from Bulgaria
by Zhana Petkova, Mina Todorova, Ivayla Dincheva, Manol Ognyanov, Samir Naimov, Elena Apostolova, Olga Teneva, Ginka Antova and Gana Gecheva
Forests 2025, 16(6), 951; https://doi.org/10.3390/f16060951 - 5 Jun 2025
Viewed by 477
Abstract
Hypnum cupressiforme Hedw. is a widely distributed moss species with significant bioactive potential, but the phytochemical composition and biological activity of this species are not well documented yet, particularly in Bulgaria. The current study aimed to investigate the amino acid composition, free sugars, [...] Read more.
Hypnum cupressiforme Hedw. is a widely distributed moss species with significant bioactive potential, but the phytochemical composition and biological activity of this species are not well documented yet, particularly in Bulgaria. The current study aimed to investigate the amino acid composition, free sugars, sterol profile, total polyphenol content, antioxidant activity, DNA-protective effect, and the anti-inflammatory activity of ethanolic extracts of H. cupressiforme. Amino acid analysis revealed that proline (2.282 g/100 g), isoleucine (2.047 g/100 g), and glutamic acid (1.746 g/100 g) were the dominant constituents. The moss contained mannose (1.76 g/100 g) and fructose (1.43 g/100 g) as major free sugars and a diverse sterol profile containing stigmasterol (4.37 mg/g), β-sitosterol (4.29 mg/g), and campesterol (3.34 mg/g) as major phytosterols, which are known for their potential health benefits, such as cholesterol regulation and anti-inflammatory effects. The antioxidant activity of the extracts was determined by DPPH and ABTS assays and expressed moderate free radical scavenging ability (2.56 and 4.15 mM TE/g DW). Furthermore, the extracts also exhibited a potent DNA-protective effect against oxidative damage and anti-inflammatory activity. These findings contribute to the phytochemical knowledge of H. cupressiforme and suggest that Bulgarian specimens may be worth further investigation for pharmaceutical, nutraceutical, and cosmetic applications. Full article
(This article belongs to the Special Issue Medicinal and Edible Uses of Non-Timber Forest Resources)
Show Figures

Figure 1

22 pages, 14953 KiB  
Article
Tapping into Metabolomics for Understanding Host and Rotavirus Group A Interactome
by Phiona Moloi Mametja, Mmei Cheryl Motshudi, Clarissa Marcelle Naidoo, Kebareng Rakau, Luyanda Mapaseka Seheri and Nqobile Monate Mkolo
Life 2025, 15(5), 765; https://doi.org/10.3390/life15050765 - 10 May 2025
Viewed by 777
Abstract
Group A rotavirus continues to be a leading global etiological agent of severe gastroenteritis in young children under 5 years of age. The replication of this virus in the host is associated with the occurrence of Lewis antigens and the secretor condition. Moreover, [...] Read more.
Group A rotavirus continues to be a leading global etiological agent of severe gastroenteritis in young children under 5 years of age. The replication of this virus in the host is associated with the occurrence of Lewis antigens and the secretor condition. Moreover, histo-blood group antigens (HBGAs) act as attachment factors to the outer viral protein of VP4 for rotavirus. Therefore, in this study, we employed a metabolomic approach to reveal potential signature metabolic molecules and metabolic pathways specific to rotavirus P[8] strain infection (VP4 genotype), which is associated with the expression of HBGA combined secretor and Lewis (Le) phenotypes, specifically secretor/Le(a+b+). Further integration of the achieved metabolomics results with lipidomic and proteomics metadata analyses was performed. Saliva samples were collected from children diagnosed as negative or positive for rotavirus P[8] strain infection (VP4 genotype), which is associated with the HBGA combined secretor/Le(a+b+). A total of 22 signature metabolic molecules that were downregulated include butyrate, putrescine, lactic acid, and 7 analytes. The upregulated metabolic molecule was 2,3-Butanediol. Significant pathway alterations were also specifically observed in various metabolism processes, including galactose and butanoate metabolisms. Butyrate played a significant role in viral infection and was revealed to exhibit different reactions with glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, and fatty acyls. Moreover, butyrate might interact with protein receptors of free fatty acid receptor 2 (FFAR2) and free fatty acid receptor 3 (FFAR3). The revealed metabolic pathways and molecule might provide fundamental insight into the status of rotavirus P[8] strain infection for monitoring its effects on humans. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

13 pages, 5131 KiB  
Article
Cold Pressed Oil from Japanese Quince Seeds (Chaenomeles japonica): Characterization Using DSC, Spectroscopic, and Monolayer Data
by Wiktoria Kamińska, Grażyna Neunert, Przemysław Siejak, Krzysztof Polewski and Jolanta Tomaszewska-Gras
Molecules 2025, 30(3), 477; https://doi.org/10.3390/molecules30030477 - 22 Jan 2025
Viewed by 819
Abstract
The cold-pressed oil from Japanese quince seeds (JQSO) is notable for its favorable fatty acid profile, low oxidation rate, and bioactive compounds like antioxidants, sterols, and carotenoids. This study offers a detailed molecular-level physical characterization of JQSO and its minor components using differential [...] Read more.
The cold-pressed oil from Japanese quince seeds (JQSO) is notable for its favorable fatty acid profile, low oxidation rate, and bioactive compounds like antioxidants, sterols, and carotenoids. This study offers a detailed molecular-level physical characterization of JQSO and its minor components using differential scanning calorimetry (DSC), Langmuir monolayer studies, and various spectroscopic methods, including UV–vis absorption, fluorescence, and FTIR. DSC analysis identified five peaks related to triglyceride (TG) fractions and provided insights into the melting and crystallization behavior of JQSO. The Langmuir monolayer studies revealed high compressibility, indicative of superior emulsification properties. Viscoelastic modulus measurements suggested strong intermolecular interactions, contributing to the oil’s resilience under stress—an attribute typical of oils high in saturated or monounsaturated fatty acids. Spectroscopic methods confirmed the presence of phenolic acids, tocopherols, carotenoids, and their derivatives. The total fluorescence spectra highlighted prominent peaks at 290 nm/330 nm and 360 nm/440 nm, while the total synchronous fluorescence spectra revealed key excitation–emission regions (10–50 nm/300 nm and 40–140 nm/360 nm), corroborating the presence of tocopherols, phenols, polyphenols, flavones, and carotenoids. No evidence of chlorophyll was detected. The ATR-FTIR spectra validated the presence of fatty acids and triacylglycerols, emphasizing a high degree of esterification and the dominance of unsaturated fatty acids in oil structures. The methods used provided the opportunity to perform a label-free, fast, and reliable determination of the properties of JQSO. The findings confirmed that crude, cold-pressed JQSO retains its valuable bioactive components, aligning with previous research on its chemical and physical properties. Full article
(This article belongs to the Special Issue Analyses and Applications of Phenolic Compounds in Food—2nd Edition)
Show Figures

Graphical abstract

22 pages, 17156 KiB  
Article
Effects of Enterococcus faecalis Supplementation on Growth Performance, Hepatic Lipid Metabolism, and mRNA Expression of Lipid Metabolism Genes and Intestinal Flora in Geese
by Siyu Sun, Yujie Zhao, Zhen Pang, Baoxia Wan, Jiaqi Wang, Zhenyu Wu and Qiuju Wang
Animals 2025, 15(2), 268; https://doi.org/10.3390/ani15020268 - 18 Jan 2025
Cited by 1 | Viewed by 2209
Abstract
The effects of Enterococcus faecalis (E. faecalis) at a concentration of 1.0 × 108 CFU/mL on growth performance, hepatic lipid metabolism, and mRNA expression related to lipid metabolism, intestinal morphology, and intestinal flora were investigated in geese. A total of [...] Read more.
The effects of Enterococcus faecalis (E. faecalis) at a concentration of 1.0 × 108 CFU/mL on growth performance, hepatic lipid metabolism, and mRNA expression related to lipid metabolism, intestinal morphology, and intestinal flora were investigated in geese. A total of 60 male geese, aged 30 days and of similar weight, were randomly assigned to 2 groups. Each group was divided into six replicates, with five geese per replicate. During the 45-day experiment, the control group received a basal diet, while the experimental group was provided with the same basal diet supplemented with E. faecalis in drinking water at a concentration of 1.0 × 108 CFU/mL. E. faecalis significantly increased the half-eviscerated weight of geese and improved ileal intestinal morphology (p < 0.05). Serum triglyceride (TG) levels were significantly reduced on day 5, while serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased on day 25 (p < 0.05). By day 45, serum TG and free fatty acid (FFA) levels were also significantly reduced (p < 0.05). Additionally, E. faecalis significantly increased the HDL/LDL ratio and serum high-density lipoprotein cholesterol (HDL-C) levels (p < 0.05). Serum insulin levels were significantly elevated on day 25, and glucagon-like peptide-1 (GLP-1) levels were significantly increased on day 45 (p < 0.05). On day 25 of the trial, hepatic TG levels, FFA levels, and Oil Red O-stained areas in the liver were significantly reduced (p < 0.05), accompanied by significantly decreased mRNA expression of hepatic acetyl-CoA carboxylase (ACCA) (p < 0.05). Conversely, the mRNA expression levels of fatty acid synthase (FASN), farnesoid X receptor (FXR), sterol regulatory element-binding protein 1 (SREBP-1), and peroxisome proliferator-activated receptor-α (PPARα) were significantly elevated (p < 0.05). A 16S rRNA diversity analysis of ileal contents on day 25 revealed significant differences in intestinal flora composition between the control and E. faecalis groups. The 16S rRNA data demonstrated a strong correlation between microbial communities and lipid-related physiological and biochemical indicators (p < 0.05). In conclusion, E. faecalis supplementation promoted fatty acid oxidation, reduced blood lipid levels, alleviated hepatic lipid accumulation, and improved ileal morphology and intestinal flora diversity, thereby enhancing growth performance and lipid metabolism in geese. These findings suggest that E. faecalis is a promising probiotic candidate for development as a feed additive. Full article
(This article belongs to the Special Issue Feed Ingredients and Additives for Swine and Poultry)
Show Figures

Figure 1

18 pages, 3525 KiB  
Article
Molecular Insights into the Inhibition of Lipid Accumulation in Hepatocytes by Unique Extracts of Ashwagandha
by Dongyang Li, Hanlin Han, Yixin Sun, Huayue Zhang, Ren Yoshitomi, Sunil C. Kaul and Renu Wadhwa
Int. J. Mol. Sci. 2024, 25(22), 12256; https://doi.org/10.3390/ijms252212256 - 14 Nov 2024
Cited by 1 | Viewed by 2012
Abstract
We investigated the effect of purified withanolides and extracts derived from Ashwagandha on steatosis, the abnormal accumulation of fat that can lead to non-alcoholic fatty liver disease (NAFLD). Collaborator of ARF (CARF, also known as CDKN2AIP, a protein that regulates hepatic lipid metabolism, [...] Read more.
We investigated the effect of purified withanolides and extracts derived from Ashwagandha on steatosis, the abnormal accumulation of fat that can lead to non-alcoholic fatty liver disease (NAFLD). Collaborator of ARF (CARF, also known as CDKN2AIP, a protein that regulates hepatic lipid metabolism, fat buildup, and liver damage) was used as an indicator. Six withanolides (Withaferin A, Withanone, Withanolide B, Withanoside IV, Withanoside V, and Withanostraminolide-12 deoxy) reversed the decrease in CARF caused by exposure to free fatty acids (FFAs) in liver-derived cells (HepG2 hepatocytes). After analyzing the effects of these withanolides on CARF mRNA and protein levels, FFA accumulation, protein aggregation, and oxidative and DNA damage stresses, we selected Withaferin A and Withanone for molecular analyses. Using the palmitic-acid-induced fatty acid accumulation stress model in Huh7 cells, we found a significant reduction in the activity of the key regulators of lipogenesis pathways, including sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FASN), and peroxisome proliferator-activated receptors (PPARγ and PPARα). This in vitro study suggests that low, non-toxic doses of Withaferin A, Withanone, or Ashwagandha extracts containing these withanolides possess anti-steatosis and antioxidative-stress properties. Further in vivo and clinical studies are required to investigate the therapeutic potential of these Ashwagandha-derived bioactive ingredients for NAFLD. Full article
(This article belongs to the Special Issue Natural Bioactives and Inflammation, 2nd Edition)
Show Figures

Figure 1

12 pages, 2769 KiB  
Article
(E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone, a Major Homoisoflavonoid, Attenuates Free Fatty Acid-Induced Hepatic Steatosis by Activating AMPK and PPARα Pathways in HepG2 Cells
by Jae-Eun Park and Ji-Sook Han
Nutrients 2024, 16(20), 3475; https://doi.org/10.3390/nu16203475 - 14 Oct 2024
Viewed by 1433
Abstract
Background: (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HMC), a homoisoflavonoid isolated from Portulaca oleracea, has significant anti-adipogenesis potential; it regulates adipogenic transcription factors. However, whether HMC improves hepatic steatosis in hepatocytes remains vague. This study investigated whether HMC ameliorates hepatic steatosis in free fatty acid-treated [...] Read more.
Background: (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HMC), a homoisoflavonoid isolated from Portulaca oleracea, has significant anti-adipogenesis potential; it regulates adipogenic transcription factors. However, whether HMC improves hepatic steatosis in hepatocytes remains vague. This study investigated whether HMC ameliorates hepatic steatosis in free fatty acid-treated human hepatocellular carcinoma (HepG2) cells, and if so, its mechanism of action was analyzed. Methods: Hepatic steatosis was induced by a free fatty acid mixture in HepG2 cells. Thereafter, different HMC concentrations (10, 30, and 50 µM) or fenofibrate (10 µM, a PPARα agonist, positive control) was treated in HepG2 cells.Results: HMC markedly decreased lipid accumulation and triglyceride content in free fatty acid-treated HepG2 cell; it (10 and 50 μM) markedly upregulated protein expressions of pAMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. HMC (10 and 50 μM) markedly inhibited the expression of sterol regulatory element-binding protein-1c, fatty acid synthase, and stearoyl-coA desaturase 1, which are the enzymes involved in lipid synthesis. Furthermore, HMC (10 and 50 μM) markedly upregulated the protein expression of peroxisome proliferator-activated receptor alpha (PPARα) and enhanced the protein expressions of carnitine palmitoyl transferase 1 and acyl-CoA oxidase 1. Conclusion: HMC inhibits lipid accumulation and promotes fatty acid oxidation by AMPK and PPARα pathways in free fatty acid-treated HepG2 cells, thereby attenuating hepatic steatosis. Full article
(This article belongs to the Special Issue Effects of Phytochemicals on Metabolic Disorders and Human Health)
Show Figures

Figure 1

38 pages, 7020 KiB  
Article
Antidiabetic and Antihyperlipidemic Activities and Molecular Mechanisms of Phyllanthus emblica L. Extract in Mice on a High-Fat Diet
by Hsing-Yi Lin, Cheng-Hsiu Lin, Yueh-Hsiung Kuo and Chun-Ching Shih
Curr. Issues Mol. Biol. 2024, 46(9), 10492-10529; https://doi.org/10.3390/cimb46090623 - 20 Sep 2024
Viewed by 2072
Abstract
We planned to explore the protective activities of extract of Phyllanthus emblica L. (EPE) on insulin resistance and metabolic disorders including hyperlipidemia, visceral obesity, and renal dysfunction in high-fat diet (HFD)-progressed T2DM mice. Mice treatments included 7 weeks of HFD induction followed by [...] Read more.
We planned to explore the protective activities of extract of Phyllanthus emblica L. (EPE) on insulin resistance and metabolic disorders including hyperlipidemia, visceral obesity, and renal dysfunction in high-fat diet (HFD)-progressed T2DM mice. Mice treatments included 7 weeks of HFD induction followed by EPE, fenofibrate (Feno), or metformin (Metf) treatment daily for another 4-week HFD in HFD-fed mice. Finally, we harvested blood to analyze some tests on circulating glycemia and blood lipid levels. Western blotting analysis was performed on target gene expressions in peripheral tissues. The present findings indicated that EPE treatment reversed the HFD-induced increases in blood glucose, glycosylated HbA1C, and insulin levels. Our findings proved that treatment with EPE in HFD mice effectively controls hyperglycemia and hyperinsulinemia. Our results showed that EPE reduced blood lipid levels, including a reduction in blood triglyceride (TG), total cholesterol (TC), and free fatty acid (FFA); moreover, EPE reduced blood leptin levels and enhanced adiponectin concentrations. EPE treatment in HFD mice reduced BUN and creatinine in both blood and urine and lowered albumin levels in urine; moreover, EPE decreased circulating concentrations of inflammatory NLR family pyrin domain containing 3 (NLRP3) and kidney injury molecule-1 (KIM-1). These results indicated that EPE displayed antihyperglycemic and antihyperlipidemic activities but alleviated renal dysfunction in HFD mice. The histology examinations indicated that EPE treatment decreased adipose hypertrophy and hepatic ballooning, thus contributing to amelioration of lipid accumulation. EPE treatment decreased visceral fat amounts and led to improved systemic insulin resistance. For target gene expression levels, EPE enhanced AMP-activated protein kinase (AMPK) phosphorylation expressions both in livers and skeletal muscles and elevated the muscular membrane glucose transporter 4 (GLUT4) expressions. Treatment with EPE reduced hepatic glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) expressions to suppress glucose production in the livers and decreased phosphorylation of glycogen synthase kinase 3β (GSK3β) expressions to affect hepatic glycogen synthesis, thus convergently contributing to an antidiabetic effect and improving insulin resistance. The mechanism of the antihyperlipidemic activity of EPE involved a decrease in the hepatic phosphorylation of mammalian target of rapamycin complex C1 (mTORC1) and p70 S6 kinase 1 (S6K1) expressions to improve insulin resistance but also a reduction in hepatic sterol regulatory element binding protein (SREBP)-1c expressions, and suppression of ACC activity, thus resulting in the decreased fatty acid synthesis but elevated hepatic peroxisome proliferator-activated receptor (PPAR) α and SREBP-2 expressions, resulting in lowering TG and TC concentrations. Our results demonstrated that EPE improves insulin resistance and ameliorates hyperlipidemia in HFD mice. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 2060 KiB  
Article
Maize Grain Metabolite Profiling by NMR: Effects of Growing Year, Variety, and Cropping System
by Anatoly Petrovich Sobolev, Erica Acciaro, Milica Milutinović, Jelena Božunović, Neda Aničić, Danijela Mišić and Autar K. Mattoo
Molecules 2024, 29(17), 4097; https://doi.org/10.3390/molecules29174097 - 29 Aug 2024
Cited by 1 | Viewed by 1273
Abstract
Considering that maize (Zea mays L.) is a staple food for a large segment of the population worldwide, many attempts have been made to improve the nutritional value of its grain and at the same time to achieve sustainable cropping systems. The [...] Read more.
Considering that maize (Zea mays L.) is a staple food for a large segment of the population worldwide, many attempts have been made to improve the nutritional value of its grain and at the same time to achieve sustainable cropping systems. The present study aimed to characterize the composition and nutritional value of maize grain as influenced by cropping system, genetic background (variety), and growing year using untargeted NMR metabolomics. The composition of both water- (sugars and polyols, organic acids, and amino acids) and liposoluble metabolites (free and esterified fatty acids, sterols, and lipids) extracted from the maize grain was determined. Multivariate statistical analyses (PCA and ANOVA) pointed to the growing year and the variety as the most important random and fixed factors, respectively, influencing the metabolite profile. The samples were separated along PC1 and PC3 according to the growing year and the variety, respectively. A higher content of citric acid and diunsaturated fatty acids and a lower content of tyrosine, trigonelline, and monounsaturated fatty acids was observed in the organic with respect to the conventional variety. The effect of the cropping system was overwhelmed by the random effect of the growing year. The results provide novel knowledge on the influence of agronomic practices on maize micronutrient contents. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

11 pages, 2994 KiB  
Article
Effects of Soybean Isoflavones on the Growth Performance and Lipid Metabolism of the Juvenile Chinese Mitten Crab Eriocheir sinensis
by Mengyu Shi, Yisong He, Jiajun Zheng, Yang Xu, Yue Tan, Li Jia, Liqiao Chen, Jinyun Ye and Changle Qi
Fishes 2024, 9(9), 335; https://doi.org/10.3390/fishes9090335 - 26 Aug 2024
Viewed by 1173
Abstract
In order to study the effects of soybean isoflavones on the growth performance and lipid metabolism of juvenile Chinese mitten crabs, six experimental diets were formulated by gradient supplementation with 0%, 0.004% and 0.008% soybean isoflavones at different dietary lipid levels (10% and [...] Read more.
In order to study the effects of soybean isoflavones on the growth performance and lipid metabolism of juvenile Chinese mitten crabs, six experimental diets were formulated by gradient supplementation with 0%, 0.004% and 0.008% soybean isoflavones at different dietary lipid levels (10% and 15%). The groups were named as follows: NF-0 group (10% fat and 0% SIFs), NF-0.004 group (10% fat and 0.004% SIFs), NF-0.008 group (10% fat and 0.008% SIFs), HF-0 group (15% fat and 0% SIFs), HF-0.004 group (15% fat and 0.004% SIFs) and HF-0.008 group (15% fat and 0.008% SIFs). All crabs with an initial weight of 0.4 ± 0.03 g were fed for 8 weeks. The results showed that dietary supplementation with 0.004% or 0.008% SIFs significantly increased the weight gain and specific growth rate of crabs. Diets supplemented with 0.004% or 0.008% SIFs significantly reduced the content of non-esterified free fatty acids and triglycerides in the hepatopancreas of crabs at the 10% dietary lipid level. Dietary SIFs significantly decreased the relative mRNA expressions of elongase of very-long-chain fatty acids 6 (elovl6), triglyceride lipase (tgl), sterol regulatory element-binding protein 1 (srebp-1), carnitine palmitoyltransferase-1a (cpt-1a), fatty acid transporter protein 4 (fatp4), carnitine palmitoyltransferase-2 (cpt-2), Δ9 fatty acyl desaturase (Δ9 fad), carnitine palmitoyltransferase-1b (cpt-1b), fatty acid-binding protein 10 (fabp10) and microsomal triglyceride transfer protein (mttp) in the hepatopancreas of crabs. At the 15% dietary lipid level, 0.008% SIFs significantly increased the relative mRNA expressions of fatty acid-binding protein 3 (fabp3), carnitine acetyltransferase (caat), fatp4, fabp10, tgl, cpt-1a, cpt-1b and cpt-2 and significantly down-regulated the relative mRNA expressions of Δ9 fad and srebp-1. In conclusion, SIFs can improve the growth and utilization of a high-fat diet by inhibiting genes related to lipid synthesis and promoting lipid decomposition in juvenile Chinese mitten crabs. Full article
Show Figures

Figure 1

27 pages, 2040 KiB  
Review
Macrofungal Extracts as a Source of Bioactive Compounds for Cosmetical Anti-Aging Therapy: A Comprehensive Review
by Maja Paterska, Bogusław Czerny and Judyta Cielecka-Piontek
Nutrients 2024, 16(16), 2810; https://doi.org/10.3390/nu16162810 - 22 Aug 2024
Cited by 10 | Viewed by 4309
Abstract
For centuries, mushrooms have been used as a component of skincare formulations. Environmental stresses and a modern lifestyle expose the skin to accelerated aging. To slow down this process, natural anti-aging skincare ingredients are being sought. In this review, 52 scientific publications about [...] Read more.
For centuries, mushrooms have been used as a component of skincare formulations. Environmental stresses and a modern lifestyle expose the skin to accelerated aging. To slow down this process, natural anti-aging skincare ingredients are being sought. In this review, 52 scientific publications about the effects of chemical compounds extracted from the fruiting bodies of macrofungi on skin cells were selected. The effects of extracts from nine species that are tested for anti-aging effects have been described. According to available literature data, macrofungi contain many polysaccharides, phenolic compounds, polysaccharide peptides, free amino acids, sterols, proteins, glycosides, triterpenes, alkaloids, which can have an anti-aging effect on the skin by acting as antioxidants, photoprotective, skin whitening, moisturizing, anti-inflammatory and stabilizing collagen, elastin and hyaluronic acid levels in the skin. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

Back to TopTop