Characterization and Expression Analysis of the Sterol C-5 Desaturase Gene PcERG3 in the Mycobiont of the Lichen Peltigera canina Under Abiotic Stresses
Abstract
1. Introduction
2. Materials and Methods
2.1. Lichen Material
2.2. Cloning of PcERG3 Gene
2.3. Sequence Analysis
2.4. Alignment and Phylogenetic Analysis
2.5. Structural Analysis of Predicted PcERG3 from P. canina
2.6. Stress Treatments
2.7. RNA Extraction, cDNA Synthesis, and RT-qPCR
2.8. Data Analysis
3. Results
3.1. In Silico Analysis of Predicted PcERG3 Protein
3.2. Expression of ERG3 Gene of P. canina Under Abiotic Stresses
3.3. Expression of General Stress Responsive Genes of P. canina
4. Discussion
4.1. Phylogenetic Analysis of PcERG3
4.2. Theoretical Prediction of the Physicochemical Characteristics of PcERG3
4.3. Protein Domain Architecture of PcERG3
4.4. Changes in the Expression of PcERG3 Genes During Stress
4.5. Changes in Expression of HSP and SOD Genes During Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HSP | Heat shock protein |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
FA | Fatty Acid |
References
- Beckett, R.P.; Kranner, I.; Minibayeva, F.V. Stress Physiology and the Symbiosis. In Lichen Biology, 2nd ed.; Nash, T.H., III, Ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 134–151. [Google Scholar]
- Kranner, I.; Beckett, R.; Hochman, A.; Nash, T.H. Desiccation-Tolerance in Lichens: A Review. Bryologist 2008, 111, 576–593. [Google Scholar] [CrossRef]
- Jubany-Marí, T.; Munné-Bosch, S.; Alegre, L. Redox Regulation of Water Stress Responses in Field-Grown Plants. Role of Hydrogen Peroxide and Ascorbate. Plant Physiol. Biochem. 2010, 48, 351–358. [Google Scholar] [CrossRef]
- Stanton, D.E.; Ormond, A.; Koch, N.M.; Colesie, C. Lichen Ecophysiology in a Changing Climate. Am. J. Bot. 2023, 110, e16131. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, M.P.; Leavitt, S.D.; Heller, K.; Muggia, L.; Lumbsch, H.T. Macroecological Diversification and Convergence in a Clade of Keystone Symbionts. FEMS Microbiol. Ecol. 2021, 97, fiab072. [Google Scholar] [CrossRef]
- Valitova, J.; Renkova, A.; Beckett, R.; Minibayeva, F. Stigmasterol: An Enigmatic Plant Stress Sterol with Versatile Functions. Int. J. Mol. Sci. 2024, 25, 8122. [Google Scholar] [CrossRef] [PubMed]
- Valitova, J.N.; Khabibrakhmanova, V.R.; Babaev, V.M.; Uvaeva, V.L.; Khairullina, A.F.; Rakhmatullina, D.F.; Galeeva, E.I.; Swid, M.A.; Minibayeva, F.V. Sterol Composition of Lichen Peltigera canina When Exposed to Unfavorable Temperatures. Russ. J. Plant Physiol. 2023, 70, 180. [Google Scholar] [CrossRef]
- Dupont, S.; Fleurat-Lessard, P.; Cruz, R.G.; Lafarge, C.; Grangeteau, C.; Yahou, F.; Gerbeau-Pissot, P.; Júnior, O.A.; Gervais, P.; Simon-Plas, F.; et al. Antioxidant Properties of Ergosterol and Its Role in Yeast Resistance to Oxidation. Antioxidants 2021, 10, 1024. [Google Scholar] [CrossRef]
- Rodrigues, M.L. The Multifunctional Fungal Ergosterol. mBio 2018, 9, e01755-18. [Google Scholar] [CrossRef]
- Hu, Z.; He, B.; Ma, L.; Sun, Y.; Niu, Y.; Zeng, B. Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian J. Microbiol. 2017, 57, 270–277. [Google Scholar] [CrossRef]
- Sundberg, B.; Ekblad, A.; Näsholm, T.; Palmqvist, K. Lichen Respiration in Relation to Active Time, Temperature, Nitrogen and Ergosterol Concentrations. Funct. Ecol. 1999, 13, 119–125. [Google Scholar] [CrossRef]
- Zhou, Y.; Liao, M.; Zhu, C.; Hu, Y.; Tong, T.; Peng, X.; Li, M.; Feng, M.; Cheng, L.; Ren, B. ERG3 and ERG11 Genes Are Critical for the Pathogenesis of Candida albicans during the Oral Mucosal Infection. Int. J. Oral Sci. 2018, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Arthington-Skaggs, B.A.; Crowell, D.N.; Yang, H.; Sturley, S.L.; Bard, M. Positive and Negative Regulation of a Sterol Biosynthetic Gene (ERG3) in the Post-squalene Portion of the Yeast Ergosterol Pathway. FEBS Lett. 1996, 392, 161–165. [Google Scholar] [CrossRef]
- Arthington, B.A.; Bennett, L.G.; Skatrud, P.L.; Guynn, C.J.; Barbuch, R.J.; UIbright, C.E.; Bard, M. Cloning, Disruption and Sequence of the Gene Encoding Yeast C-5 Sterol Desaturase. Gene 1991, 102, 39–44. [Google Scholar] [CrossRef]
- Schaller, H. The Role of Sterols in Plant Growth and Development. Prog. Lipid Res. 2003, 42, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.; Noguchi, T.; Fujioka, S.; Takatsuto, S.; Tissier, C.P.; Gregory, B.D.; Ross, A.S.; Tanaka, A.; Yoshida, S.; Tax, F.E. The Arabidopsis Dwf7/Ste1 Mutant Is Defective in the Delta7 Sterol C-5 Desaturation Step Leading to Brassinosteroid Biosynthesis. Plant Cell 1999, 11, 207–221. [Google Scholar]
- Gachotte, D.; Meens, R.; Benveniste, P. An Arabidopsis Mutant Deficient in Sterol Biosynthesis: Heterologous Complementation by ERG 3 Encoding a Δ7-sterol-C-5-desaturase from Yeast. Plant J. 1995, 8, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Muscle: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. TrimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Onele, A.O.; Swid, M.A.; Leksin, I.Y.; Rakhmatullina, D.F.; Galeeva, E.I.; Beckett, R.P.; Minibayeva, F.V.; Valitova, J.N. Role of Squalene Epoxidase Gene (SQE1) in the Response of the Lichen Lobaria pulmonaria to Temperature Stress. J. Fungi 2024, 10, 705. [Google Scholar] [CrossRef] [PubMed]
- Lücking, R.; Nelsen, M.P. Ediacarans, Protolichens, and Lichen-Derived Penicillium. In Transformative Paleobotany; Krings, M., Harper, C.J., Cúneo, N.R., Rothwell, G.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 551–590. [Google Scholar]
- Dutta, S.; Muthusamy, V.; Zunjare, R.U.; Hossain, F. Analysis of Paralogous Genes of Carotenoid Dioxygenase Affecting Carotenoid Biosynthesis Pathway in Maize (Zea mays L.). J. Pharmacogn. Phytochem. 2019, 8, 524–530. [Google Scholar]
- Granel, M.L.S.; Siburu, N.G.; Fricska, A.; Maldonado, L.L.; Gargiulo, L.B.; Nudel, C.B.; Uttaro, A.D.; Nusblat, A.D. A Novel Tetrahymena Thermophila Sterol C-22 Desaturase Belongs to the Fatty Acid Hydroxylase/Desaturase Superfamily. J. Biol. Chem. 2022, 298, 102397. [Google Scholar] [CrossRef]
- Najle, S.R.; Nusblat, A.D.; Nudel, C.B.; Uttaro, A.D. The Sterol-C7 Desaturase from the Ciliate Tetrahymena thermophila Is a Rieske Oxygenase, Which Is Highly Conserved in Animals. Mol. Biol. Evol. 2013, 30, 1630–1643. [Google Scholar] [CrossRef]
- Taton, M.; Husselstein, T.; Benveniste, P.; Rahier, A. Role of Highly Conserved Residues in the Reaction Catalyzed by Recombinant Δ7-Sterol-C5(6)-Desaturase Studied by Site-Directed Mutagenesis. Biochemistry 2000, 39, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, S.K.; Lukowski, C.M.; Casey, J.R. The Cytoplasmic Domain Is Essential for Transport Function of the Integral Membrane Transport Protein SLC4A11. AJP Cell Physiol. 2015, 310, C161–C174. [Google Scholar] [CrossRef]
- Cerone, M.; Smith, T.K. Desaturases: Structural and Mechanistic Insights into the Biosynthesis of Unsaturated Fatty Acids. IUBMB Life 2022, 74, 1036–1051. [Google Scholar] [CrossRef]
- Kamthan, A.; Kamthan, M.; Datta, A. Expression of C-5 Sterol Desaturase from an Edible Mushroom in Fisson Yeast Enhances Its Ethanol and Thermotolerance. PLoS ONE 2017, 12, e0173381. [Google Scholar] [CrossRef]
- Swan, T.M.; Watson, K. Stress Tolerance in a Yeast Sterol Auxotroph: Role of Ergosterol, Heat Shock Proteins and Trehalose. FEMS Microbiol. Lett. 1998, 169, 191–197. [Google Scholar] [CrossRef]
- Albrecht, D.; Guthke, R.; Brakhage, A.A.; Kniemeyer, O. Integrative Analysis of the Heat Shock Response in Aspergillus fumigatus. BMC Genom. 2010, 11, 32. [Google Scholar] [CrossRef]
- Kraft, M.; Scheidegger, C.; Werth, S. Stressed out: The Effects of Heat Stress and Parasitism on Gene Expression of the Lichen-Forming Fungus Lobaria pulmonaria. Lichenologist 2022, 54, 71–83. [Google Scholar] [CrossRef]
- Do, J.H.; Yamaguchi, R.; Miyano, S. Exploring Temporal Transcription Regulation Structure of Aspergillus fumigatus in Heat Shock by State Space Model. BMC Genom. 2009, 10, 306. [Google Scholar] [CrossRef]
- Nakamoto, H.; Vígh, L. The Small Heat Shock Proteins and Their Clients. Cell. Mol. Life Sci. 2007, 64, 294–306. [Google Scholar] [CrossRef]
- Wu, J.; Wang, M.; Zhou, L.; Yu, D. Small Heat Shock Proteins, Phylogeny in Filamentous Fungi and Expression Analyses in Aspergillus nidulans. Gene 2016, 575, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Almer, J.; Resl, P.; Gudmundsson, H.; Warshan, D.; Andrésson, Ó.S.; Werth, S. Symbiont-specific Responses to Environmental Cues in a Threesome Lichen Symbiosis. Mol. Ecol. 2022, 32, 1045–1061. [Google Scholar] [CrossRef]
- Steinhäuser, S.S.; Andrésson, Ó.S.; Pálsson, A.; Werth, S. Fungal and Cyanobacterial Gene Expression in a Lichen Symbiosis: Effect of Temperature and Location. Fungal Biol. 2016, 120, 1194–1208. [Google Scholar] [CrossRef] [PubMed]
- Saibil, H. Chaperone Machines for Protein Folding, Unfolding and Disaggregation. Nat. Rev. Mol. Cell Biol. 2013, 14, 630–642. [Google Scholar] [CrossRef]
- Len, J.S.; Koh, W.S.D.; Tan, S.-X. The Roles of Reactive Oxygen Species and Antioxidants in Cryopreservation. Biosci. Rep. 2019, 39, BSR20191601. [Google Scholar] [CrossRef]
- Li, Q.; Harvey, L.M.; McNeil, B. Oxidative Stress in Industrial Fungi. Crit. Rev. Biotechnol. 2009, 29, 199–213. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef] [PubMed]
- Dimayuga, F.O.; Wang, C.; Clark, J.M.; Dimayuga, E.R.; Dimayuga, V.M.; Bruce-Keller, A.J. SOD1 Overexpression Alters ROS Production and Reduces Neurotoxic Inflammatory Signaling in Microglial Cells. J. Neuroimmunol. 2006, 182, 89–99. [Google Scholar] [CrossRef]
- Steunou, A.S.; Babot, M.; Bourbon, M.; Tambosi, R.; Durand, A.; Liotenberg, S.; Krieger-Liszkay, A.; Yamaichi, Y.; Ouchane, S. Additive Effects of Metal Excess and Superoxide, a Highly Toxic Mixture in Bacteria. Microb. Biotechnol. 2020, 13, 1515–1529. [Google Scholar] [CrossRef]
- Yang, J.; Oh, S.-O.; Hur, J.-S. Lichen as Bioindicators: Assessing Their Response to Heavy Metal Pollution in Their Native Ecosystem. Mycobiology 2023, 51, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Kranner, I. Glutathione Status Correlates with Different Degrees of Desiccation Tolerance in Three Lichens. New Phytol. 2002, 154, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Gasulla, F.; Del Campo, E.M.; Casano, L.M.; Guéra, A. Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. Plants 2021, 10, 807. [Google Scholar] [CrossRef]
- Mayaba, N.; Beckett, R.P. Increased Activities of Superoxide Dismutase and Catalase Are Not the Mechanism of Desiccation Tolerance Induced by Hardening in the moss Atrichum androgynum. J. Bryol. 2003, 25, 281–286. [Google Scholar] [CrossRef]
Species | Protein | Homology | ID |
---|---|---|---|
Model Organisms | |||
Danio rerio | Lathosterol oxidase | 53% | NP_001004630.1 |
Homo sapiens | Sterol-C5-desaturase | 47% | BAA33729.1 |
Homo sapiens | Fungal sterol-C5-desaturase homolog | 51% | BAA18970.1 |
Mus musculus | Lathosterol oxidase | 47% | NP_766357.1 |
Saccharomyces cerevisiae | C-5 sterol desaturase | 47% | NP_013157.1 |
Schizosaccharomyces pombe | C-5 sterol desaturase Erg31 | 50% | NP_593135.1 |
Schizosaccharomyces pombe | C-5 sterol desaturase Erg32 | 45% | NP_001018791.2 |
Arabidopsis thaliana | Fatty acid hydroxylase superfamily protein | 32% | NP_186908.1 |
Lichens | |||
Peltigera leucophlebia | C-5 sterol desaturase | 89% | MCJ1342268.1 |
Crocodia aurata | C-5 sterol desaturase | 79% | MCJ1468455.1 |
Lobaria immixta | C-5 sterol desaturase | 79% | MCJ1260240.1 |
Mycoblastus sanguinarius | C-5 sterol desaturase | 74% | MCJ1458375.1 |
Toensbergia leucococca | C-5 sterol desaturase | 74% | MCJ1227742.1 |
Nostoc sp. ‘Lobaria pulmonaria (5183) cyanobiont’ | Sterol desaturase family protein | 32% | WP_325034720.1 |
Fungi | |||
Penicillium macrosclerotiorum | Delta(7)-sterol 5(6)-desaturase | 65% | XP_056930843.1 |
Candida tropicalis | Delta(7)-sterol 5(6)-desaturase ERG3 | 55% | KAK6887551.1 |
Candida tropicalis | C-5 sterol desaturase | 44% | XP_002550182.1 |
Candida metapsilosis | ERG3 | 52% | KAG5421701.1 |
Candida albicans | C-5 (6) desaturase | 52% | WCC72276.1 |
Candida albicans | C-5 sterol desaturase | 46% | XP_713577.1 |
Candida pseudojiufengensis | ERG3 | 45% | XP_051616781.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swid, M.A.; V. Koulintchenko, M.; Onele, A.O.; Leksin, I.Y.; Rakhmatullina, D.F.; Galeeva, E.I.; Valitova, J.N.; Minibayeva, F.V.; Beckett, R.P. Characterization and Expression Analysis of the Sterol C-5 Desaturase Gene PcERG3 in the Mycobiont of the Lichen Peltigera canina Under Abiotic Stresses. Microbiol. Res. 2025, 16, 139. https://doi.org/10.3390/microbiolres16070139
Swid MA, V. Koulintchenko M, Onele AO, Leksin IY, Rakhmatullina DF, Galeeva EI, Valitova JN, Minibayeva FV, Beckett RP. Characterization and Expression Analysis of the Sterol C-5 Desaturase Gene PcERG3 in the Mycobiont of the Lichen Peltigera canina Under Abiotic Stresses. Microbiology Research. 2025; 16(7):139. https://doi.org/10.3390/microbiolres16070139
Chicago/Turabian StyleSwid, Moatasem A., Milana V. Koulintchenko, Alfred O. Onele, Ilya Y. Leksin, Daniya F. Rakhmatullina, Ekaterina I. Galeeva, Julia N. Valitova, Farida V. Minibayeva, and Richard P. Beckett. 2025. "Characterization and Expression Analysis of the Sterol C-5 Desaturase Gene PcERG3 in the Mycobiont of the Lichen Peltigera canina Under Abiotic Stresses" Microbiology Research 16, no. 7: 139. https://doi.org/10.3390/microbiolres16070139
APA StyleSwid, M. A., V. Koulintchenko, M., Onele, A. O., Leksin, I. Y., Rakhmatullina, D. F., Galeeva, E. I., Valitova, J. N., Minibayeva, F. V., & Beckett, R. P. (2025). Characterization and Expression Analysis of the Sterol C-5 Desaturase Gene PcERG3 in the Mycobiont of the Lichen Peltigera canina Under Abiotic Stresses. Microbiology Research, 16(7), 139. https://doi.org/10.3390/microbiolres16070139