Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = fractional cover imagery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4515 KiB  
Article
Monitoring Post-Fire Deciduous Shrub Cover Using Machine Learning and Multiscale Remote Sensing
by Hannah Trommer and Timothy Assal
Land 2025, 14(8), 1603; https://doi.org/10.3390/land14081603 - 6 Aug 2025
Abstract
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in [...] Read more.
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in the eastern Jemez Mountains from 2019 to 2023 using topographic and Sentinel-2 satellite data and evaluated the impact of spatial scale on model performance. First, we built a 10 m and a 20 m random forest model. The 20 m model outperformed the 10 m model, achieving an R-squared value of 0.82 and an RMSE of 7.85, compared to the 10 m model (0.76 and 9.99, respectively). We projected the 20 m model to the other years of the study using imagery from the respective years, yielding yearly DFSC predictions. DFSC decreased from 2019 to 2022, coinciding with severe drought and a 2022 fire, followed by an increase in 2023, particularly within the 2022 fire footprint. Overall, DFSC trends showed an increase, with elevation being a key variable influencing these trends. This framework revealed vegetation dynamics in a semi-arid system and provided a close look at post-fire regeneration in deciduous resprouting shrubs and could be applied to similar systems. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

20 pages, 2305 KiB  
Article
Research on Accurate Inversion Techniques for Forest Cover Using Spaceborne LiDAR and Multi-Spectral Data
by Yang Yi, Mingchang Shi, Jin Yang, Jinqi Zhu, Jie Li, Lingyan Zhou, Luqi Xing and Hanyue Zhang
Forests 2025, 16(8), 1215; https://doi.org/10.3390/f16081215 - 24 Jul 2025
Viewed by 305
Abstract
Fractional Vegetation Cover (FVC) is an important parameter to reflect vegetation growth and describe plant canopy structure. This study integrates both active and passive remote sensing, capitalizing on the complementary strengths of optical and radar data, and applies various machine learning algorithms to [...] Read more.
Fractional Vegetation Cover (FVC) is an important parameter to reflect vegetation growth and describe plant canopy structure. This study integrates both active and passive remote sensing, capitalizing on the complementary strengths of optical and radar data, and applies various machine learning algorithms to retrieve FVC. The results demonstrate that, for FVC retrieval, the optimal combination of optical remote sensing bands includes B2 (490 nm), B5 (705 nm), B8 (833 nm), B8A (865 nm), and B12 (2190 nm) from Sentinel-2, achieving an Optimal Index Factor (OIF) of 522.50. The LiDAR data of ICESat-2 imagery is more suitable for extracting FVC than that of GEDI imagery, especially at a height of 1.5 m, and the correlation coefficient with the measured FVC is 0.763. The optimal feature variable combinations for FVC retrieval vary among different vegetation types, including synthetic aperture radar, optical remote sensing, and terrain data. Among the three models tested—multiple linear regression, random forest, and support vector machine—the random forest model outperformed the others, with fitting correlation coefficients all exceeding 0.974 and root mean square errors below 0.084. Adding LiDAR data on the basis of optical remote sensing combined with machine learning can effectively improve the accuracy of remote sensing retrieval of vegetation coverage. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 5468 KiB  
Article
Alpine Meadow Fractional Vegetation Cover Estimation Using UAV-Aided Sentinel-2 Imagery
by Kai Du, Yi Shao, Naixin Yao, Hongyan Yu, Shaozhong Ma, Xufeng Mao, Litao Wang and Jianjun Wang
Sensors 2025, 25(14), 4506; https://doi.org/10.3390/s25144506 - 20 Jul 2025
Viewed by 329
Abstract
Fractional Vegetation Cover (FVC) is a crucial indicator describing vegetation conditions and provides essential data for ecosystem health assessments. However, due to the low and sparse vegetation in alpine meadows, it is challenging to obtain pure vegetation pixels from Sentinel-2 imagery, resulting in [...] Read more.
Fractional Vegetation Cover (FVC) is a crucial indicator describing vegetation conditions and provides essential data for ecosystem health assessments. However, due to the low and sparse vegetation in alpine meadows, it is challenging to obtain pure vegetation pixels from Sentinel-2 imagery, resulting in errors in the FVC estimation using traditional pixel dichotomy models. This study integrated Sentinel-2 imagery with unmanned aerial vehicle (UAV) data and utilized the pixel dichotomy model together with four machine learning algorithms, namely Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Deep Neural Network (DNN), to estimate FVC in an alpine meadow region. First, FVC was preliminarily estimated using the pixel dichotomy model combined with nine vegetation indices applied to Sentinel-2 imagery. The performance of these estimates was evaluated against reference FVC values derived from centimeter-level UAV data. Subsequently, four machine learning models were employed for an accurate FVC inversion, using the estimated FVC values and UAV-derived reference FVC as inputs, following feature importance ranking and model parameter optimization. The results showed that: (1) Machine learning algorithms based on Sentinel-2 and UAV imagery effectively improved the accuracy of FVC estimation in alpine meadows. The DNN-based FVC estimation performed best, with a coefficient of determination of 0.82 and a root mean square error (RMSE) of 0.09. (2) In vegetation coverage estimation based on the pixel dichotomy model, different vegetation indices demonstrated varying performances across areas with different FVC levels. The GNDVI-based FVC achieved a higher accuracy (RMSE = 0.08) in high-vegetation coverage areas (FVC > 0.7), while the NIRv-based FVC and the SR-based FVC performed better (RMSE = 0.10) in low-vegetation coverage areas (FVC < 0.4). The method provided in this study can significantly enhance FVC estimation accuracy with limited fieldwork, contributing to alpine meadow monitoring on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Graphical abstract

17 pages, 15945 KiB  
Article
Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission
by Dimitris Poursanidis and Stelios Katsanevakis
Remote Sens. 2025, 17(14), 2398; https://doi.org/10.3390/rs17142398 - 11 Jul 2025
Viewed by 405
Abstract
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of [...] Read more.
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of habitat monitoring under the EU Natura 2000 directive and the Nature Restoration Regulation, this study investigates the utility of high-resolution satellite remote sensing for mapping subtidal brown algae and associated benthic classes. Using imagery from the SuperDove sensor (Planet Labs, San Francisco, CA, USA), we developed an integrated mapping workflow at the Natura 2000 site GR2420009. Aquatic reflectance was derived using ACOLITE v.20250114.0, and both supervised classification and spectral unmixing were implemented in the EnMAP Toolbox v.3.16.3 within QGIS. A Random Forest classifier (100 fully grown trees) achieved high thematic accuracy across all habitat types (F1 scores: 0.87–1.00), with perfect classification of shallow soft bottoms and strong performance for Cystoseira s.l. (F1 = 0.94) and Seagrass (F1 = 0.93). Spectral unmixing further enabled quantitative estimation of fractional cover, with high predictive accuracy for deep soft bottoms (R2 = 0.99; RPD = 18.66), shallow soft bottoms (R2 = 0.98; RPD = 8.72), Seagrass (R2 = 0.88; RPD = 3.01) and Cystoseira s.l. (R2 = 0.82; RPD = 2.37). The lower performance for rocky reefs with other cover (R2 = 0.71) reflects spectral heterogeneity and shadowing effects. The results highlight the effectiveness of combining classification and unmixing approaches for benthic habitat mapping using CubeSat constellations, offering scalable tools for large-area monitoring and ecosystem assessment. Despite challenges in field data acquisition, the presented framework provides a robust foundation for remote sensing-based conservation planning in optically shallow marine environments. Full article
(This article belongs to the Special Issue Marine Ecology and Biodiversity by Remote Sensing Technology)
Show Figures

Graphical abstract

19 pages, 20060 KiB  
Article
Relationship Between Urban Forest Structure and Seasonal Variation in Vegetation Cover in Jinhua City, China
by Hao Yang, Shaowei Chu, Hao Zeng and Youbing Zhao
Forests 2025, 16(7), 1129; https://doi.org/10.3390/f16071129 - 9 Jul 2025
Viewed by 312
Abstract
Urban forests play a crucial role in enhancing vegetation cover and bolstering the ecological functions of cities by expanding green space, improving ecological connectivity, and reducing landscape fragmentation. This study examines these dynamics in Jinhua City, China, utilizing Landsat 8 satellite imagery for [...] Read more.
Urban forests play a crucial role in enhancing vegetation cover and bolstering the ecological functions of cities by expanding green space, improving ecological connectivity, and reducing landscape fragmentation. This study examines these dynamics in Jinhua City, China, utilizing Landsat 8 satellite imagery for all four seasons of 2023, accessed through the Google Earth Engine (GEE) platform. Fractional vegetation cover (FVC) was calculated using the pixel binary model, followed by the classification of FVC levels. To understand the influence of landscape structure, nine representative landscape metrics were selected to construct a landscape index system. Pearson correlation analysis was employed to explore the relationships between these indices and seasonal FVC variations. Furthermore, the contribution of each index to seasonal FVC was quantified using a random forest (RF) regression model. The results indicate that (1) Jinhua exhibits the highest average FVC during the summer, reaching 0.67, while the lowest value is observed in winter, at 0.49. The proportion of areas with very high coverage peaks in summer, accounting for 50.6% of the total area; (2) all landscape metrics exhibited significant correlations with seasonal FVC. Among them, the class area (CA), percentage of landscape (PLAND), largest patch index (LPI), and patch cohesion index (COHESION) showed strong positive correlations with FVC, whereas the total edge length (TE), landscape shape index (LSI), patch density (PD), edge density (ED), and area-weighted mean shape index (AWMSI) were negatively correlated with FVC; (3) RF regression analysis revealed that CA and PLAND contributed most substantially to FVC, followed by COHESION and LPI, while PD, AWMSI, LSI, TE, and ED demonstrated relatively lower contributions. These findings provide valuable insights for optimizing urban forest landscape design and enhancing urban vegetation cover, underscoring that increasing large, interconnected forest patches represents an effective strategy for improving FVC in urban environments. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

32 pages, 3058 KiB  
Article
Mapping the Spatial Distribution of Noxious Weed Species with Time-Series Data in Degraded Grasslands in the Three-River Headwaters Region, China
by Xianglin Huang, Ru An and Huilin Wang
Sustainability 2025, 17(12), 5424; https://doi.org/10.3390/su17125424 - 12 Jun 2025
Viewed by 470
Abstract
Noxious weeds (NWs) are increasingly recognized as a significant threat to the native alpine grassland ecosystems of the Qinghai–Tibetan Plateau (QTP). However, large-scale quantification of their continuous fractional cover remains challenging. This study proposes a pixel-level estimation framework utilizing time-series Sentinel-2 imagery. A [...] Read more.
Noxious weeds (NWs) are increasingly recognized as a significant threat to the native alpine grassland ecosystems of the Qinghai–Tibetan Plateau (QTP). However, large-scale quantification of their continuous fractional cover remains challenging. This study proposes a pixel-level estimation framework utilizing time-series Sentinel-2 imagery. A Dynamic Mask Non-Stationary Transformer (DMNST) model was developed and trained using multi-temporal multispectral data to map the spatial distribution of NWs in the Three-River Headwaters Region. The model was calibrated and validated using field data collected from 170 plots (1530 quadrats). The results demonstrated that both the dynamic masking module and the non-stationary normalization significantly enhanced the prediction accuracy and robustness, particularly when applied jointly. The model performance varied across different combinations of spectral bands and temporal inputs, with the optimal configurations achieving a test R2 of 0.770, MSE of 0.009, and RMSE of 0.096. These findings underscore the critical role of the input configuration and architectural enhancements in accurately modeling the fractional cover of NWs. This study confirms the applicability of Sentinel-2 time-series imagery for modeling the continuous fractional cover of NWs and provides a scalable tool for invasive species monitoring and ecological risk assessment in alpine ecosystems. Full article
Show Figures

Figure 1

33 pages, 5536 KiB  
Article
Applications of Snow-Covered Areas from Unoccupied Aerial Systems (UAS) Visible Imagery: A Demonstration in Southeastern New Hampshire
by Jeremy M. Johnston, Jennifer M. Jacobs, Adam Hunsaker, Cameron Wagner and Megan Vardaman
Remote Sens. 2025, 17(11), 1885; https://doi.org/10.3390/rs17111885 - 29 May 2025
Viewed by 517
Abstract
Remote sensing observations of snow-covered areas (SCA) are important for monitoring and modeling energy balances, hydrologic processes, and climate change. For an agricultural field, we produced 12 snow cover maps from UAS imagery during an approximately 3-week-long spring snowmelt period. SCA maps were [...] Read more.
Remote sensing observations of snow-covered areas (SCA) are important for monitoring and modeling energy balances, hydrologic processes, and climate change. For an agricultural field, we produced 12 snow cover maps from UAS imagery during an approximately 3-week-long spring snowmelt period. SCA maps were used to characterize snow cover patterns, validate satellite snow cover products, translate satellite Normalized Difference Snow Index (NDSI) to fractional SCA (fSCA), and downscale satellite SCA observations. Compared to manually delineated SCA, the UAS SCA accuracy was 85%, with misclassifications due to shadows, ice, and patchy snow conditions. During snowmelt, UAS-derived maps of bare earth patches exhibited self-similarity, behaving as fractal objects over scales from 0.01 to 100 m2. As a validation tool, the UAS-derived SCA showed that satellite snow cover observations accurately captured the fSCA evolution during snowmelt (R2 = 0.93−0.98). A random forest satellite downscaling model, trained using 20 m Sentinel-2 NDSI observations and 20 cm vegetation and terrain features, produced realistic (>90% accuracy), high-resolution SCA maps. While similar to traditional Sentinel-2 SCA in most conditions, downscaling snow cover significantly improved performance during periods of patchy snow cover and produced more realistic bare patches. UAS optical sensing demonstrates the potential uses for high-resolution snow cover mapping and recommends future research avenues for using UAS SCA maps. Full article
Show Figures

Figure 1

18 pages, 13360 KiB  
Article
The Relationships Between Vegetation Changes and Groundwater Table Depths for Woody Plants in the Sangong River Basin, Northwest China
by Han Wu, Jie Bai, Junli Li, Ran Liu, Jin Zhao and Xuanlong Ma
Remote Sens. 2025, 17(5), 937; https://doi.org/10.3390/rs17050937 - 6 Mar 2025
Cited by 1 | Viewed by 836
Abstract
Woody plants serve as crucial ecological barriers surrounding oases in arid and semi-arid regions, playing a vital role in maintaining the stability and supporting sustainable development of oases. However, their sparse distribution makes significant challenges in accurately mapping their spatial extent using medium-resolution [...] Read more.
Woody plants serve as crucial ecological barriers surrounding oases in arid and semi-arid regions, playing a vital role in maintaining the stability and supporting sustainable development of oases. However, their sparse distribution makes significant challenges in accurately mapping their spatial extent using medium-resolution remote sensing imagery. In this study, we utilized high-resolution Gaofen (GF-2) and Landsat 5/7/8 satellite images to quantify the relationship between vegetation growth and groundwater table depths (GTD) in a typical inland river basin from 1988 to 2021. Our findings are as follows: (1) Based on the D-LinkNet model, the distribution of woody plants was accurately extracted with an overall accuracy (OA) of 96.06%. (2) Approximately 95.33% of the desert areas had fractional woody plant coverage (FWC) values of less than 10%. (3) The difference between fractional woody plant coverage and fractional vegetation cover proved to be a fine indicator for delineating the range of desert-oasis ecotone. (4) The optimal GTD for Haloxylon ammodendron and Tamarix ramosissima was determined to be 5.51 m and 3.36 m, respectively. Understanding the relationship between woody plant growth and GTD is essential for effective ecological conservation and water resource management in arid and semi-arid regions. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

19 pages, 6447 KiB  
Article
Unmanned Aerial Vehicle Remote Sensing for Monitoring Fractional Vegetation Cover in Creeping Plants: A Case Study of Thymus mongolicus Ronniger
by Hao Zheng, Wentao Mi, Kaiyan Cao, Weibo Ren, Yuan Chi, Feng Yuan and Yaling Liu
Agriculture 2025, 15(5), 502; https://doi.org/10.3390/agriculture15050502 - 26 Feb 2025
Viewed by 549
Abstract
Fractional vegetation cover (FVC) is a key indicator of plant growth. Unmanned aerial vehicle (UAV) imagery has gained prominence for FVC monitoring due to its high resolution. However, most studies have focused on single phenological stages or specific crop types, with limited research [...] Read more.
Fractional vegetation cover (FVC) is a key indicator of plant growth. Unmanned aerial vehicle (UAV) imagery has gained prominence for FVC monitoring due to its high resolution. However, most studies have focused on single phenological stages or specific crop types, with limited research on the continuous temporal monitoring of creeping plants. This study addresses this gap by focusing on Thymus mongolicus Ronniger (T. mongolicus). UAV-acquired visible light and multispectral images were collected across key phenological stages: green-up, budding, early flowering, peak flowering, and fruiting. FVC estimation models were developed using four algorithms: multiple linear regression (MLR), random forest (RF), support vector regression (SVR), and artificial neural network (ANN). The SVR model achieved optimal performance during the green-up (R2 = 0.87) and early flowering stages (R2 = 0.91), while the ANN model excelled during budding (R2 = 0.93), peak flowering (R2 = 0.95), and fruiting (R2 = 0.77). The predictions of the best-performing models were consistent with ground truth FVC values, thereby effectively capturing dynamic changes in FVC. FVC growth rates exhibited distinct variations across phenological stages, indicating high consistency between predicted and actual growth trends. This study highlights the feasibility of UAV-based FVC monitoring for T. mongolicus and indicates its potential for tracking creeping plants. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

26 pages, 41731 KiB  
Article
Species-Level Saltmarsh Vegetation Fractional Cover Estimation Based on Time Series Sentinel-2 Imagery with the Assistance of Sample Expansion
by Jinghan Sha, Zhaojun Zhuo, Qingqing Zhou, Yinghai Ke, Mengyao Zhang, Jinyuan Li and Yukui Min
Diversity 2025, 17(1), 3; https://doi.org/10.3390/d17010003 - 24 Dec 2024
Viewed by 863
Abstract
Coastal saltmarsh wetlands are vital “blue carbon” ecosystems. Fractional vegetation cover (FVC) is a key indicator revealing the spatial distribution and growth status of vegetation. Remote sensing has proven a vital tool for FVC estimation at regional or landscape scales. Establishing a species-level [...] Read more.
Coastal saltmarsh wetlands are vital “blue carbon” ecosystems. Fractional vegetation cover (FVC) is a key indicator revealing the spatial distribution and growth status of vegetation. Remote sensing has proven a vital tool for FVC estimation at regional or landscape scales. Establishing a species-level FVC estimation model usually requires sufficient field measurements as training/validation samples. However, field-based sample collection in wetlands is challenging because of the harsh environment. In this study, we proposed a Fractional Vegetation Cover Wasserstein Generative Adversarial Network (FVC-WGAN) model for FVC sample expansion. We chose the Yellow River Delta as the study area and utilized the time series Sentinel-2 imagery and random forest regression model for species-level FVC estimation with the assistance of FVC-WGAN-generated samples. To assess the efficacy of FVC-WGAN, we designed 13 experimental schemes using different combinations of real and generated samples. Our results show that the FVC-WGAN-generated samples had similar feature values to the real samples. Supplementing 500 real samples with generated samples can achieve good accuracy with an average RMSE < 0.1. As the number of real samples increased, the accuracies of FVC estimation improved. When the number of the generated samples was balanced with the real samples, the accuracy improved in terms of both R2, RMSE and the spatial consistency. Full article
Show Figures

Figure 1

25 pages, 8293 KiB  
Article
Estimating Grassland Biophysical Parameters in the Cantabrian Mountains Using Radiative Transfer Models in Combination with Multiple Endmember Spectral Mixture Analysis
by José Manuel Fernández-Guisuraga, Iván González-Pérez, Ana Reguero-Vaquero and Elena Marcos
Remote Sens. 2024, 16(23), 4547; https://doi.org/10.3390/rs16234547 - 4 Dec 2024
Cited by 2 | Viewed by 1033
Abstract
Grasslands are one of the most abundant and biodiverse ecosystems in the world. However, in southern European countries, the abandonment of traditional management activities, such as extensive grazing, has caused many semi-natural grasslands to be invaded by shrubs. Therefore, there is a need [...] Read more.
Grasslands are one of the most abundant and biodiverse ecosystems in the world. However, in southern European countries, the abandonment of traditional management activities, such as extensive grazing, has caused many semi-natural grasslands to be invaded by shrubs. Therefore, there is a need to characterize semi-natural grasslands to determine their aboveground primary production and livestock-carrying capacity. Nevertheless, current methods lack a realistic identification of vegetation assemblages where grassland biophysical parameters can be accurately retrieved by the inversion of turbid-medium radiative transfer models (RTMs) in fine-grained landscapes. To this end, in this study we proposed a novel framework in which multiple endmember spectral mixture analysis (MESMA) was implemented to realistically identify grassland-dominated pixels from Sentinel-2 imagery in heterogeneous mountain landscapes. Then, the inversion of PROSAIL RTM (coupled PROSPECT and SAIL leaf and canopy models) was implemented separately for retrieving grassland biophysical parameters, including the leaf area index (LAI), fractional vegetation cover (FCOVER), and aboveground biomass (AGB), from grassland-dominated Sentinel-2 pixels while accounting for non-vegetated areas at the subpixel level. The study region was the southern slope of the Cantabrian Mountains (Spain), with a high spatial variability of fine-grained land covers. The MESMA grassland fraction image had a high accuracy based on validation results using centimetric resolution aerial orthophotographs (R2 = 0.74, and RMSE = 0.18). The validation with field reference data from several mountain passes of the southern slope of the Cantabrian Mountains featured a high accuracy for LAI (R2 = 0.74, and RMSE = 0.56 m2·m−2), FCOVER (R2 = 0.78 and RMSE = 0.07), and AGB (R2 = 0.67, and RMSE = 43.44 g·m−2). This study provides a reliable method to accurately identify and estimate grassland biophysical variables in highly diverse landscapes at a regional scale, with important implications for the management and conservation of threatened semi-natural grasslands. Future studies should investigate the PROSAIL inversion over the endmember signatures and subpixel fractions depicted by MESMA to adequately address the parametrization of the underlying background reflectance by using prior information and should also explore the scalability of this approach to other heterogeneous landscapes. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

16 pages, 45241 KiB  
Article
Classifying Serrated Tussock Cover from Aerial Imagery Using RGB Bands, RGB Indices, and Texture Features
by Daniel Pham, Deepak Gautam and Kathryn Sheffield
Remote Sens. 2024, 16(23), 4538; https://doi.org/10.3390/rs16234538 - 4 Dec 2024
Cited by 1 | Viewed by 1304
Abstract
Monitoring the location and severity of invasive plant infestations is critical to the management of their spread. Remote sensing can be an effective tool for mapping invasive plants due to its capture speed, continuous coverage, and low cost, compared to ground-based surveys. Serrated [...] Read more.
Monitoring the location and severity of invasive plant infestations is critical to the management of their spread. Remote sensing can be an effective tool for mapping invasive plants due to its capture speed, continuous coverage, and low cost, compared to ground-based surveys. Serrated tussock (Nassella trichotoma) is a highly problematic invasive plant in Victoria, Australia, as it competes with the species in the communities that it invades. In this study, a workflow was developed and assessed for classifying the cover of serrated tussock in a mix of grazing pastures and grasslands. Using high-resolution RGB aerial imagery and vegetation field survey plots, random forest models were trained to classify the plots based on their fractional coverage of serrated tussock. Three random forest classifiers were trained by utilising spectral features (RGB bands and indices), texture features derived from the Grey-Level Co-occurrence Matrix, and a combination of all the features. The model trained on all the features achieved an overallaccuracy of 67% and a kappa score of 0.52 against a validation dataset. Plots with high and low infestation levels were classified more accurately than plots with moderate or no infestation. Notably, texture features proved more effective than spectral features for classification. The developed random forest model can be used for producing classified maps to depict the spatial distribution of serrated tussock infestation, thus supporting land managers in managing the infestation. Full article
(This article belongs to the Special Issue Remote Sensing for Management of Invasive Species)
Show Figures

Figure 1

19 pages, 3451 KiB  
Article
High-Resolution Remotely Sensed Evidence Shows Solar Thermal Power Plant Increases Grassland Growth on the Tibetan Plateau
by Naijing Liu, Huaiwu Peng, Zhenshi Zhang, Yujin Li, Kai Zhang, Yuehan Guo, Yuzheng Cui, Yingsha Jiang, Wenxiang Gao and Donghai Wu
Remote Sens. 2024, 16(22), 4266; https://doi.org/10.3390/rs16224266 - 15 Nov 2024
Cited by 1 | Viewed by 1037
Abstract
Solar energy plays a crucial role in mitigating greenhouse gas emissions in the context of global climate change. However, its deployment for green electricity generation can significantly influence regional climate and vegetation dynamics. While prior studies have examined the impacts of solar power [...] Read more.
Solar energy plays a crucial role in mitigating greenhouse gas emissions in the context of global climate change. However, its deployment for green electricity generation can significantly influence regional climate and vegetation dynamics. While prior studies have examined the impacts of solar power plants on vegetation, the accuracy of these assessments has often been constrained by the availability of publicly accessible multispectral, high-resolution remotely sensed imagery. Given the abundant solar energy resources and the ecological significance of the Tibetan Plateau, a thorough evaluation of the vegetation effects associated with solar power installations is warranted. In this study, we utilize sub-meter resolution imagery from the GF-2 satellite to reconstruct the fractional vegetation cover (FVC) at the Gonghe solar thermal power plant through image classification, in situ sampling, and sliding window techniques. We then quantify the plant’s impact on FVC by comparing data from the pre-installation and post-installation periods. Our findings indicate that the Gonghe solar thermal power plant is associated with a 0.02 increase in FVC compared to a surrounding control region (p < 0.05), representing a 12.5% increase relative to the pre-installation period. Notably, the enhancement in FVC is more pronounced in the outer ring areas than near the central tower. The observed enhancement in vegetation growth at the Gonghe plant suggests potential ecological and carbon storage benefits resulting from solar power plant establishment on the Tibetan Plateau. These findings underscore the necessity of evaluating the climate and ecological impacts of renewable energy facilities during the planning and design phases to ensure a harmonious balance between clean energy development and local ecological integrity. Full article
(This article belongs to the Special Issue Remote Sensing of Mountain and Plateau Vegetation)
Show Figures

Graphical abstract

21 pages, 14797 KiB  
Article
A Parameter Optimized Method for InVEST Model in Sub-Pixel Scale Integrating Machine Learning Algorithm and Vegetation–Impervious Surface–Soil Model
by Linlin Wu and Fenglei Fan
Land 2024, 13(11), 1876; https://doi.org/10.3390/land13111876 - 10 Nov 2024
Cited by 1 | Viewed by 1002
Abstract
The InVEST model, with its ability to perform spatial visualization and quantification, is an important tool for mapping ecosystem services. However, the spatial accuracy and simulating performance of the model are deeply influenced by the land use parameter, which often relies on the [...] Read more.
The InVEST model, with its ability to perform spatial visualization and quantification, is an important tool for mapping ecosystem services. However, the spatial accuracy and simulating performance of the model are deeply influenced by the land use parameter, which often relies on the accuracy of land use/cover data. To address this issue, we propose a novel method for optimizing the land use parameter of the InVEST model based on the vegetation–impervious surface–soil (V–I–S) model and a machine learning algorithm. The optimized model is called Sub-InVEST, and it improves the performance of assessing ecosystem services on a sub-pixel scale. The conceptual steps are (i) extracting the V–I–S fraction of remote sensing images based on the spectral unmixing method; (ii) determining the mapping relationship of the V–I–S fraction between land use/cover type using a machine learning algorithm and field observation data; (iii) inputting the V–I–S fraction into the original model instead of the land use/cover parameter of the InVEST model. To evaluate the performance and spatial accuracy of the Sub-InVEST model, we employed the habitat quality module of InVEST and multi-source remote sensing data, which were applied to acquire Sub-InVEST and estimate the habitat quality of central Guangzhou city from 2000 to 2020 with the help of the LSMA and ISODATA methods. The experimental results showed that the Sub-InVEST model is robust in assessing ecosystem services in sets of complex ground scenes. The spatial distribution of the habitat quality of both models revealed a consistent increasing trend from the southwest to the northeast. Meanwhile, linear regression analyses observed a robust correlation and consistent linear trends, with R2 values of 0.41, 0.35, 0.42, 0.39, and 0.47 for the years 2000, 2005, 2010, 2015, and 2020, respectively. Compared with the original model, Sub-InVEST had a more favorable performance in estimating habitat quality in central Guangzhou. The spatial depictions and numerical distribution of the results of the Sub-InVSET model manifest greater detail and better concordance with remote sensing imagery and show a more seamless density curve and a substantially enhanced probability distribution across interval ranges. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

34 pages, 13091 KiB  
Article
Methods for Extracting Fractional Vegetation Cover from Differentiated Scenarios Based on Unmanned Aerial Vehicle Imagery
by Changning Sun, Yonggang Ma, Heng Pan, Qingxue Wang, Jiali Guo, Na Li and Hong Ran
Land 2024, 13(11), 1840; https://doi.org/10.3390/land13111840 - 5 Nov 2024
Cited by 1 | Viewed by 1072
Abstract
Fractional vegetation cover (FVC) plays a key role in ecological and environmental status assessment because it directly reflects the extent of vegetation cover and its status, yet vegetation is an important component of ecosystems. FVC estimation methods have evolved from traditional manual interpretation [...] Read more.
Fractional vegetation cover (FVC) plays a key role in ecological and environmental status assessment because it directly reflects the extent of vegetation cover and its status, yet vegetation is an important component of ecosystems. FVC estimation methods have evolved from traditional manual interpretation to advanced remote sensing technologies, such as satellite data analysis and unmanned aerial vehicle (UAV) image processing. Extraction methods based on high-resolution UAV data are being increasingly studied in the fields of ecology and remote sensing. However, research on UAV-based FVC extraction against the backdrop of the high soil reflectance in arid regions remains scarce. In this paper, based on 12 UAV visible light images in differentiated scenarios in the Ebinur Lake basin, Xinjiang, China, various methods are used for high-precision FVC estimation: Otsu’s thresholding method combined with 12 Visible Vegetation Indices (abbreviated as Otsu-VVIs) (excess green index, excess red index, excess red minus green index, normalized green–red difference index, normalized green–blue difference index, red–green ratio index, color index of vegetation extraction, visible-band-modified soil-adjusted vegetation index, excess green minus red index, modified green–red vegetation index, red–green–blue vegetation index, visible-band difference vegetation index), color space method (red, green, blue, hue, saturation, value, lightness, ‘a’ (Green–Red component), and ‘b’ (Blue–Yellow component)), linear mixing model (LMM), and two machine learning algorithms (a support vector machine and a neural network). The results show that the following methods exhibit high accuracy in FVC extraction across differentiated scenarios: Otsu–CIVE, color space method (‘a’: Green–Red component), LMM, and SVM (Accuracy > 0.75, Precision > 0.8, kappa coefficient > 0.6). Nonetheless, higher scene complexity and image entropy reduce the applicability of precise FVC extraction methods. This study facilitates accurate, efficient extraction of vegetation information in differentiated scenarios within arid and semiarid regions, providing key technical references for FVC estimation in similar arid areas. Full article
Show Figures

Figure 1

Back to TopTop