The Relationships Between Vegetation Changes and Groundwater Table Depths for Woody Plants in the Sangong River Basin, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Remote Sensing Images
2.2.2. GTD Observation Data
2.2.3. Meteorological Data
2.3. Methods
2.3.1. Extraction of Woody Plant Distribution
2.3.2. Enhanced Vegetation Index
2.3.3. The Modified Three-Band Maximum Gradient Difference (TGDVI) Method
2.3.4. Method of Calculating the Optimal Groundwater Level
3. Results
3.1. Extraction Results of the Woody Plant Distribution
3.1.1. Results of Accuracy Evaluation
3.1.2. Results of Woody Plant Extraction
3.2. Fractional Woody Plants Cover
3.3. The Spatio-Temporal Variation of EVI in the Middle and Lower Reaches of the SRB
3.4. The Relationship Between EVI and GTD in the Middle and Lower Reaches of the SRB
3.5. The Optimal GTD Values of Two Woody Plants
4. Discussion
4.1. The Influences of Climate Change and Human Activities on Woody Plants
4.2. The Responses of Woody Plants to the Decreased GTD
4.3. The Optimal GTD of Woody Plants in Northwest China
4.4. Limitations and Future Work
5. Conclusions and Suggestion
- (1)
- The D-LinkNet model effectively extracted the distribution of woody plants from GF-2 satellite images with an overall accuracy (OA) of 96.06%. Combining the actual distribution of woody plants and long time-series Landsat images, the vegetation growth in the middle and lower reaches of the SRB exhibited a significant increasing trend from 1988 to 2021. Furthermore, the growth rate in the oasis areas was much greater than that in the desert areas.
- (2)
- The difference between FWC and FVC served as a reliable indicator of the extent of the desert-oasis ecotone. The desert-oasis ecotone in the SRB of this study was within 1 km north of the oasis boundary.
- (3)
- The two desert woody plants exhibited distinct water-use strategies, resulting in different relationships between their growth and GTD and precipitation in the desert regions of the SRB. The optimal GTD for H. ammodendron and T. ramosissima were 5.51 m and 3.36 m, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Tariq, A.; Hughes, A.C.; Hong, D.; Wei, F.; Sun, H.; Sardans, J.; Peñuelas, J.; Perry, G.; Qiao, J.; et al. Challenges and Solutions to Biodiversity Conservation in Arid Lands. Sci. Total Environ. 2023, 857, 159695. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland Climate Change: Recent Progress and Challenges: Dryland Climate Change. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Koppa, A.; Keune, J.; Schumacher, D.L.; Michaelides, K.; Singer, M.; Seneviratne, S.I.; Miralles, D.G. Dryland self-expansion enabled by land-atmosphere feedbacks. Science 2024, 385, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Li, J.M.; Zhang, F.M.; Yang, K. Changes in the moisture contribution over global arid regions. Clim. Dyn. 2023, 61, 543–557. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.L.; Chen, A.P.; Huntingford, C.; Fu, B.J.; Li, L.Z.X.; Huang, J.P.; Sheffield, J.; Berg, A.M.; Keenan, T.F.; et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth. Environ. 2021, 2, 232–250. [Google Scholar] [CrossRef]
- Luo, W.C.; Zhao, W.Z.; He, Z.B.; Sun, C.P. Spatial characteristics of two dominant shrub populations in the transition zone between oasis and desert in the Heihe River Basin, China. Catena 2018, 170, 356–364. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, D.; Chen, X.; Zhang, Y.; Maisupova, B.; Tao, Y. The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote. Sens. Environ. 2016, 175, 271–281. [Google Scholar] [CrossRef]
- Rohde, M.M.; Albano, C.M.; Huggins, X.; Klausmeyer, K.R.; Morton, C.; Sharman, A.; Zaveri, E.; Saito, L.; Freed, Z.; Howard, J.K.; et al. Groundwater-dependent ecosystem map exposes global dryland protection needs. Nature 2024, 632, 101–107. [Google Scholar] [CrossRef]
- Li, X.; Song, Z.; Hu, Y.; Qiao, J.; Chen, Y.; Wang, S.; Yue, P.; Chen, M.; Ke, Y.; Xu, C.; et al. Drought Intensity and Post-Drought Precipitation Determine Vegetation Recovery in a Desert Steppe in Inner Mongolia, China. Sci. Total Environ. 2024, 906, 167449. [Google Scholar] [CrossRef]
- Li, E.G.; Tong, Y.Q.; Huang, Y.M.; Li, X.Y.; Wang, P.; Chen, H.Y.; Yang, C.Y. Responses of two desert riparian species to fluctuating groundwater depths in hyperarid areas of Northwest China. Ecohydrology. 2019, 12, e2078. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Xu, G.Q. Response of two dominant woody species to groundwater depth at the transition zone between desert and oasis. Ecol. Indic. 2024, 166, 112278. [Google Scholar]
- Sun, Q.; Zhang, P.; Sun, D.; Liu, A.; Dai, J. Desert Vegetation-Habitat Complexes Mapping Using Gaofen-1 WFV (Wide Field of View) Time Series Images in Minqin County, China. Int. J. Appl. Earth. Obs. 2018, 73, 522–534. [Google Scholar] [CrossRef]
- Liu, M.; Fu, B.; Xie, S.; He, H.; Lan, F.; Li, Y.; Lou, P.; Fan, D. Comparison of Multi-Source Satellite Images for Classifying Marsh Vegetation Using DeepLabV3 Plus Deep Learning Algorithm. Ecol. Indic. 2021, 125, 107562. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Zhong, B.; Liu, Q.; Wu, S.; Ji, C.; Zhao, J.; Li, L.; Shi, X.; Yang, A. Integrated Vegetation Cover of Typical Steppe in China Based on Mixed Decomposing Derived from High Resolution Remote Sensing Data. Sci. Total Environ. 2023, 904, 166738. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Z.Y.; Chen, E.X.; Zhang, X.; Zhao, L.; Xu, E.E.; Hou, Y.A.; Liu, L.Z. A deep fusion unet for mapping forests at tree species levels with multi-temporal high spatial resolution satellite imagery. Remote Sens. 2021, 13, 18. [Google Scholar] [CrossRef]
- Chang, Z.; Li, H.; Chen, D.; Liu, Y.; Zou, C.; Chen, J.; Han, W.; Liu, S.; Zhang, N. Crop Type Identification Using High-Resolution Remote Sensing Images Based on an Improved DeepLabV3+ Network. Remote Sens. 2023, 15, 5088. [Google Scholar] [CrossRef]
- Yin, X.W.; Feng, Q.; Li, Y.; Deo, R.C.; Liu, W.; Zhu, M.; Zheng, X.J.; Liu, R. An interplay of Soil Salinization and Groundwater Degradation Threatening Coexistence of Oasis-Desert Ecosystems. Sci. Total Environ. 2022, 806, 150599. [Google Scholar] [CrossRef]
- Zhu, Q.Q.; Li, Z.; Zhang, Y.N.; Guan, Q.F. Building Extraction from High Spatial Resolution Remote Sensing Images via Multiscale-Aware and Segmentation-Prior Conditional Random Fields. Remote Sens. 2020, 12, 3983. [Google Scholar] [CrossRef]
- Liu, H.; Qi, S.; Liu, L.; Li, X. Analysis of Spatial Heterogeneity of Groundwater Depth in the Fukang Oasis of Xinjiang Based on the Geostatistics. Chin. J. Ecol. 2018, 37, 1484–1489. (In Chinese) [Google Scholar]
- Du, B.; Zhao, Z.R.; Hu, X.; Wu, G.H.; Han, L.Z.; Sun, L.L.; Gao, Q. Landslide susceptibility prediction based on image semantic segmentation. Comput Geosci. 2021, 155, 104860. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote. Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiapaer, G.; Chen, X.; Bao, A.M. A Comparison of Methods for Estimating Fractional Vegetation Cover in Arid Regions. Agric. For. Meteorol. 2021, 151, 1698–1710. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Li, S.B.; Jia, Y.H.; Jiang, Y.C. Dynamic changes of groundwater level and vegetation in water table fluctuant belt in lower reaches of Heihe River: Coupling simulation. Chin. J. Appl. Ecol. 2008, 19, 2687–2692. (In Chinese) [Google Scholar]
- Zhang, H.; Hu, Z.Y.; Zhang, Z.; Li, Y.M.; Song, S.R.; Chen, X. How does vegetation change under the warm-wet tendency across Xinjiang, China? Int. J. Appl. Earth. Obs. 2024, 127, 103664. [Google Scholar] [CrossRef]
- Jiapaer, G.; Liang, S.L.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar]
- Wang, Q.; Zhai, P.M.; Qin, D.H. New Perspectives on ‘Warming-Wetting’ Trend in Xinjiang, China. Adv. Atmos. Sci. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Yao, J.Q.; Mao, W.Y.; Chen, J.; Dilinuer, T. Recent signal and impact of wet-to-dry climatic shift in Xinjiang, China. J. Geogr. Sci. 2021, 31, 1283–1298. [Google Scholar] [CrossRef]
- He, P.; Sun, Z.; Han, Z.; Dong, Y.; Liu, H.; Meng, X.; Ma, J. Dynamic characteristics and driving factors of vegetation greenness under changing environments in Xinjiang, China. Environ. Sci. Pollut. Res. 2021, 28, 42516–42532. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, J.J.; Yan, Q.L.; Song, L.N. Effects of land use changes on the groundwater table and the decline of Pinus sylvestris var. mongolica plantations in southern Horqin Sandy Land, Northeast China. Agric. Water Manag. 2012, 109, 94–106. [Google Scholar]
- Wang, Y.; Xiao, D.; Li, Y.; Li, X. Soil Salinity Evolution and Its Relationship with Dynamics of Groundwater in the Oasis of Inland River Basins: Case Study from the Fubei Region of Xinjiang Province, China. Environ. Monit. Assess. 2008, 140, 291–302. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, G.; Li, L.; Zhang, M.; Lv, N.; Wang, X. An Analysis of Oasis Evolution Based on Land Use and Land Cover Change: A Case Study in the Sangong River Basin on the Northern Slope of the Tianshan Mountains. J. Geogr. Sci. 2017, 27, 223–239. [Google Scholar] [CrossRef]
- Cheng, W.J.; Feng, Q.; Xi, H.Y.; Sindikubwabo, C.; Chen, Y.Q.; Zhao, X.Y. Spatio-temporal dynamics of water storage across Northwest China over the past four decades. J. Hydrol. Reg. Stud. 2023, 49, 101488. [Google Scholar] [CrossRef]
- Duan, L.; Chen, X.; Bu, L.; Chen, C.; Song, S. Temporal and Spatial Variation Analysis of Groundwater Stocks in Xinjiang Based on GRACE Data. Remote Sens. 2024, 16, 813. [Google Scholar] [CrossRef]
- Cheng, W.; Feng, Q.; Xi, H.; Yin, X.; Cheng, L.; Sindikubwabo, C.; Zhang, B.; Chen, Y.; Zhao, X. Modeling and assessing the impacts of climate change on groundwater recharge in endorheic basins of Northwest China. Sci. Total Environ. 2024, 918, 170829. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.L.; Zhang, H.X.; Chen, Y.F.; Zhang, L.W.; Kawushaer, K.; Dilxadam, T.; Zhang, Y.M. Potential distribution of three types of ephemeral plants under climate changes. Front. Plant Sci. 2022, 13, 1035684. [Google Scholar]
- Anderegg, L.D.L.; Anderegg, W.R.L.; Berry, J.A. Not all droughts are created equal: Translating meteorological drought into woody plant mortality. Tree Physiol. 2013, 33, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y.; Todo, C.; Yamase, K.; Tanikawa, T.; Dannoura, M.; Ohashi, M.; Doi, R.; Wada, R.; Ikeno, H. 2018. Quantification of the contrasting root systems of Pinus thunbergii in soils with different groundwater levels in a coastal forest in Japan. Plant. Soil. 2018, 426, 327–337. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, H.; Zhou, B.; Dong, Z.; Li, G.; Li, S. Variations in water use strategies of Tamarix ramosissima at coppice dunes along a precipitation gradient in desert regions of northwest China. Front. Plant Sci. 2024, 15, 1408943. [Google Scholar] [CrossRef]
- Torres-Garcia, M.T.; Salinas-Bonillo, M.J.; Gazquez-Sanchez, F.; Fernandez-Cortes, A.; Querejeta, J.I.; Cabello, J. Squandering water in drylands: The water-use strategy of the phreatophyte Ziziphus lotus in a groundwater-dependent ecosystem. Am. J. Bot. 2021, 108, 236–248. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, X.J.; Yin, X.W.; Yue, Y.M.; Liu, R.; Xu, G.Q.; Li, Y. Seasonal variation in the groundwater dependency of two dominant woody species in a desert region of Central Asia. Plant. Soil. 2019, 444, 39–55. [Google Scholar] [CrossRef]
- Kulmatiski, A.; Adler, P.; Foley, M. Hydrologic niches explain species coexistence and abundance in a shrub-steppe system. J. Ecol. 2020, 108, 998–1008. [Google Scholar] [CrossRef]
- Huber, S.; Fensholt, R.; Rasmussen, K. Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Glob. Planet. Change 2011, 76, 186–195. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Ferreira, V.G.; Agutu, N.O. Hydrological controls on surface vegetation dynamics over West and Central Africa. Ecol. Indic. 2019, 103, 494–508. [Google Scholar] [CrossRef]
- Lamontagne, S.; Cook, P.G.; O’Grady, A.; Eamus, D. Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). J. Hydrol. 2005, 310, 280–293. [Google Scholar] [CrossRef]
- Bachofen, C.; Tumber-Dávila, S.J.; Mackay, D.S.; McDowell, N.G.; Carminati, A.; Klein, T.; Stocker, B.D.; Mencuccini, M.; Grossiord, C. Tree water uptake patterns across the globe. New Phytol. 2024, 242, 1891–1910. [Google Scholar] [CrossRef]
- Jin, X.M. Quantitative Relationship between the Desert Vegetation and Groundwater Depth in Ejina Oasis, the Heihe River Basin. Earth Sci. Front. 2010, 17, 181–186. (In Chinese) [Google Scholar]
- Xu, H.; Li, Y. Water use Strategies and Corresponding Leaf Physiological Performance of Three Desert Shrubs. Acta Bot. Boreali-Occident. Sin. 2005, 25, 1309–1316. (In Chinese) [Google Scholar]
- Peng, H.; Fu, B.; Chen, L.; Yang, Z. Study on Features of Vegetation Succession and its Driving Force in Gansu Desert Areas. J. Desert Res. 2004, 24, 628–633. (In Chinese) [Google Scholar]
- Peng, L.; Wan, Y.B.; Li, H.; Du, M.D.; Shi, Q.D. Influence of surface water and groundwater gradient on spatial distribution of typical vegetation in the hinterland of Taklamakan desert. Sci. Total Environ. 2024, 953, 176060. [Google Scholar] [CrossRef]
- Guo, Z.R.; Liu, H.T. Eco-depth of Groundwater Depth for Natural Vegetation in Inland Basin, Northwest China. J. Arid. Land Resour. Environ. 2005, 19, 157–161. (In Chinese) [Google Scholar]
- Li, Z.; Yaning, C.; Weihong, L.; Xin, L. Responses of Tamarix ramosissima ABA Accumulation to Changes in Groundwater Levels and Soil Salinity in the Lower Reaches of Tarim River, China. Acta Ecol. Sinica. 2007, 27, 4247–4251. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, Z.; Liu, L.; Zhan, W.; He, T.; Shen, H.; Zhao, J.; Liu, Y.; Zhang, H.; Liu, Z.; et al. Remote Sensing Time Series Analysis: A Review of Data and Applications. J. Remote Sens. 2024, 4, 0285. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.T.; Guan, H.C.; Ren, Y.; Chen, Y.L.; Chen, M.X.; Yang, Z.K.; Lin, D.Y.; Liu, W.Y.; Xu, J.C.; et al. Unveiling China’s natural and planted forest spatial–temporal dynamics from 1990 to 2020. ISPRS J. Photogramm. Remote Sens. 2024, 209, 37–50. [Google Scholar] [CrossRef]
- Yin, X.; Feng, Q.; Li, Y.L.; Zhu, W.; Zhang, M.; Yang, L.; Zhang, C.; Wu, X.; Zheng, X. Exaerbated drought accelerates catastrophic transitions of groundwater-dependent ecosystems in arid endorheic basins. J. Hydrol. 2022, 613, 128337. [Google Scholar] [CrossRef]
- Crawford, C.J.; Roy, D.P.; Arab, S.; Barnes, C.; Vermote, E.; Hulley, G.; Gerace, A.; Choate, M.; Engebretson, C.; Micijevic, E.; et al. The 50-year Landsat collection 2 archive. Sci. Remote Sens. 2023, 8, 100103. [Google Scholar] [CrossRef]
- Cao, R.; Xu, Z.; Chen, Y.; Chen, J.; Shen, M. Reconstructing High-Spatiotemporal-Resolution (30 m and 8-Days) NDVI Time-Series Data for the Qinghai-Tibetan Plateau from 2000-2020. Remote Sens. 2022, 14, 3648. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Zhang, H.K.; Liu, J.P. Making Landsat 5, 7 and 8 reflectance consistent using MODIS nadir-BRDF adjusted reflectance as reference. Remote Sens. Environ. 2021, 262, 112517. [Google Scholar]
- Wang, Q.M.; Wang, L.X.; Wei, C.; Jin, Y.M.; Li, Z.B.; Tong, X.H. Filling gaps in Landsat ETM+ SLC-off images with Sentinel-2 MSI images. Int. J. Appl. Earth. Obs. 2021, 101, 102365. [Google Scholar] [CrossRef]
Models | PA | UA | OA | F1-Score | MIoU |
---|---|---|---|---|---|
D-LinkNet | 68.80% | 67.04% | 96.06% | 0.67 | 50.61% |
FCN8S | 31.72% | 26.77% | 91.72% | 0.28 | 16.58% |
DeepLabV3 Plus | 32.63% | 41.16% | 91.03% | 0.36 | 21.83% |
Subcategory | Average Value of GTD (m) | Average Value of EVI | Percentage of Cropland | Relationship Between EVI and GTD |
---|---|---|---|---|
APOL-1 | 3.72 ± 1.94 | 0.16 ± 0.08 | 58–61% | y = −0.01x2 + 0.06x + 0.04, R2 = 0.17, p < 0.001 |
APOL-2 | 2.74 ± 0.35 | 0.22 ± 0.11 | 71–100% | y = −0.16x + 0.65, R2 = 0.25, p < 0.001 |
APOU-1 | 3.39 ± 1.10 | 0.21 ± 0.10 | 40% | y = −0.02x2 + 0.18x − 0.16, R2 = 0.19, p < 0.05 |
APOU-2 | 7.65 ± 6.89 | 0.2 ± 0.12 | 85–100% | y = 0.06ln(x) + 0.11, R2 = 0.24, p < 0.001 |
ADFO-1 | 69.28 ± 2.54 | 1.1 ± 0.16 | 29–43% | y = e0.13x−11.2, R2 = 0.26, p < 0.001 |
ADFO-2 | 19.66 ± 8.91 | 0.22 ± 0.12 | 65–92% | y = e0.03x−2.34, R2 = 0.14, p < 0.001 |
H. ammodendron | 7.63 ± 0.13 | 0.10 ± 0.02 | - | y = 0.29x2 − 4.62x + 18.11, R2 = 0.24, p < 0.001 |
T. ramosissima | 5.09 ± 1.13 | 0.18 ± 0.06 | - | y = −7.89 × 10−3x2 + 0.10x − 0.11, R2 = 0.21, p < 0.001 |
River Basin | H. ammodendron (m) | T. ramosissima (m) | Method | ||||
---|---|---|---|---|---|---|---|
Normal | Optimal | Mortality | Normal | Optimal | Mortality | ||
This study | / | 5.51 | / | / | 3.36 | / | Remote sensing data GTD observing data |
Ejina oasis [46] | / | 2–4 | >4 | / | 2–5 | >5 | Remote sensing data GTD observing data |
Manas River Basin [47] | 6–8 | 5–8 | >8 | / | / | / | Field survey |
Shule River Basin [48] | / | / | <5 | 1–6 | >10 | Field survey | |
Taklamakan deser [49] | / | 3–5 | / | Remote sensing data | |||
Mainstream of Tarim River [50] | / | / | / | 1–10 | 1–3 | >10 | Field survey |
Downstream of Tarim River [51] | / | / | / | / | 3–6 | / | Field survey |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Bai, J.; Li, J.; Liu, R.; Zhao, J.; Ma, X. The Relationships Between Vegetation Changes and Groundwater Table Depths for Woody Plants in the Sangong River Basin, Northwest China. Remote Sens. 2025, 17, 937. https://doi.org/10.3390/rs17050937
Wu H, Bai J, Li J, Liu R, Zhao J, Ma X. The Relationships Between Vegetation Changes and Groundwater Table Depths for Woody Plants in the Sangong River Basin, Northwest China. Remote Sensing. 2025; 17(5):937. https://doi.org/10.3390/rs17050937
Chicago/Turabian StyleWu, Han, Jie Bai, Junli Li, Ran Liu, Jin Zhao, and Xuanlong Ma. 2025. "The Relationships Between Vegetation Changes and Groundwater Table Depths for Woody Plants in the Sangong River Basin, Northwest China" Remote Sensing 17, no. 5: 937. https://doi.org/10.3390/rs17050937
APA StyleWu, H., Bai, J., Li, J., Liu, R., Zhao, J., & Ma, X. (2025). The Relationships Between Vegetation Changes and Groundwater Table Depths for Woody Plants in the Sangong River Basin, Northwest China. Remote Sensing, 17(5), 937. https://doi.org/10.3390/rs17050937